EMR hadoop tasks agonize for hours when losing task nodes - hadoop
I've set up an Amazon EMR jobflow with 1 on-demand core node and 4 task nodes with bidding. When I run my task on only the core node each step finishes within 1 hour. When I'm lucky and have 1 core + 4 task nodes then steps usually finish within 10 minutes.
My problem is that when the task nodes are taken away by amazon, the rest of the task attempts start agonizing and they can agonize for 7-10 hours.
As you can see from the logs below, everything went OK from 08:56 (0%) - 09:01 (43%), but then task attempts started to fail. Now according to my calculations based on the fact that running the step on only the 1 core node would take less then an hour, I would expect the step to finish from 43%-100% in less than 1 hour. However it's agonizing for at least another 5+ hours: 09:01 - 14:30. This doesn't look to me normal (not to talk about the time and money wasted). How could I fix this? What can cause this?
2014-05-21 08:55:39,317 INFO com.amazon.ws.emr.hadoop.fs.EmrFileSystem (main): Opening 's3://test/log-parser/code/hadoop-script.sh' for reading
2014-05-21 08:55:45,555 INFO com.amazon.ws.emr.hadoop.fs.EmrFileSystem (main): Opening 's3://test/log-parser/code/hadoop-upload-script.sh' for reading
2014-05-21 08:55:52,990 INFO com.amazon.ws.emr.hadoop.fs.EmrFileSystem (main): Opening 's3://test/log-parser/code/log-parser.jar' for reading
2014-05-21 08:55:59,840 INFO com.innovid.logParser.LogParserMapReduce (main): LogParserMapReduce: waitingForCompletion
2014-05-21 08:56:00,190 INFO org.apache.hadoop.yarn.client.RMProxy (main): Connecting to ResourceManager at /1.1.1.1:9022
2014-05-21 08:56:05,397 INFO org.apache.hadoop.mapreduce.lib.input.FileInputFormat (main): Total input paths to process : 31
2014-05-21 08:56:05,426 INFO com.hadoop.compression.lzo.GPLNativeCodeLoader (main): Loaded native gpl library
2014-05-21 08:56:05,434 INFO com.hadoop.compression.lzo.LzoCodec (main): Successfully loaded & initialized native-lzo library [hadoop-lzo rev c7d54fffe5a853c437ee23413ba71fc6af23c91d]
2014-05-21 08:56:05,669 INFO org.apache.hadoop.mapreduce.JobSubmitter (main): number of splits:135
2014-05-21 08:56:05,697 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.job.classpath.files is deprecated. Instead, use mapreduce.job.classpath.files
2014-05-21 08:56:05,698 INFO org.apache.hadoop.conf.Configuration.deprecation (main): user.name is deprecated. Instead, use mapreduce.job.user.name
2014-05-21 08:56:05,698 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.output.compress is deprecated. Instead, use mapreduce.output.fileoutputformat.compress
2014-05-21 08:56:05,698 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.jar is deprecated. Instead, use mapreduce.job.jar
2014-05-21 08:56:05,698 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.output.compression.codec is deprecated. Instead, use mapreduce.output.fileoutputformat.compress.codec
2014-05-21 08:56:05,698 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.cache.files.filesizes is deprecated. Instead, use mapreduce.job.cache.files.filesizes
2014-05-21 08:56:05,698 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.cache.files is deprecated. Instead, use mapreduce.job.cache.files
2014-05-21 08:56:05,698 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative
2014-05-21 08:56:05,698 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
2014-05-21 08:56:05,699 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize
2014-05-21 08:56:05,699 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
2014-05-21 08:56:05,699 INFO org.apache.hadoop.conf.Configuration.deprecation (main): keep.failed.task.files is deprecated. Instead, use mapreduce.task.files.preserve.failedtasks
2014-05-21 08:56:05,699 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.used.genericoptionsparser is deprecated. Instead, use mapreduce.client.genericoptionsparser.used
2014-05-21 08:56:05,700 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
2014-05-21 08:56:05,700 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.job.name is deprecated. Instead, use mapreduce.job.name
2014-05-21 08:56:05,700 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
2014-05-21 08:56:05,700 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
2014-05-21 08:56:05,700 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.max.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.maxsize
2014-05-21 08:56:05,700 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
2014-05-21 08:56:05,700 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.cache.files.timestamps is deprecated. Instead, use mapreduce.job.cache.files.timestamps
2014-05-21 08:56:05,701 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
