How to modify a global variable within a function in bash? - bash

I'm working with this:
GNU bash, version 4.1.2(1)-release (x86_64-redhat-linux-gnu)
I have a script like below:
#!/bin/bash
e=2
function test1() {
e=4
echo "hello"
}
test1
echo "$e"
Which returns:
hello
4
But if I assign the result of the function to a variable, the global variable e is not modified:
#!/bin/bash
e=2
function test1() {
e=4
echo "hello"
}
ret=$(test1)
echo "$ret"
echo "$e"
Returns:
hello
2
I've heard of the use of eval in this case, so I did this in test1:
eval 'e=4'
But the same result.
Could you explain me why it is not modified? How could I save the echo of the test1 function in ret and modify the global variable too?

When you use a command substitution (i.e., the $(...) construct), you are creating a subshell. Subshells inherit variables from their parent shells, but this only works one way: A subshell cannot modify the environment of its parent shell.
Your variable e is set within a subshell, but not the parent shell. There are two ways to pass values from a subshell to its parent. First, you can output something to stdout, then capture it with a command substitution:
myfunc() {
echo "Hello"
}
var="$(myfunc)"
echo "$var"
The above outputs:
Hello
For a numerical value in the range of 0 through 255, you can use return to pass the number as the exit status:
mysecondfunc() {
echo "Hello"
return 4
}
var="$(mysecondfunc)"
num_var=$?
echo "$var - num is $num_var"
This outputs:
Hello - num is 4

