Trying to implement EKG style "heartbeat" chart from a design and I'm having a hard time getting D3 to draw a path like I need.
The design spec states that the graph needs to return to nuetral/zero point between each and every data point, and that the curved path from the zero point should be close to the data point itself and rise sharply. See the attached images below
Here is the design....
And here is my attempt to match the curve with dummy data (black circle data points)...
The graph has a time scale X axis and a linear Y axis that ranges from 0 to 2 (my data points are 0,1, or 2 respectively). The line is using 'monotone' interpolation which is the least terrible looking.
Question:
Is there a better way to get this appearance without dummy data points?
Question-behind-the-question:
What is the best way to get D3 draw a custom paths (e.g. from a function)?
Sub-question:
Why does the monotone interpolation curve the path inward so sharply between the last 2 data points?
Any help is appreciated! The designers and client won't budge on this one, so I have to get it as close possible :(
Related
I have a GeoJSON file with small details and features that I want to render using D3. Unfortunately, important details are lost because D3
removes polygon coordinate pairs that are closely spaced.
I've set up a small example to show this. Both links use the exact same GeoJSON data, rendered with both D3-geo and mapbox through github.
Specifically, notice the two areas marked by the red circles.
https://bl.ocks.org/alvra/eebb06be793bc06ff3ae01e6945298b6
https://gist.github.com/alvra/eebb06be793bc06ff3ae01e6945298b6
The top one one marks a part of polygon that is rounded using many closely spaced coordinate pairs, but D3 removes most points and just draws a rough square end.
The lower red circle marks a tiny triangle that is removed altogether. The adjacent polygons should touch exactly, but are also affected by D3's loss of precision.
I haven't found any documentation about D3's coordinate precision or a (configurable) feature size limit.
I've tried decreasing D3-geo's EPSILON and related EPSILON2 values and that removes this problem (for me), although I'm sure even smaller features will still be affected.
Assuming this is related to the fact that D3 uses proper geodesics for polygon segments, while the other mapping libraries just draw straight lines (in the output coordinate space),
I was hoping that this process can only introduce new points.
I haven't been able to find other users experiencing similar problems with small features, although I'm surprised this has never come up before.
Does anyone have an idea about the proper way to deal with this?
Through epsilon, I've narrowed the problem down to this use of pointEqual(). This indicates the problem is with clipCircle considering closely spaced coordinates equal and removes them.
Indeed, if I disable circular clipping projection.clipAngle(null), the problem disappears.
PROBLEM
Im working on displaying results of some simulation analysis. It is basically polygon surface model with assigned color for each verticle representing pressure/temperature/deformation/whatever the simulation is calculating (see picture below).
There are already too many verticles which is causing performance issues. But we need more resolution on areas that matter - those verticles that are actually part of several color areas. This way would like to increase resolution but at the same time keep polygon count low (we are doing some demanding model conversion on the way so doing higres first and then decimation is not an option).
Therefore during export we would like to create smart subdivision of verticles and create additional colored verticles where it matters. As one polygon can be part of up to 4 color areas on each edge, I am looking for algorithm that will help me create this subdivision.
Picture 1 shows polygon net versus simulation coloring results. Ideally polygons should copy those colors.
Picture 2 shows my ideas about possible division. We are not able to detect exact location of color change, only sampling at verticles is possible, therefore we only have information to how many colors each edge will be divided.
SOLUTION
INPUT:
one polygon spatial + color information
information about new color subdivision, i.e. edge I-J will need 3 color subdivision, I-K 2 subdivision, etc. Exact colors will be calculated from rainbow
OUTPUT:
multiple polygons = spatial information + calculated intermediate colors on verticle level
practically we can limit ourselves to 4 colors per edge max
QUESTION
programming language of this is something proprietary so I am looking rather for pseudocode or general concept
please can you help me with approach to this algorithm? I know here must be something done already but i was unable to find anything useful
Thank you very much!
On a shape from a logical image, I am trying to extract the field of view from any point inside the shape on matlab :
I tried something involving to test each line going through the point but it is really really long.(I hope to do it for each points of the shape or at least each point of it's contour wich is quite a few times)
I think a faster method would be working iteratively by the expansion of a disk from the considered point but I am not sure how to do it.
How can I find this field of view in an efficient way?
Any ideas or solution would be appreciated, thanks.
Here is a possible approach (the principle behind the function I wrote, available on Matlab Central):
I created this test image and an arbitrary point of view:
testscene=zeros(500);
testscene(80:120,80:120)=1;
testscene(200:250,400:450)=1;
testscene(380:450,200:270)=1;
viewpoint=[250, 300];
imsize=size(testscene); % checks the size of the image
It looks like this (the circle marks the view point I chose):
The next line computes the longest distance to the edge of the image from the viewpoint:
maxdist=max([norm(viewpoint), norm(viewpoint-[1 imsize(2)]), norm(viewpoint-[imsize(1) 1]), norm(viewpoint-imsize)]);
angles=1:360; % use smaller increment to increase resolution
Then generate a set of points uniformly distributed around the viewpoint.:
endpoints=bsxfun(#plus, maxdist*[cosd(angles)' sind(angles)'], viewpoint);
for k=1:numel(angles)
[CX,CY,C] = improfile(testscene,[viewpoint(1), endpoints(k,1)],[viewpoint(2), endpoints(k,2)]);
idx=find(C);
intersec(k,:)=[CX(idx(1)), CY(idx(1))];
end
What this does is drawing lines from the view point to each directions specified in the array angles and look for the position of the intersection with an obstacle or the edge of the image.