2014-05-21 08:56:05,701 INFO org.apache.hadoop.conf.Configuration.deprecation (main): mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
2014-05-21 08:56:06,123 INFO org.apache.hadoop.mapreduce.JobSubmitter (main): Submitting tokens for job: job_1400094353_0186
2014-05-21 08:56:06,779 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl (main): Submitted application application_1400094353_0186 to ResourceManager at /10.42.102.163:9022
2014-05-21 08:56:06,871 INFO org.apache.hadoop.mapreduce.Job (main): The url to track the job: http://1.1.1.1:9046/proxy/application_1400094353_0186/
2014-05-21 08:56:06,872 INFO org.apache.hadoop.mapreduce.Job (main): Running job: job_1400094353_0186
2014-05-21 08:56:15,441 INFO org.apache.hadoop.mapreduce.Job (main): Job job_1400094353_0186 running in uber mode : false
2014-05-21 08:56:15,443 INFO org.apache.hadoop.mapreduce.Job (main): map 0% reduce 0%
2014-05-21 08:57:10,871 INFO org.apache.hadoop.mapreduce.Job (main): map 1% reduce 0%
2014-05-21 08:57:19,928 INFO org.apache.hadoop.mapreduce.Job (main): map 2% reduce 0%
2014-05-21 08:57:25,971 INFO org.apache.hadoop.mapreduce.Job (main): map 3% reduce 0%
2014-05-21 08:57:36,033 INFO org.apache.hadoop.mapreduce.Job (main): map 4% reduce 0%
2014-05-21 08:57:52,141 INFO org.apache.hadoop.mapreduce.Job (main): map 5% reduce 0%
2014-05-21 08:58:00,189 INFO org.apache.hadoop.mapreduce.Job (main): map 6% reduce 0%
2014-05-21 08:58:07,234 INFO org.apache.hadoop.mapreduce.Job (main): map 7% reduce 0%
2014-05-21 08:58:14,285 INFO org.apache.hadoop.mapreduce.Job (main): map 8% reduce 0%
2014-05-21 08:58:20,321 INFO org.apache.hadoop.mapreduce.Job (main): map 9% reduce 0%
2014-05-21 08:58:28,369 INFO org.apache.hadoop.mapreduce.Job (main): map 10% reduce 0%
2014-05-21 08:58:35,421 INFO org.apache.hadoop.mapreduce.Job (main): map 11% reduce 0%
2014-05-21 08:58:44,481 INFO org.apache.hadoop.mapreduce.Job (main): map 12% reduce 0%
2014-05-21 08:58:51,530 INFO org.apache.hadoop.mapreduce.Job (main): map 13% reduce 0%
2014-05-21 08:58:59,583 INFO org.apache.hadoop.mapreduce.Job (main): map 14% reduce 0%
2014-05-21 08:59:06,625 INFO org.apache.hadoop.mapreduce.Job (main): map 15% reduce 0%
2014-05-21 08:59:12,697 INFO org.apache.hadoop.mapreduce.Job (main): map 16% reduce 0%
2014-05-21 08:59:20,766 INFO org.apache.hadoop.mapreduce.Job (main): map 17% reduce 0%
2014-05-21 08:59:26,804 INFO org.apache.hadoop.mapreduce.Job (main): map 18% reduce 0%
2014-05-21 08:59:33,868 INFO org.apache.hadoop.mapreduce.Job (main): map 19% reduce 0%
2014-05-21 08:59:39,907 INFO org.apache.hadoop.mapreduce.Job (main): map 20% reduce 0%
2014-05-21 08:59:46,959 INFO org.apache.hadoop.mapreduce.Job (main): map 21% reduce 0%
2014-05-21 08:59:54,003 INFO org.apache.hadoop.mapreduce.Job (main): map 22% reduce 0%
2014-05-21 09:00:01,052 INFO org.apache.hadoop.mapreduce.Job (main): map 23% reduce 0%
2014-05-21 09:00:08,108 INFO org.apache.hadoop.mapreduce.Job (main): map 24% reduce 0%
2014-05-21 09:00:16,196 INFO org.apache.hadoop.mapreduce.Job (main): map 25% reduce 0%
2014-05-21 09:00:22,241 INFO org.apache.hadoop.mapreduce.Job (main): map 26% reduce 0%
2014-05-21 09:00:29,288 INFO org.apache.hadoop.mapreduce.Job (main): map 27% reduce 0%
2014-05-21 09:00:36,328 INFO org.apache.hadoop.mapreduce.Job (main): map 28% reduce 0%
2014-05-21 09:00:43,410 INFO org.apache.hadoop.mapreduce.Job (main): map 29% reduce 0%
2014-05-21 09:01:22,288 INFO org.apache.hadoop.mapreduce.Job (main): map 30% reduce 0%
2014-05-21 09:01:26,318 INFO org.apache.hadoop.mapreduce.Job (main): map 31% reduce 0%
2014-05-21 09:01:29,334 INFO org.apache.hadoop.mapreduce.Job (main): map 32% reduce 0%
2014-05-21 09:01:32,351 INFO org.apache.hadoop.mapreduce.Job (main): map 33% reduce 0%
2014-05-21 09:01:35,368 INFO org.apache.hadoop.mapreduce.Job (main): map 34% reduce 0%
2014-05-21 09:01:38,384 INFO org.apache.hadoop.mapreduce.Job (main): map 35% reduce 0%
2014-05-21 09:01:40,395 INFO org.apache.hadoop.mapreduce.Job (main): map 36% reduce 0%
2014-05-21 09:01:41,401 INFO org.apache.hadoop.mapreduce.Job (main): map 37% reduce 0%
2014-05-21 09:01:43,416 INFO org.apache.hadoop.mapreduce.Job (main): map 38% reduce 0%
2014-05-21 09:01:45,428 INFO org.apache.hadoop.mapreduce.Job (main): map 39% reduce 0%
2014-05-21 09:01:47,439 INFO org.apache.hadoop.mapreduce.Job (main): map 40% reduce 0%
2014-05-21 09:01:49,451 INFO org.apache.hadoop.mapreduce.Job (main): map 41% reduce 0%
2014-05-21 09:01:51,474 INFO org.apache.hadoop.mapreduce.Job (main): map 42% reduce 0%
2014-05-21 09:01:54,491 INFO org.apache.hadoop.mapreduce.Job (main): map 43% reduce 0%
2014-05-21 09:06:44,031 INFO org.apache.hadoop.mapreduce.Job (main): map 61% reduce 0%