This needs bash 4.1 if you use {fd} or local -n.
The rest should work in bash 3.x I hope. I am not completely sure due to printf %q - this might be a bash 4 feature.
Summary
Your example can be modified as follows to archive the desired effect:
# Add following 4 lines:
_passback() { while [ 1 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; return $1; }
passback() { _passback "$#" "$?"; }
_capture() { { out="$("${#:2}" 3<&-; "$2_" >&3)"; ret=$?; printf "%q=%q;" "$1" "$out"; } 3>&1; echo "(exit $ret)"; }
capture() { eval "$(_capture "$#")"; }
e=2
# Add following line, called "Annotation"
function test1_() { passback e; }
function test1() {
e=4
echo "hello"
}
# Change following line to:
capture ret test1
echo "$ret"
echo "$e"
prints as desired:
hello
4
Note that this solution:
Works for e=1000, too.
Preserves $? if you need $?
The only bad sideffects are:
It needs a modern bash.
It forks quite more often.
It needs the annotation (named after your function, with an added _)
It sacrifices file descriptor 3.
You can change it to another FD if you need that.
In _capture just replace all occurances of 3 with another (higher) number.
The following (which is quite long, sorry for that) hopefully explains, how to adpot this recipe to other scripts, too.
The problem
d() { let x++; date +%Y%m%d-%H%M%S; }
x=0
d1=$(d)
d2=$(d)
d3=$(d)
d4=$(d)
echo $x $d1 $d2 $d3 $d4
outputs
0 20171129-123521 20171129-123521 20171129-123521 20171129-123521
while the wanted output is
4 20171129-123521 20171129-123521 20171129-123521 20171129-123521
The cause of the problem
Shell variables (or generally speaking, the environment) is passed from parental processes to child processes, but not vice versa.
If you do output capturing, this usually is run in a subshell, so passing back variables is difficult.
Some even tell you, that it is impossible to fix. This is wrong, but it is a long known difficult to solve problem.
There are several ways on how to solve it best, this depends on your needs.
Here is a step by step guide on how to do it.
Passing back variables into the parental shell
There is a way to pass back variables to a parental shell. However this is a dangerous path, because this uses eval. If done improperly, you risk many evil things. But if done properly, this is perfectly safe, provided that there is no bug in bash.
_passback() { while [ 0 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; }
d() { let x++; d=$(date +%Y%m%d-%H%M%S); _passback x d; }
x=0
eval `d`
d1=$d
eval `d`
d2=$d
eval `d`
d3=$d
eval `d`
d4=$d
echo $x $d1 $d2 $d3 $d4
prints
4 20171129-124945 20171129-124945 20171129-124945 20171129-124945
Note that this works for dangerous things, too:
danger() { danger="$*"; passback danger; }
eval `danger '; /bin/echo *'`
echo "$danger"
prints
; /bin/echo *
This is due to printf '%q', which quotes everything such, that you can re-use it in a shell context safely.
But this is a pain in the a..
This does not only look ugly, it also is much to type, so it is error prone. Just one single mistake and you are doomed, right?
Well, we are at shell level, so you can improve it. Just think about an interface you want to see, and then you can implement it.
Augment, how the shell processes things
Let's go a step back and think about some API which allows us to easily express, what we want to do.
Well, what do we want do do with the d() function?
We want to capture the output into a variable.
OK, then let's implement an API for exactly this:
# This needs a modern bash 4.3 (see "help declare" if "-n" is present,
# we get rid of it below anyway).
: capture VARIABLE command args..
capture()
{
local -n output="$1"
shift
output="$("$#")"
}
Now, instead of writing
d1=$(d)
we can write
capture d1 d
Well, this looks like we haven't changed much, as, again, the variables are not passed back from d into the parent shell, and we need to type a bit more.
However now we can throw the full power of the shell at it, as it is nicely wrapped in a function.
Think about an easy to reuse interface
A second thing is, that we want to be DRY (Don't Repeat Yourself).
So we definitively do not want to type something like
x=0
capture1 x d1 d
capture1 x d2 d
capture1 x d3 d
capture1 x d4 d
echo $x $d1 $d2 $d3 $d4
The x here is not only redundant, it's error prone to always repeate in the correct context. What if you use it 1000 times in a script and then add a variable? You definitively do not want to alter all the 1000 locations where a call to d is involved.
So leave the x away, so we can write:
_passback() { while [ 0 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; }
d() { let x++; output=$(date +%Y%m%d-%H%M%S); _passback output x; }
xcapture() { local -n output="$1"; eval "$("${#:2}")"; }
x=0
xcapture d1 d
xcapture d2 d
xcapture d3 d
xcapture d4 d
echo $x $d1 $d2 $d3 $d4
outputs
4 20171129-132414 20171129-132414 20171129-132414 20171129-132414
This already looks very good. (But there still is the local -n which does not work in oder common bash 3.x)
Avoid changing d()
The last solution has some big flaws:
d() needs to be altered
It needs to use some internal details of xcapture to pass the output.
Note that this shadows (burns) one variable named output,
so we can never pass this one back.
It needs to cooperate with _passback
Can we get rid of this, too?
Of course, we can! We are in a shell, so there is everything we need to get this done.
If you look a bit closer to the call to eval you can see, that we have 100% control at this location. "Inside" the eval we are in a subshell,
so we can do everything we want without fear of doing something bad to the parental shell.
Yeah, nice, so let's add another wrapper, now directly inside the eval:
_passback() { while [ 0 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; }
# !DO NOT USE!
_xcapture() { "${#:2}" > >(printf "%q=%q;" "$1" "$(cat)"); _passback x; } # !DO NOT USE!
# !DO NOT USE!
xcapture() { eval "$(_xcapture "$#")"; }
d() { let x++; date +%Y%m%d-%H%M%S; }
x=0
xcapture d1 d
xcapture d2 d
xcapture d3 d
xcapture d4 d
echo $x $d1 $d2 $d3 $d4
prints
4 20171129-132414 20171129-132414 20171129-132414 20171129-132414
However, this, again, has some major drawback:
The !DO NOT USE! markers are there,
because there is a very bad race condition in this,
which you cannot see easily:
The >(printf ..) is a background job. So it might still
execute while the _passback x is running.
You can see this yourself if you add a sleep 1; before printf or _passback.
_xcapture a d; echo then outputs x or a first, respectively.
The _passback x should not be part of _xcapture,
because this makes it difficult to reuse that recipe.
Also we have some unneded fork here (the $(cat)),
but as this solution is !DO NOT USE! I took the shortest route.
However, this shows, that we can do it, without modification to d() (and without local -n)!
Please note that we not neccessarily need _xcapture at all,
as we could have written everyting right in the eval.
However doing this usually isn't very readable.
And if you come back to your script in a few years,
you probably want to be able to read it again without much trouble.
Fix the race
Now let's fix the race condition.
The trick could be to wait until printf has closed it's STDOUT, and then output x.
There are many ways to archive this:
You cannot use shell pipes, because pipes run in different processes.
One can use temporary files,
or something like a lock file or a fifo. This allows to wait for the lock or fifo,
or different channels, to output the information, and then assemble the output in some correct sequence.
Following the last path could look like (note that it does the printf last because this works better here):
_passback() { while [ 0 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; }
_xcapture() { { printf "%q=%q;" "$1" "$("${#:2}" 3<&-; _passback x >&3)"; } 3>&1; }
xcapture() { eval "$(_xcapture "$#")"; }
d() { let x++; date +%Y%m%d-%H%M%S; }
x=0
xcapture d1 d
xcapture d2 d
xcapture d3 d
xcapture d4 d
echo $x $d1 $d2 $d3 $d4
outputs
4 20171129-144845 20171129-144845 20171129-144845 20171129-144845
Why is this correct?
_passback x directly talks to STDOUT.
However, as STDOUT needs to be captured in the inner command,
we first "save" it into FD3 (you can use others, of course) with '3>&1'
and then reuse it with >&3.
The $("${#:2}" 3<&-; _passback x >&3) finishes after the _passback,
when the subshell closes STDOUT.
So the printf cannot happen before the _passback,
regardless how long _passback takes.
Note that the printf command is not executed before the complete
commandline is assembled, so we cannot see artefacts from printf,
independently how printf is implemented.
Hence first _passback executes, then the printf.
This resolves the race, sacrificing one fixed file descriptor 3.
You can, of course, choose another file descriptor in the case,
that FD3 is not free in your shellscript.
Please also note the 3<&- which protects FD3 to be passed to the function.
Make it more generic
_capture contains parts, which belong to d(), which is bad,
from a reusability perspective. How to solve this?
Well, do it the desparate way by introducing one more thing,
an additional function, which must return the right things,
which is named after the original function with _ attached.
This function is called after the real function, and can augment things.
This way, this can be read as some annotation, so it is very readable:
_passback() { while [ 0 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; }
_capture() { { printf "%q=%q;" "$1" "$("${#:2}" 3<&-; "$2_" >&3)"; } 3>&1; }
capture() { eval "$(_capture "$#")"; }
d_() { _passback x; }
d() { let x++; date +%Y%m%d-%H%M%S; }
x=0
capture d1 d
capture d2 d
capture d3 d
capture d4 d
echo $x $d1 $d2 $d3 $d4
still prints
4 20171129-151954 20171129-151954 20171129-151954 20171129-151954
Allow access to the return-code
There is only on bit missing:
v=$(fn) sets $? to what fn returned. So you probably want this, too.
It needs some bigger tweaking, though:
# This is all the interface you need.
# Remember, that this burns FD=3!
_passback() { while [ 1 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; return $1; }
passback() { _passback "$#" "$?"; }
_capture() { { out="$("${#:2}" 3<&-; "$2_" >&3)"; ret=$?; printf "%q=%q;" "$1" "$out"; } 3>&1; echo "(exit $ret)"; }
capture() { eval "$(_capture "$#")"; }
# Here is your function, annotated with which sideffects it has.
fails_() { passback x y; }
fails() { x=$1; y=69; echo FAIL; return 23; }
# And now the code which uses it all
x=0
y=0
capture wtf fails 42
echo $? $x $y $wtf
prints
23 42 69 FAIL
There is still a lot room for improvement
_passback() can be elmininated with passback() { set -- "$#" "$?"; while [ 1 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; return $1; }
_capture() can be eliminated with capture() { eval "$({ out="$("${#:2}" 3<&-; "$2_" >&3)"; ret=$?; printf "%q=%q;" "$1" "$out"; } 3>&1; echo "(exit $ret)")"; }
The solution pollutes a file descriptor (here 3) by using it internally.
You need to keep that in mind if you happen to pass FDs.
Note thatbash 4.1 and above has {fd} to use some unused FD.
(Perhaps I will add a solution here when I come around.)
Note that this is why I use to put it in separate functions like _capture, because stuffing this all into one line is possible, but makes it increasingly harder to read and understand
Perhaps you want to capture STDERR of the called function, too.
Or you want to even pass in and out more than one filedescriptor
from and to variables.
I have no solution yet, however here is a way to catch more than one FD, so we can probably pass back the variables this way, too.
Also do not forget:
This must call a shell function, not an external command.
There is no easy way to pass environment variables out of external commands.
(With LD_PRELOAD= it should be possible, though!)
But this then is something completely different.
Last words
This is not the only possible solution. It is one example to a solution.
As always you have many ways to express things in the shell.
So feel free to improve and find something better.
The solution presented here is quite far from being perfect:
It was nearly not tested at all, so please forgive typos.
There is a lot of room for improvement, see above.
It uses many features from modern bash, so probably is hard to port to other shells.
And there might be some quirks I haven't thought about.
However I think it is quite easy to use:
Add just 4 lines of "library".
Add just 1 line of "annotation" for your shell function.
Sacrifices just one file descriptor temporarily.
And each step should be easy to understand even years later.