This should help visualizing the process:
Finally, let's use the built-in roipoly function to create a binary mask from a set of coordinates:
FieldofView = roipoly(testscene,intersec(:,1),intersec(:,2));
Here is how it looks like (obstacles in white, visible field in gray, viewpoint in red):
To give you some background as to what I'm doing: I'm trying to quantitatively record variations in flow of a compressible fluid via image analysis. One way to do this is to exploit the fact that the index of refraction of the fluid is directly related to its density. If you set up some kind of image behind the flow, the distortion in the image due to refractive index changes throughout the fluid field leads you to a density gradient, which helps to characterize the flow pattern.
I have a set of routines that do this successfully with a regular 2D pattern of dots. The dot pattern is slightly distorted, and by comparing the position of the dots in the distorted image with that in the non-distorted image, I get a displacement field, which is exactly what I need. The problem with this method is resolution. The resolution is limited to the number of dots in the field, and I'm exploring methods that give me more data.
One idea I've had is to use a regular grid of horizontal and vertical lines. This image will distort the same way, but instead of getting only the displacement of a dot, I'll have the continuous distortion of a grid. It seems like there must be some standard algorithm or procedure to compare one geometric grid to another and infer some kind of displacement field. Nonetheless, I haven't found anything like this in my research.
Does anyone have some ideas that might point me in the right direction? FYI, I am not a computer scientist -- I'm an engineer. I say that only because there may be some obvious approach I'm neglecting due to coming from a different field. But I can program. I'm using MATLAB, but I can read Python, C/C++, etc.
Here are examples of the type of images I'm working with:
Regular: Distorted:
--------
I think you are looking for the Digital Image Correlation algorithm.
Here you can see a demo.
Here is a Matlab Implementation.
From Wikipedia:
Digital Image Correlation and Tracking (DIC/DDIT) is an optical method that employs tracking & image registration techniques for accurate 2D and 3D measurements of changes in images. This is often used to measure deformation (engineering), displacement, and strain, but it is widely applied in many areas of science and engineering.
Edit
Here I applied the DIC algorithm to your distorted image using Mathematica, showing the relative displacements.
Edit
You may also easily identify the maximum displacement zone:
Edit
After some work (quite a bit, frankly) you can come up to something like this, representing the "displacement field", showing clearly that you are dealing with a vortex:
(Darker and bigger arrows means more displacement (velocity))
Post me a comment if you are interested in the Mathematica code for this one. I think my code is not going to help anybody else, so I omit posting it.
I would also suggest a line tracking algorithm would work well.
Simply start at the first pixel line of the image and start following each of the vertical lines downwards (You just need to start this at the first line to get the starting points. This can be done by a simple pattern that moves orthogonally to the gradient of that line, ergo follows a line. When you reach a crossing of a horizontal line you can measure that point (in x,y coordinates) and compare it to the corresponding crossing point in your distorted image.
Since your grid is regular you know that the n'th measured crossing point on the m'th vertical black line are corresponding in both images. Then you simply compare both points by computing their distance. Do this for each line on your grid and you will get, by how far each crossing point of the grid is distorted.
This following a line algorithm is also used in basic Edge linking algorithms or the Canny Edge detector.
(All this are just theoretic ideas and I cannot provide you with an algorithm to it. But I guess it should work easily on distorted images like you have there... but maybe it is helpful for you)
I'm searching for an certain object in my photograph:
Object: Outline of a rectangle with an X in the middle. It looks like a rectangular checkbox. That's all. So, no fill, just lines. The rectangle will have the same ratios of length to width but it could be any size or any rotation in the photograph.
I've looked a whole bunch of image recognition approaches. But I'm trying to determine the best for this specific task. Most importantly, the object is made of lines and is not a filled shape. Also, there is no perspective distortion, so the rectangular object will always have right angles in the photograph.
Any ideas? I'm hoping for something that I can implement fairly easily.
Thanks all.
You could try using a corner detector (e.g. Harris) to find the corners of the box, the ends and the intersection of the X. That simplifies the problem to finding points in the right configuration.
Edit (response to comment):
I'm assuming you can find the corner points in your image, the 4 corners of the rectangle, the 4 line endings of the X and the center of the X, plus a few other corners in the image due to noise or objects in the background. That simplifies the problem to finding a set of 9 points in the right configuration, out of a given set of points.
My first try would be to look at each corner point A. Then I'd iterate over the points B close to A. Now if I assume that (e.g.) A is the upper left corner of the rectangle and B is the lower right corner, I can easily calculate, where I would expect the other corner points to be in the image. I'd use some nearest-neighbor search (or a library like FLANN) to see if there are corners where I'd expect them. If I can find a set of points that matches these expected positions, I know where the symbol would be, if it is present in the image.
You have to try if that is good enough for your application. If you have too many false positives (sets of corners of other objects that accidentially form a rectangle + X), you could check if there are lines (i.e. high contrast in the right direction) where you would expect them. And you could check if there is low contrast where there are no lines in the pattern. This should be relatively straightforward once you know the points in the image that correspond to the corners/line endings in the object you're looking for.
I'd suggest the Generalized Hough Transform. It seems you have a fairly simple, fixed shape. The generalized Hough transform should be able to detect that shape at any rotation or scale in the image. You many need to threshold the original image, or pre-process it in some way for this method to be useful though.
You can use local features to identify the object in image. Feature detection wiki
For example, you can calculate features on some referent image which contains only the object you're looking for and save the results, let's say, to a plain text file. After that you can search for the object just by comparing newly calculated features (on images with some complex scenes containing the object) with the referent ones.
Here's some good resource on local features:
Local Invariant Feature Detectors: A Survey