2014-05-21 09:07:44,353 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 09:22:04,475 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000106_0, Status : FAILED
2014-05-21 09:22:05,499 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 09:32:10,244 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 09:37:25,611 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000079_0, Status : FAILED
2014-05-21 09:37:25,613 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000094_0, Status : FAILED
2014-05-21 09:37:25,614 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000107_0, Status : FAILED
2014-05-21 09:37:25,615 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000088_0, Status : FAILED
2014-05-21 09:37:26,620 INFO org.apache.hadoop.mapreduce.Job (main): map 97% reduce 0%
2014-05-21 09:48:50,521 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 09:52:45,491 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000081_0, Status : FAILED
2014-05-21 09:52:46,495 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 10:05:30,717 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 10:08:06,373 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000090_0, Status : FAILED
2014-05-21 10:08:07,377 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 10:18:50,064 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 10:23:28,146 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000110_0, Status : FAILED
2014-05-21 10:23:29,150 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 10:35:29,790 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 10:38:48,507 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000104_0, Status : FAILED
2014-05-21 10:38:49,511 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 10:52:10,333 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 10:54:09,754 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000108_0, Status : FAILED
2014-05-21 10:54:10,758 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 11:05:30,115 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 11:09:29,958 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000095_0, Status : FAILED
2014-05-21 11:09:30,961 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 11:22:10,617 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 11:24:51,159 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000084_0, Status : FAILED
2014-05-21 11:24:51,160 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000116_0, Status : FAILED
2014-05-21 11:24:52,163 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 11:35:29,377 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 11:40:12,354 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000078_0, Status : FAILED
2014-05-21 11:40:13,358 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 11:52:09,812 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 11:55:32,516 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000113_0, Status : FAILED
2014-05-21 11:55:33,520 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 12:08:50,313 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 12:10:53,733 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000093_0, Status : FAILED
2014-05-21 12:10:54,739 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 12:22:10,023 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 12:26:14,825 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000097_0, Status : FAILED
2014-05-21 12:26:15,828 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 12:38:50,340 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 12:41:35,872 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000114_0, Status : FAILED
2014-05-21 12:41:36,876 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 12:41:45,906 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000049_0, Status : FAILED
2014-05-21 12:41:55,938 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000053_0, Status : FAILED
2014-05-21 12:41:56,942 INFO org.apache.hadoop.mapreduce.Job (main): map 98% reduce 0%
2014-05-21 12:42:05,974 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000041_0, Status : FAILED
2014-05-21 12:42:06,977 INFO org.apache.hadoop.mapreduce.Job (main): map 97% reduce 0%
2014-05-21 12:42:16,009 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000062_0, Status : FAILED
2014-05-21 12:42:17,013 INFO org.apache.hadoop.mapreduce.Job (main): map 96% reduce 0%
2014-05-21 12:42:26,043 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000045_0, Status : FAILED
2014-05-21 12:42:36,077 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000050_0, Status : FAILED
2014-05-21 12:42:37,080 INFO org.apache.hadoop.mapreduce.Job (main): map 95% reduce 0%
2014-05-21 12:52:09,942 INFO org.apache.hadoop.mapreduce.Job (main): map 98% reduce 0%