Maybe you can use a file, write to file inside function, read from file after it. I have changed e to an array. In this example blanks are used as separator when reading back the array.
#!/bin/bash
declare -a e
e[0]="first"
e[1]="secondddd"
function test1 () {
e[2]="third"
e[1]="second"
echo "${e[#]}" > /tmp/tempout
echo hi
}
ret=$(test1)
echo "$ret"
read -r -a e < /tmp/tempout
echo "${e[#]}"
echo "${e[0]}"
echo "${e[1]}"
echo "${e[2]}"
Output:
hi
first second third
first
second
third

What you are doing, you are executing test1
$(test1)
in a sub-shell( child shell ) and Child shells cannot modify anything in parent.
You can find it in bash manual
Please Check: Things results in a subshell here

I had a similar problem when I wanted to remove temporary files I had created automatically. The solution I came up with was not to use command substitution, but rather to pass the name of the variable, that should take the final result, into the function. E.g.
#!/usr/bin/env bash
# array that keeps track of tmp-files
remove_later=()
# function that manages tmp-files
new_tmp_file() {
file=$(mktemp)
remove_later+=( "$file" )
# assign value (safe form of `eval "$1=$file"`)
printf -v "$1" -- "$file"
}
# function to remove all tmp-files
remove_tmp_files() { rm -- "${remove_later[#]}"; }
# define trap to remove all tmp-files upon EXIT
trap remove_tmp_files EXIT
# generate tmp-files
new_tmp_file tmpfile1
new_tmp_file tmpfile2
So, adapting this to the OP, it would be:
#!/usr/bin/env bash
e=2
function test1() {
e=4
printf -v "$1" -- "hello"
}
test1 ret
echo "$ret"
echo "$e"
Works and has no restrictions on the "return value".

Assuming that local -n is available, the following script lets the function test1 modify a global variable:
#!/bin/bash
e=2
function test1() {
local -n var=$1
var=4
echo "hello"
}
test1 e
echo "$e"
Which gives the following output:
hello
4

I'm not sure if this works on your terminal, but I found out that if you don't provide any outputs whatsoever it gets naturally treated as a void function, and can make global variable changes.
Here's the code I used:
let ran1=$(( (1<<63)-1)/3 ))
let ran2=$(( (1<<63)-1)/5 ))
let c=0
function randomize {
c=$(( ran1+ran2 ))
ran2=$ran1
ran1=$c
c=$(( c > 0 ))
}
It's a simple randomizer for games that effectively modifies the needed variables.

It's because command substitution is performed in a subshell, so while the subshell inherits the variables, changes to them are lost when the subshell ends.
Reference:
Command substitution, commands grouped with parentheses, and asynchronous commands are invoked in a subshell environment that is a duplicate of the shell environment

A solution to this problem, without having to introduce complex functions and heavily modify the original one, is to store the value in a temporary file and read / write it when needed.
This approach helped me greatly when I had to mock a bash function called multiple times in a bats test case.
For example, you could have:
# Usage read_value path_to_tmp_file
function read_value {
cat "${1}"
}
# Usage: set_value path_to_tmp_file the_value
function set_value {
echo "${2}" > "${1}"
}
#----
# Original code:
function test1() {
e=4
set_value "${tmp_file}" "${e}"
echo "hello"
}
# Create the temp file
# Note that tmp_file is available in test1 as well
tmp_file=$(mktemp)
# Your logic
e=2
# Store the value
set_value "${tmp_file}" "${e}"
# Run test1
test1
# Read the value modified by test1
e=$(read_value "${tmp_file}")
echo "$e"
The drawback is that you might need multiple temp files for different variables. And also you might need to issue a sync command to persist the contents on the disk between one write and read operations.

You can always use an alias:
alias next='printf "blah_%02d" $count;count=$((count+1))'

Related

Bash script problem - functions. Why aren't they working? [duplicate]

I'm working with this:
GNU bash, version 4.1.2(1)-release (x86_64-redhat-linux-gnu)
I have a script like below:
#!/bin/bash
e=2
function test1() {
e=4
echo "hello"
}
test1
echo "$e"
Which returns:
hello
4
But if I assign the result of the function to a variable, the global variable e is not modified:
#!/bin/bash
e=2
function test1() {
e=4
echo "hello"
}
ret=$(test1)
echo "$ret"
echo "$e"
Returns:
hello
2
I've heard of the use of eval in this case, so I did this in test1:
eval 'e=4'
But the same result.
Could you explain me why it is not modified? How could I save the echo of the test1 function in ret and modify the global variable too?
When you use a command substitution (i.e., the $(...) construct), you are creating a subshell. Subshells inherit variables from their parent shells, but this only works one way: A subshell cannot modify the environment of its parent shell.
Your variable e is set within a subshell, but not the parent shell. There are two ways to pass values from a subshell to its parent. First, you can output something to stdout, then capture it with a command substitution:
myfunc() {
echo "Hello"
}
var="$(myfunc)"
echo "$var"
The above outputs:
Hello
For a numerical value in the range of 0 through 255, you can use return to pass the number as the exit status:
mysecondfunc() {
echo "Hello"
return 4
}
var="$(mysecondfunc)"
num_var=$?
echo "$var - num is $num_var"
This outputs:
Hello - num is 4
This needs bash 4.1 if you use {fd} or local -n.
The rest should work in bash 3.x I hope. I am not completely sure due to printf %q - this might be a bash 4 feature.
Summary
Your example can be modified as follows to archive the desired effect:
# Add following 4 lines:
_passback() { while [ 1 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; return $1; }
passback() { _passback "$#" "$?"; }
_capture() { { out="$("${#:2}" 3<&-; "$2_" >&3)"; ret=$?; printf "%q=%q;" "$1" "$out"; } 3>&1; echo "(exit $ret)"; }
capture() { eval "$(_capture "$#")"; }
e=2
# Add following line, called "Annotation"
function test1_() { passback e; }
function test1() {
e=4
echo "hello"
}
# Change following line to:
capture ret test1
echo "$ret"
echo "$e"
prints as desired:
hello
4
Note that this solution:
Works for e=1000, too.
Preserves $? if you need $?
The only bad sideffects are:
It needs a modern bash.
It forks quite more often.
It needs the annotation (named after your function, with an added _)
It sacrifices file descriptor 3.
You can change it to another FD if you need that.
In _capture just replace all occurances of 3 with another (higher) number.
The following (which is quite long, sorry for that) hopefully explains, how to adpot this recipe to other scripts, too.
The problem
d() { let x++; date +%Y%m%d-%H%M%S; }
x=0
d1=$(d)
d2=$(d)
d3=$(d)
d4=$(d)
echo $x $d1 $d2 $d3 $d4
outputs
0 20171129-123521 20171129-123521 20171129-123521 20171129-123521
while the wanted output is
4 20171129-123521 20171129-123521 20171129-123521 20171129-123521
The cause of the problem
Shell variables (or generally speaking, the environment) is passed from parental processes to child processes, but not vice versa.
If you do output capturing, this usually is run in a subshell, so passing back variables is difficult.
Some even tell you, that it is impossible to fix. This is wrong, but it is a long known difficult to solve problem.
There are several ways on how to solve it best, this depends on your needs.
Here is a step by step guide on how to do it.
Passing back variables into the parental shell
There is a way to pass back variables to a parental shell. However this is a dangerous path, because this uses eval. If done improperly, you risk many evil things. But if done properly, this is perfectly safe, provided that there is no bug in bash.
_passback() { while [ 0 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; }
d() { let x++; d=$(date +%Y%m%d-%H%M%S); _passback x d; }
x=0
eval `d`
d1=$d
eval `d`
d2=$d
eval `d`
d3=$d
eval `d`
d4=$d
echo $x $d1 $d2 $d3 $d4
prints
4 20171129-124945 20171129-124945 20171129-124945 20171129-124945
Note that this works for dangerous things, too:
danger() { danger="$*"; passback danger; }
eval `danger '; /bin/echo *'`
echo "$danger"
prints
; /bin/echo *
This is due to printf '%q', which quotes everything such, that you can re-use it in a shell context safely.
But this is a pain in the a..
This does not only look ugly, it also is much to type, so it is error prone. Just one single mistake and you are doomed, right?
Well, we are at shell level, so you can improve it. Just think about an interface you want to see, and then you can implement it.
Augment, how the shell processes things
Let's go a step back and think about some API which allows us to easily express, what we want to do.
Well, what do we want do do with the d() function?
We want to capture the output into a variable.
OK, then let's implement an API for exactly this:
# This needs a modern bash 4.3 (see "help declare" if "-n" is present,
# we get rid of it below anyway).
: capture VARIABLE command args..
capture()
{
local -n output="$1"
shift
output="$("$#")"
}
Now, instead of writing
d1=$(d)
we can write
capture d1 d
Well, this looks like we haven't changed much, as, again, the variables are not passed back from d into the parent shell, and we need to type a bit more.
However now we can throw the full power of the shell at it, as it is nicely wrapped in a function.
Think about an easy to reuse interface
A second thing is, that we want to be DRY (Don't Repeat Yourself).
So we definitively do not want to type something like
x=0
capture1 x d1 d
capture1 x d2 d
capture1 x d3 d
capture1 x d4 d
echo $x $d1 $d2 $d3 $d4
The x here is not only redundant, it's error prone to always repeate in the correct context. What if you use it 1000 times in a script and then add a variable? You definitively do not want to alter all the 1000 locations where a call to d is involved.
So leave the x away, so we can write:
_passback() { while [ 0 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; }
d() { let x++; output=$(date +%Y%m%d-%H%M%S); _passback output x; }
xcapture() { local -n output="$1"; eval "$("${#:2}")"; }
x=0
xcapture d1 d
xcapture d2 d
xcapture d3 d
xcapture d4 d
echo $x $d1 $d2 $d3 $d4
outputs
4 20171129-132414 20171129-132414 20171129-132414 20171129-132414
This already looks very good. (But there still is the local -n which does not work in oder common bash 3.x)
Avoid changing d()
The last solution has some big flaws:
d() needs to be altered
It needs to use some internal details of xcapture to pass the output.
Note that this shadows (burns) one variable named output,
so we can never pass this one back.
It needs to cooperate with _passback
Can we get rid of this, too?
Of course, we can! We are in a shell, so there is everything we need to get this done.
If you look a bit closer to the call to eval you can see, that we have 100% control at this location. "Inside" the eval we are in a subshell,
so we can do everything we want without fear of doing something bad to the parental shell.
Yeah, nice, so let's add another wrapper, now directly inside the eval:
_passback() { while [ 0 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; }
# !DO NOT USE!
_xcapture() { "${#:2}" > >(printf "%q=%q;" "$1" "$(cat)"); _passback x; } # !DO NOT USE!
# !DO NOT USE!
xcapture() { eval "$(_xcapture "$#")"; }
d() { let x++; date +%Y%m%d-%H%M%S; }
x=0
xcapture d1 d
xcapture d2 d
xcapture d3 d
xcapture d4 d
echo $x $d1 $d2 $d3 $d4
prints
4 20171129-132414 20171129-132414 20171129-132414 20171129-132414
However, this, again, has some major drawback:
The !DO NOT USE! markers are there,
because there is a very bad race condition in this,
which you cannot see easily:
The >(printf ..) is a background job. So it might still
execute while the _passback x is running.
You can see this yourself if you add a sleep 1; before printf or _passback.
_xcapture a d; echo then outputs x or a first, respectively.
The _passback x should not be part of _xcapture,
because this makes it difficult to reuse that recipe.
Also we have some unneded fork here (the $(cat)),
but as this solution is !DO NOT USE! I took the shortest route.
However, this shows, that we can do it, without modification to d() (and without local -n)!
Please note that we not neccessarily need _xcapture at all,
as we could have written everyting right in the eval.
However doing this usually isn't very readable.
And if you come back to your script in a few years,
you probably want to be able to read it again without much trouble.
Fix the race
Now let's fix the race condition.
The trick could be to wait until printf has closed it's STDOUT, and then output x.
There are many ways to archive this:
You cannot use shell pipes, because pipes run in different processes.
One can use temporary files,
or something like a lock file or a fifo. This allows to wait for the lock or fifo,