2014-05-21 12:55:29,568 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 12:56:56,841 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000109_0, Status : FAILED
2014-05-21 12:56:56,842 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000099_0, Status : FAILED
2014-05-21 12:56:57,845 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 12:57:06,876 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000044_0, Status : FAILED
2014-05-21 12:57:07,879 INFO org.apache.hadoop.mapreduce.Job (main): map 98% reduce 0%
2014-05-21 12:57:16,909 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000072_0, Status : FAILED
2014-05-21 12:57:17,912 INFO org.apache.hadoop.mapreduce.Job (main): map 97% reduce 0%
2014-05-21 12:57:25,974 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000057_0, Status : FAILED
2014-05-21 12:57:26,977 INFO org.apache.hadoop.mapreduce.Job (main): map 96% reduce 0%
2014-05-21 12:57:36,006 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000056_0, Status : FAILED
2014-05-21 12:57:46,038 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000069_0, Status : FAILED
2014-05-21 12:57:47,041 INFO org.apache.hadoop.mapreduce.Job (main): map 95% reduce 0%
2014-05-21 12:57:56,069 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000076_0, Status : FAILED
2014-05-21 12:57:57,072 INFO org.apache.hadoop.mapreduce.Job (main): map 94% reduce 0%
2014-05-21 12:58:06,102 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000042_0, Status : FAILED
2014-05-21 12:58:07,105 INFO org.apache.hadoop.mapreduce.Job (main): map 93% reduce 0%
2014-05-21 12:58:16,134 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000071_0, Status : FAILED
2014-05-21 12:58:26,166 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000051_0, Status : FAILED
2014-05-21 12:58:27,171 INFO org.apache.hadoop.mapreduce.Job (main): map 92% reduce 0%
2014-05-21 12:58:36,207 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000039_0, Status : FAILED
2014-05-21 12:58:37,210 INFO org.apache.hadoop.mapreduce.Job (main): map 91% reduce 0%
2014-05-21 12:58:46,240 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000060_0, Status : FAILED
2014-05-21 12:58:47,243 INFO org.apache.hadoop.mapreduce.Job (main): map 90% reduce 0%
2014-05-21 12:58:56,271 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000061_0, Status : FAILED
2014-05-21 13:08:50,122 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 13:12:09,752 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 13:12:17,779 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000091_0, Status : FAILED
2014-05-21 13:12:17,780 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000083_0, Status : FAILED
2014-05-21 13:12:17,781 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000115_0, Status : FAILED
2014-05-21 13:12:18,784 INFO org.apache.hadoop.mapreduce.Job (main): map 98% reduce 0%
2014-05-21 13:12:27,813 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000070_0, Status : FAILED
2014-05-21 13:12:28,816 INFO org.apache.hadoop.mapreduce.Job (main): map 97% reduce 0%
2014-05-21 13:25:30,288 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 13:27:37,695 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000085_0, Status : FAILED
2014-05-21 13:27:38,698 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 13:27:47,729 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000058_0, Status : FAILED
2014-05-21 13:27:57,762 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000063_0, Status : FAILED
2014-05-21 13:27:58,765 INFO org.apache.hadoop.mapreduce.Job (main): map 98% reduce 0%
2014-05-21 13:38:50,829 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 13:42:58,603 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000086_0, Status : FAILED
2014-05-21 13:42:59,606 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 13:43:08,636 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000077_0, Status : FAILED
2014-05-21 13:55:30,006 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 13:58:19,532 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000098_0, Status : FAILED
2014-05-21 13:58:20,535 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 14:08:49,521 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 14:13:40,429 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000101_0, Status : FAILED
2014-05-21 14:13:41,433 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 14:13:50,462 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000059_0, Status : FAILED
2014-05-21 14:25:29,656 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 14:29:01,327 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000103_0, Status : FAILED
2014-05-21 14:29:02,330 INFO org.apache.hadoop.mapreduce.Job (main): map 99% reduce 0%