or different channels, to output the information, and then assemble the output in some correct sequence.
Following the last path could look like (note that it does the printf last because this works better here):
_passback() { while [ 0 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; }
_xcapture() { { printf "%q=%q;" "$1" "$("${#:2}" 3<&-; _passback x >&3)"; } 3>&1; }
xcapture() { eval "$(_xcapture "$#")"; }
d() { let x++; date +%Y%m%d-%H%M%S; }
x=0
xcapture d1 d
xcapture d2 d
xcapture d3 d
xcapture d4 d
echo $x $d1 $d2 $d3 $d4
outputs
4 20171129-144845 20171129-144845 20171129-144845 20171129-144845
Why is this correct?
_passback x directly talks to STDOUT.
However, as STDOUT needs to be captured in the inner command,
we first "save" it into FD3 (you can use others, of course) with '3>&1'
and then reuse it with >&3.
The $("${#:2}" 3<&-; _passback x >&3) finishes after the _passback,
when the subshell closes STDOUT.
So the printf cannot happen before the _passback,
regardless how long _passback takes.
Note that the printf command is not executed before the complete
commandline is assembled, so we cannot see artefacts from printf,
independently how printf is implemented.
Hence first _passback executes, then the printf.
This resolves the race, sacrificing one fixed file descriptor 3.
You can, of course, choose another file descriptor in the case,
that FD3 is not free in your shellscript.
Please also note the 3<&- which protects FD3 to be passed to the function.
Make it more generic
_capture contains parts, which belong to d(), which is bad,
from a reusability perspective. How to solve this?
Well, do it the desparate way by introducing one more thing,
an additional function, which must return the right things,
which is named after the original function with _ attached.
This function is called after the real function, and can augment things.
This way, this can be read as some annotation, so it is very readable:
_passback() { while [ 0 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; }
_capture() { { printf "%q=%q;" "$1" "$("${#:2}" 3<&-; "$2_" >&3)"; } 3>&1; }
capture() { eval "$(_capture "$#")"; }
d_() { _passback x; }
d() { let x++; date +%Y%m%d-%H%M%S; }
x=0
capture d1 d
capture d2 d
capture d3 d
capture d4 d
echo $x $d1 $d2 $d3 $d4
still prints
4 20171129-151954 20171129-151954 20171129-151954 20171129-151954
Allow access to the return-code
There is only on bit missing:
v=$(fn) sets $? to what fn returned. So you probably want this, too.
It needs some bigger tweaking, though:
# This is all the interface you need.
# Remember, that this burns FD=3!
_passback() { while [ 1 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; return $1; }
passback() { _passback "$#" "$?"; }
_capture() { { out="$("${#:2}" 3<&-; "$2_" >&3)"; ret=$?; printf "%q=%q;" "$1" "$out"; } 3>&1; echo "(exit $ret)"; }
capture() { eval "$(_capture "$#")"; }
# Here is your function, annotated with which sideffects it has.
fails_() { passback x y; }
fails() { x=$1; y=69; echo FAIL; return 23; }
# And now the code which uses it all
x=0
y=0
capture wtf fails 42
echo $? $x $y $wtf
prints
23 42 69 FAIL
There is still a lot room for improvement
_passback() can be elmininated with passback() { set -- "$#" "$?"; while [ 1 -lt $# ]; do printf '%q=%q;' "$1" "${!1}"; shift; done; return $1; }
_capture() can be eliminated with capture() { eval "$({ out="$("${#:2}" 3<&-; "$2_" >&3)"; ret=$?; printf "%q=%q;" "$1" "$out"; } 3>&1; echo "(exit $ret)")"; }
The solution pollutes a file descriptor (here 3) by using it internally.
You need to keep that in mind if you happen to pass FDs.
Note thatbash 4.1 and above has {fd} to use some unused FD.
(Perhaps I will add a solution here when I come around.)
Note that this is why I use to put it in separate functions like _capture, because stuffing this all into one line is possible, but makes it increasingly harder to read and understand
Perhaps you want to capture STDERR of the called function, too.
Or you want to even pass in and out more than one filedescriptor
from and to variables.
I have no solution yet, however here is a way to catch more than one FD, so we can probably pass back the variables this way, too.
Also do not forget:
This must call a shell function, not an external command.
There is no easy way to pass environment variables out of external commands.
(With LD_PRELOAD= it should be possible, though!)
But this then is something completely different.
Last words
This is not the only possible solution. It is one example to a solution.
As always you have many ways to express things in the shell.
So feel free to improve and find something better.
The solution presented here is quite far from being perfect:
It was nearly not tested at all, so please forgive typos.
There is a lot of room for improvement, see above.
It uses many features from modern bash, so probably is hard to port to other shells.
And there might be some quirks I haven't thought about.
However I think it is quite easy to use:
Add just 4 lines of "library".
Add just 1 line of "annotation" for your shell function.
Sacrifices just one file descriptor temporarily.
And each step should be easy to understand even years later.
Maybe you can use a file, write to file inside function, read from file after it. I have changed e to an array. In this example blanks are used as separator when reading back the array.
#!/bin/bash
declare -a e
e[0]="first"
e[1]="secondddd"
function test1 () {
e[2]="third"
e[1]="second"
echo "${e[#]}" > /tmp/tempout
echo hi
}
ret=$(test1)
echo "$ret"
read -r -a e < /tmp/tempout
echo "${e[#]}"
echo "${e[0]}"
echo "${e[1]}"
echo "${e[2]}"
Output:
hi
first second third
first
second
third
What you are doing, you are executing test1
$(test1)
in a sub-shell( child shell ) and Child shells cannot modify anything in parent.
You can find it in bash manual
Please Check: Things results in a subshell here
I had a similar problem when I wanted to remove temporary files I had created automatically. The solution I came up with was not to use command substitution, but rather to pass the name of the variable, that should take the final result, into the function. E.g.
#!/usr/bin/env bash
# array that keeps track of tmp-files
remove_later=()
# function that manages tmp-files
new_tmp_file() {
file=$(mktemp)
remove_later+=( "$file" )
# assign value (safe form of `eval "$1=$file"`)
printf -v "$1" -- "$file"
}
# function to remove all tmp-files
remove_tmp_files() { rm -- "${remove_later[#]}"; }
# define trap to remove all tmp-files upon EXIT
trap remove_tmp_files EXIT
# generate tmp-files
new_tmp_file tmpfile1
new_tmp_file tmpfile2
So, adapting this to the OP, it would be:
#!/usr/bin/env bash
e=2
function test1() {
e=4
printf -v "$1" -- "hello"
}
test1 ret
echo "$ret"
echo "$e"
Works and has no restrictions on the "return value".
Assuming that local -n is available, the following script lets the function test1 modify a global variable:
#!/bin/bash
e=2
function test1() {
local -n var=$1
var=4
echo "hello"
}
test1 e
echo "$e"
Which gives the following output:
hello
4
I'm not sure if this works on your terminal, but I found out that if you don't provide any outputs whatsoever it gets naturally treated as a void function, and can make global variable changes.
Here's the code I used:
let ran1=$(( (1<<63)-1)/3 ))
let ran2=$(( (1<<63)-1)/5 ))
let c=0
function randomize {
c=$(( ran1+ran2 ))
ran2=$ran1
ran1=$c
c=$(( c > 0 ))
}
It's a simple randomizer for games that effectively modifies the needed variables.
It's because command substitution is performed in a subshell, so while the subshell inherits the variables, changes to them are lost when the subshell ends.
Reference:
Command substitution, commands grouped with parentheses, and asynchronous commands are invoked in a subshell environment that is a duplicate of the shell environment
A solution to this problem, without having to introduce complex functions and heavily modify the original one, is to store the value in a temporary file and read / write it when needed.
This approach helped me greatly when I had to mock a bash function called multiple times in a bats test case.
For example, you could have:
# Usage read_value path_to_tmp_file
function read_value {
cat "${1}"
}
# Usage: set_value path_to_tmp_file the_value
function set_value {
echo "${2}" > "${1}"
}
#----
# Original code:
function test1() {
e=4
set_value "${tmp_file}" "${e}"
echo "hello"
}
# Create the temp file
# Note that tmp_file is available in test1 as well
tmp_file=$(mktemp)
# Your logic
e=2
# Store the value
set_value "${tmp_file}" "${e}"
# Run test1
test1
# Read the value modified by test1
e=$(read_value "${tmp_file}")
echo "$e"
The drawback is that you might need multiple temp files for different variables. And also you might need to issue a sync command to persist the contents on the disk between one write and read operations.
You can always use an alias:
alias next='printf "blah_%02d" $count;count=$((count+1))'

Evaluate variable at time of function declaration in shell

I'm setting up my shell environments and I want to be able to use some of the same functions/aliases in zsh as in bash. One of these functions opens either .bashrc or .zshrc in an editor (whichever file is relevant), waits for the editor to close, then reloads the rc file.
# a very simplified version of this function
editrc() {
local rcfile=".$(basename $SHELL)rc"
code -w ~/$rcfile
. ~/$rcfile
}
I use the value of rcfile in a few other functions, so I've pulled it out of the function declaration.
_rc=".$(basename $SHELL)rc"
editrc() {
code -w ~/$_rc
. ~/$_rc
}
# ... other functions that use it ...
unset _rc
However, because I'm a neat freak, I want to unset _rc at the end of my script, but I still want my functions to run correctly. Is there a clever way to evaluate $_rc at the time the function is declared?
I know I could use eval and place everything except $_rc instances within single quotes, but that seems like a pain, since the full version of my function uses both single-quotes and double-quotes.
_rc=".$(basename $SHELL)rc"
eval 'editrc() {
echo Here'"'"'s a thing that uses single quotes. As you can see it'"'"'s a pain.
code -w ~/'$_rc'
. ~/'$_rc'
}'
# ... other functions using `_rc`
unset _rc
I'm guessing I could declare my functions, then do some magic with eval "$(declare -f editrc | awk)". It very well be more pain than it's worth, but I'm always interested in learning new things.
Note: I'd love to generalize this into a utility function that does this.
_myvar=foo
anothervar=bar
myfunc() {
echo $_myvar $anothervar
}
# redeclares myfunc with `$_myvar` expanded, but leaves `$anothervar` as-is
expandfunctionvars myfunc '$_myvar'
Is there a clever way to evaluate $_rc at the time the function is declared?
_rc=".$(basename "$SHELL")rc"
# while you could eval here, source lets you work with a stream
source <(
cat <<EOF
editrc() {
local _rc
# first safely trasfer context
$(declare -p _rc)
EOF
# use quoted here string to do anything inside without caring.
cat <<'EOF'
# do anything else
echo "Here's a thing that uses single quotes. As you can see it's not a pain, just choose proper quoting."
code -w "~/$_rc"
. "~/$_rc"
}
EOF
)
unset _rc
Generally first use declare -p to transfer variables as strings to be evaluated. Then after you "import" variables, use a quoted here document to do anything as in a normal script.
References to read:
<<EOF is a here document. Note the difference in parsing when the here delimiter is quoted vs unquoted.
<(..) is a process substitution
The source command reads a pipe created by process substitution. Inside the process subtitution I output the function to be sourced. With the first here document I output the function name definition, with a local of the variable so that it doesn't pollute global namespace. Then with declare -p I output the variable definition as a properly quoted string later to be sourced by source. Then with a quoted here document I output the rest of the function, so that I do not need to care about quoting.
The code is bash specific, I know nothing about zsh and don't use it.
You could do it with eval too:
eval '
editrc() {
local _rc
# first safely trasfer context
'"$(declare -p _rc)"'
# use quoted here string to do anything inside without caring.
# do anything else
echo "Here'\''s a thing that uses single quotes. As you can see it'\''s not a pain, just choose proper quoting."
code -w "~/$_rc"
. "~/$_rc"
}'
But for me using a quoted here document delimiter allows for easier writing.
While KamilCuck was working on their answer, I devised a function that will take in any function name and a set of variable names, expand just those variables, and redeclare the function.
expandFnVars() {
if [[ $# -lt 2 ]]; then
>&2 echo 'expandFnVars requires at least two arguments: the function name and the variable(s) to be expanded'
return 1
fi
local fn="$1"
shift
local vars=("$#")
if [[ -z "$(declare -F $fn 2> /dev/null)" ]]; then
>&2 echo $fn is not a function.
return 1
fi
foundAllVars=true
for v in $vars; do
if [[ -z "$(declare -p $v 2> /dev/null)" ]]; then
>&2 echo $v is not a declared value.
foundAllVars=false
fi
done
[[ $foundAllVars != true ]] && return 1
fn="$(declare -f $fn)"
for v in $vars; do
local val="$(eval 'echo $'$v)" # get the value of the varable represented by $v
val="${val//\"/\\\"}" # escape any double-quotes
val="${val//\\/\\\\\\}" # escape any backslashes
fn="$(echo "$fn" | sed -r 's/"?\$'$v'"?/"'"$val"'"/g')" # replace instances of "$$v" and $$v with $val
done
eval "$fn"
}
Usage:
foo="foo bar"
bar='$foo'
baz=baz
fn() {
echo $bar $baz
}
expandFnVars fn bar
declare -f fn
# prints:
# fn ()
# {
# echo "$foo" $baz
# }
expandFnVars fn foo
declare -f fn
# prints:
# fn ()
# {
# echo "foo bar" $baz
# }
Looking at it now, I see one flaw. Suppose $bar in the original function was in single-quotes. We probably would not want its value to be replaced. This could be fixed by some clever regex lookbehinds to count the number of unescaped 's, but I'm happy with it as-is.

Accessing the last argument passed in a bash function, then shifting it

I have a simple function in bash which I want to take any number of arguments. What I'd like to do is echo the last argument passed to the function, and then shift, and repeat until I am out of arguments.
Here is my code:
test(){
while [ $# -ne 0 ]
do
echo "${#: -1}"
shift
done
}
However, the shift doesn't seem to take place.
If I run:
test a b c d
it will return
d
d
d
d
Whereas I obviously would like to return
d
c
b
a
What am I doing wrong? Thanks! :)
shift doesn't remove the last argument, it removes the first one. $2 becomes $1, $3 becomes $2, etc. d will always be the last argument because items are being popped off the front.
If you want to print all the arguments in reverse order, I'd suggest:
for ((i = $#; i > 0; --i)); do
echo "${!i}"
done
Alternatively, you could mimic shifting from the right side with:
while (($# > 0)); do
echo "${#: -1}"
set -- "${#:1:$#-1}"
done
Also, another way to write ${#: -1} is ${!#}. That might be too clever, though. That kind of trickery is something you'd see in some inscrutable Perl script.
Another way:
revargs() {
local sgra=()
for arg; do sgra=("$arg" "${sgra[#]}"); done
printf "%s\n" "${sgra[#]}"
}
revargs foo bar baz qux
qux
baz
bar
foo
This just occurred to me: it's pretty cheesy, but it's short.
revargs() {
printf "%s\n" "$#" | tac
}

Is there a way to avoid positional arguments in bash?

I have to write a function in bash. The function will take about 7 arguments. I know that I can call a function like this:
To call a function with parameters:
function_name $arg1 $arg2
And I can refer my parameters like this inside the function:
function_name () {
echo "Parameter #1 is $1"
}
My question is, is there a better way refer to the parameters inside the function? Can I avoid the $1, $2, $3, .... thing and simply use the $arg1, $arg2, ...?
Is there a proper method for this or do I need to re-assign these parameters to some other variables inside the function? E.g.:
function_name () {
$ARG1=$1
echo "Parameter #1 is $ARG1"
}
Any example would be much appreciated.
The common way of doing that is assigning the arguments to local variables in the function, i.e.:
copy() {
local from=${1}
local to=${2}
# ...
}
Another solution may be getopt-style option parsing.
copy() {
local arg from to
while getopts 'f:t:' arg
do
case ${arg} in
f) from=${OPTARG};;
t) to=${OPTARG};;
*) return 1 # illegal option
esac
done
}
copy -f /tmp/a -t /tmp/b
Sadly, bash can't handle long options which would be more readable, i.e.:
copy --from /tmp/a --to /tmp/b
For that, you either need to use the external getopt program (which I think has long option support only on GNU systems) or implement the long option parser by hand, i.e.:
copy() {
local from to
while [[ ${1} ]]; do
case "${1}" in
--from)
from=${2}
shift
;;
--to)
to=${2}
shift
;;
*)
echo "Unknown parameter: ${1}" >&2
return 1
esac
if ! shift; then
echo 'Missing parameter argument.' >&2
return 1
fi
done
}
copy --from /tmp/a --to /tmp/b
Also see: using getopts in bash shell script to get long and short command line options
You can also be lazy, and just pass the 'variables' as arguments to the function, i.e.:
copy() {
local "${#}"
# ...
}
copy from=/tmp/a to=/tmp/b
and you'll have ${from} and ${to} in the function as local variables.
Just note that the same issue as below applies — if a particular variable is not passed, it will be inherited from parent environment. You may want to add a 'safety line' like:
copy() {
local from to # reset first
local "${#}"
# ...
}
to ensure that ${from} and ${to} will be unset when not passed.
And if something very bad is of your interest, you could also assign the arguments as global variables when invoking the function, i.e.:
from=/tmp/a to=/tmp/b copy
Then you could just use ${from} and ${to} within the copy() function. Just note that you should then always pass all parameters. Otherwise, a random variable may leak into the function.
from= to=/tmp/b copy # safe
to=/tmp/b copy # unsafe: ${from} may be declared elsewhere
If you have bash 4.1 (I think), you can also try using associative arrays. It will allow you to pass named arguments but it will be ugly. Something like:
args=( [from]=/tmp/a [to]=/tmp/b )
copy args
And then in copy(), you'd need to grab the array.
You can always pass things through the environment:
#!/bin/sh
foo() {
echo arg1 = "$arg1"
echo arg2 = "$arg2"
}
arg1=banana arg2=apple foo
All you have to do is name variables on the way in to the function call.
function test() {
echo $a
}
a='hello world' test
#prove variable didnt leak
echo $a .
This isn't just a feature of functions, you could have that function in it's own script and call a='hello world' test.sh and it would work just the same
As an extra little bit of fun, you can combine this method with positional arguments (say you were making a script and some users mightn't know the variable names).
Heck, why not let it have defaults for those arguments too? Well sure, easy peasy!
function test2() {
[[ -n "$1" ]] && local a="$1"; [[ -z "$a" ]] && local a='hi'
[[ -n "$2" ]] && local b="$2"; [[ -z "$b" ]] && local b='bye'
echo $a $b
}
#see the defaults
test2
#use positional as usual
test2 '' there
#use named parameter
a=well test2
#mix it up
b=one test2 nice
#prove variables didnt leak
echo $a $b .
Note that if test was its own script, you don't need to use the local keyword.
Shell functions have full access to any variable available in their calling scope, except for those variable names that are used as local variables inside the function itself. In addition, any non-local variable set within a function is available on the outside after the function has been called. Consider the following example:
A=aaa
B=bbb
echo "A=$A B=$B C=$C"
example() {
echo "example(): A=$A B=$B C=$C"
A=AAA
local B=BBB
C=CCC
echo "example(): A=$A B=$B C=$C"
}
example
echo "A=$A B=$B C=$C"
This snippet has the following output:
A=aaa B=bbb C=
example(): A=aaa B=bbb C=
example(): A=AAA B=BBB C=CCC
A=AAA B=bbb C=CCC
The obvious disadvantage of this approach is that functions are not self-contained any more and that setting a variable outside a function may have unintended side-effects. It would also make things harder if you wanted to pass data to a function without assigning it to a variable first, since this function is not using positional parameters any more.
The most common way to handle this is to use local variables for arguments and any temporary variable within a function:
example() {
local A="$1" B="$2" C="$3" TMP="/tmp"
...
}
This avoids polluting the shell namespace with function-local variables.
I think I have a solution for you.
With a few tricks you can actually pass named parameters to functions, along with arrays.
The method I developed allows you to access parameters passed to a function like this:
testPassingParams() {
#var hello
l=4 #array anArrayWithFourElements
l=2 #array anotherArrayWithTwo
#var anotherSingle
#reference table # references only work in bash >=4.3
#params anArrayOfVariedSize
test "$hello" = "$1" && echo correct
#
test "${anArrayWithFourElements[0]}" = "$2" && echo correct
test "${anArrayWithFourElements[1]}" = "$3" && echo correct
test "${anArrayWithFourElements[2]}" = "$4" && echo correct
# etc...
#
test "${anotherArrayWithTwo[0]}" = "$6" && echo correct
test "${anotherArrayWithTwo[1]}" = "$7" && echo correct
#
test "$anotherSingle" = "$8" && echo correct
#
test "${table[test]}" = "works"
table[inside]="adding a new value"
#
# I'm using * just in this example:
test "${anArrayOfVariedSize[*]}" = "${*:10}" && echo correct
}
fourElements=( a1 a2 "a3 with spaces" a4 )
twoElements=( b1 b2 )
declare -A assocArray
assocArray[test]="works"
testPassingParams "first" "${fourElements[#]}" "${twoElements[#]}" "single with spaces" assocArray "and more... " "even more..."
test "${assocArray[inside]}" = "adding a new value"
In other words, not only you can call your parameters by their names (which makes up for a more readable core), you can actually pass arrays (and references to variables - this feature works only in bash 4.3 though)! Plus, the mapped variables are all in the local scope, just as $1 (and others).
The code that makes this work is pretty light and works both in bash 3 and bash 4 (these are the only versions I've tested it with). If you're interested in more tricks like this that make developing with bash much nicer and easier, you can take a look at my Bash Infinity Framework, the code below was developed for that purpose.
Function.AssignParamLocally() {
local commandWithArgs=( $1 )
local command="${commandWithArgs[0]}"
shift
if [[ "$command" == "trap" || "$command" == "l="* || "$command" == "_type="* ]]
then
paramNo+=-1
return 0
fi
if [[ "$command" != "local" ]]
then
assignNormalCodeStarted=true
fi
local varDeclaration="${commandWithArgs[1]}"
if [[ $varDeclaration == '-n' ]]
then
varDeclaration="${commandWithArgs[2]}"
fi
local varName="${varDeclaration%%=*}"
# var value is only important if making an object later on from it
local varValue="${varDeclaration#*=}"
if [[ ! -z $assignVarType ]]
then
local previousParamNo=$(expr $paramNo - 1)
if [[ "$assignVarType" == "array" ]]
then
# passing array:
execute="$assignVarName=( \"\${#:$previousParamNo:$assignArrLength}\" )"
eval "$execute"
paramNo+=$(expr $assignArrLength - 1)
unset assignArrLength
elif [[ "$assignVarType" == "params" ]]
then
execute="$assignVarName=( \"\${#:$previousParamNo}\" )"
eval "$execute"
elif [[ "$assignVarType" == "reference" ]]
then
execute="$assignVarName=\"\$$previousParamNo\""
eval "$execute"
elif [[ ! -z "${!previousParamNo}" ]]
then
execute="$assignVarName=\"\$$previousParamNo\""
eval "$execute"
fi
fi
assignVarType="$__capture_type"
assignVarName="$varName"
assignArrLength="$__capture_arrLength"
}
Function.CaptureParams() {
__capture_type="$_type"
__capture_arrLength="$l"
}
alias #trapAssign='Function.CaptureParams; trap "declare -i \"paramNo+=1\"; Function.AssignParamLocally \"\$BASH_COMMAND\" \"\$#\"; [[ \$assignNormalCodeStarted = true ]] && trap - DEBUG && unset assignVarType && unset assignVarName && unset assignNormalCodeStarted && unset paramNo" DEBUG; '
alias #param='#trapAssign local'
alias #reference='_type=reference #trapAssign local -n'
alias #var='_type=var #param'
alias #params='_type=params #param'
alias #array='_type=array #param'
I was personally hoping to see some sort of syntax like
func(a b){
echo $a
echo $b
}
But since that's not a thing, and a I see quite a few references to global variables (not without the caveat of scoping and naming conflicts), I'll share my approach.
Using the copy function from Michal's answer:
copy(){
cp $from $to
}
from=/tmp/a
to=/tmp/b
copy
This is bad, because from and to are such broad words that any number of functions could use this. You could quickly end up with a naming conflict or a "leak" on your hands.
letter(){
echo "From: $from"
echo "To: $to"
echo
echo "$1"
}
to=Emily
letter "Hello Emily, you're fired for missing two days of work."
# Result:
# From: /tmp/a
# To: Emily
# Hello Emily, you're fired for missing two days of work.
So my approach is to "namespace" them. I name the variable after the function and delete it after the function is done with it. Of course, I only use it for optional values that have default values. Otherwise, I just use positional args.
copy(){
if [[ $copy_from ]] && [[ $copy_to ]]; then
cp $copy_from $copy_to
unset copy_from copy_to
fi
}
copy_from=/tmp/a
copy_to=/tmp/b
copy # Copies /tmp/a to /tmp/b
copy # Does nothing, as it ought to
letter "Emily, you're 'not' re-hired for the 'not' bribe ;)"
# From: (no /tmp/a here!)
# To:
# Emily, you're 'not' re-hired for the 'not' bribe ;)
I would make a terrible boss...
In practice, my function names are more elaborate than "copy" or "letter".
The most recent example to my memory is get_input(), which has gi_no_sort and gi_prompt.
gi_no_sort is a true/false value that determines whether the completion suggestions are sorted or not. Defaults to true
gi_prompt is a string that is...well, that's self-explanatory. Defaults to "".
The actual arguments the function takes are the source of the aforementioned 'completion suggestions' for the input prompt, and as said list is taken from $# in the function, the "named args" are optional[1], and there's no obvious way to distinguish between a string meant as a completion and a boolean/prompt-message, or really anything space-separated in bash, for that matter[2]; the above solution ended up saving me a lot of trouble.
notes:
So a hard-coded shift and $1, $2, etc. are out of the question.
E.g. is "0 Enter a command: {1..9} $(ls)" a value of 0, "Enter a command:", and a set of 1 2 3 4 5 6 7 8 9 <directory contents>? Or are "0", "Enter", "a", and "command:" part of that set as well? Bash will assume the latter whether you like it or not.
Arguments get sent to functions as an tuple of individual items, so they have no names as such, just positions. this allows some interesting possibilities like below, but it does mean that you are stuck with $1. $2, etc. as to whether to map them to better names, the question comes down to how big the function is, and how much clearer it will make reading the code. if its complex, then mapping meaningful names ($BatchID, $FirstName, $SourceFilePath) is a good idea. for simple stuff though, it probably isn't necessary. I certianly wouldn't bother if you are using names like $arg1.
now, if you just want to echo back the parameters, you can iterate over them:
for $arg in "$#"
do
echo "$arg"
done
just a fun fact; unless you are processing a list, you are probably interested in somthing more useful
this is an older topic, but still i'd like to share the function below (requires bash 4). It parses named arguments and sets the variables in the scripts environment. Just make sure you have sane default values for all parameters you need. The export statement at the end could also just be an eval. It's great in combination with shift to extend existing scripts which already take a few positional parameters and you dont want to change the syntax, but still add some flexibility.
parseOptions()
{
args=("$#")
for opt in "${args[#]}"; do
if [[ ! "${opt}" =~ .*=.* ]]; then
echo "badly formatted option \"${opt}\" should be: option=value, stopping..."
return 1
fi
local var="${opt%%=*}"
local value="${opt#*=}"
export ${var}="${value}"
done
return 0
}

Make use of variable from while read loop

In my bash script I use while read loop and a helper function fv():
fv() {
case "$1" in
out) echo $VAR
;;
* ) VAR="$VAR $1"
;;
esac
}
cat "$1" | while read line
do
...some processings...
fv some-str-value
done
echo "`fv out`"
in a hope that I can distil value from while read loop in a variable accessible in rest of the script.
But above snippet is no good, as I get no output.
Is there easy way to solve this - output string from this loop in a variable that would be accessible in rest of the script - without reformatting my script?
As no one has explained to you why your code didn't work, I will.
When you use cat "$1" |, you are making that loop execute in a subshell. The VAR variable used in that subshell starts as a copy of VAR from the main script, and any changes to it are limited to that copy (the subshell's scope), they don't affect the script's original VAR. By removing the useless use of cat, you remove the pipeline and so the loop is executed in the main shell, so it can (and does) alter the correct copy of VAR.
Replace your while loop by while read line ; do ... ; done < $1:
#!/bin/bash
function fv
{
case "$1" in
out) echo $VAR
;;
* ) VAR="$VAR $1"
;;
esac
}
while read line
do
fv "$line\n"
done < "$1"
echo "$(fv out)"
Stop piping to read.
done < "$1"

Resources