2014-05-21 14:29:11,361 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000067_0, Status : FAILED
2014-05-21 14:29:21,394 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000075_0, Status : FAILED
2014-05-21 14:29:22,397 INFO org.apache.hadoop.mapreduce.Job (main): map 98% reduce 0%
2014-05-21 14:29:31,427 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000046_0, Status : FAILED
2014-05-21 14:29:32,430 INFO org.apache.hadoop.mapreduce.Job (main): map 97% reduce 0%
2014-05-21 14:29:41,458 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000047_0, Status : FAILED
2014-05-21 14:29:42,461 INFO org.apache.hadoop.mapreduce.Job (main): map 96% reduce 0%
2014-05-21 14:29:51,491 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000054_0, Status : FAILED
2014-05-21 14:30:01,550 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000068_0, Status : FAILED
2014-05-21 14:30:02,554 INFO org.apache.hadoop.mapreduce.Job (main): map 95% reduce 0%
2014-05-21 14:30:11,591 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000048_0, Status : FAILED
2014-05-21 14:30:12,594 INFO org.apache.hadoop.mapreduce.Job (main): map 94% reduce 0%
2014-05-21 14:30:21,626 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000038_0, Status : FAILED
2014-05-21 14:30:22,632 INFO org.apache.hadoop.mapreduce.Job (main): map 93% reduce 0%
2014-05-21 14:30:31,660 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000052_0, Status : FAILED
2014-05-21 14:30:41,691 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000043_0, Status : FAILED
2014-05-21 14:30:42,694 INFO org.apache.hadoop.mapreduce.Job (main): map 92% reduce 0%
2014-05-21 14:30:51,724 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000065_0, Status : FAILED
2014-05-21 14:30:52,727 INFO org.apache.hadoop.mapreduce.Job (main): map 91% reduce 0%
2014-05-21 14:42:09,877 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 0%
2014-05-21 14:44:22,301 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000082_0, Status : FAILED
2014-05-21 14:44:22,302 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000080_0, Status : FAILED
2014-05-21 14:44:22,303 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000102_0, Status : FAILED
2014-05-21 14:44:22,304 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000096_0, Status : FAILED
2014-05-21 14:44:23,307 INFO org.apache.hadoop.mapreduce.Job (main): map 97% reduce 0%
2014-05-21 14:44:32,338 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000055_0, Status : FAILED
2014-05-21 14:44:33,341 INFO org.apache.hadoop.mapreduce.Job (main): map 96% reduce 0%
2014-05-21 14:44:42,371 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000073_0, Status : FAILED
2014-05-21 14:44:52,405 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000074_0, Status : FAILED
2014-05-21 14:44:53,408 INFO org.apache.hadoop.mapreduce.Job (main): map 95% reduce 0%
2014-05-21 14:45:02,441 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000064_0, Status : FAILED
2014-05-21 14:45:03,446 INFO org.apache.hadoop.mapreduce.Job (main): map 88% reduce 0%
2014-05-21 14:45:12,480 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000066_0, Status : FAILED
2014-05-21 14:45:13,486 INFO org.apache.hadoop.mapreduce.Job (main): map 87% reduce 0%
2014-05-21 14:45:22,520 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1400503094353_0186_m_000040_0, Status : FAILED
Related
PIG latin - DUMP command not displaying
I am just trying to display the result of GROUPed records using DUMP, but instead of displaying the data, there are lots of log data. I am just playing with 10 records. The details: grunt> DUMP grouped_records; 2016-02-21 17:34:24,338 [main] INFO org.apache.pig.tools.pigstats.ScriptState - Pig features used in the script: GROUP_BY,FILTER 2016-02-21 17:34:24,339 [main] INFO org.apache.pig.newplan.logical.optimizer.LogicalPlanOptimizer - {RULES_ENABLED=[AddForEach, ColumnMapKeyPrune, DuplicateForEachColumnRewrite, GroupByConstParallelSetter, ImplicitSplitInserter, LimitOptimizer, LoadTypeCastInserter, MergeFilter, MergeForEach, NewPartitionFilterOptimizer, PushDownForEachFlatten, PushUpFilter, SplitFilter, StreamTypeCastInserter], RULES_DISABLED=[FilterLogicExpressionSimplifier, PartitionFilterOptimizer]} 2016-02-21 17:34:24,354 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MRCompiler - File concatenation threshold: 100 optimistic? false 2016-02-21 17:34:24,374 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MultiQueryOptimizer - MR plan size before optimization: 1 2016-02-21 17:34:24,374 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MultiQueryOptimizer - MR plan size after optimization: 1 2016-02-21 17:34:24,434 [main] INFO org.apache.hadoop.yarn.client.RMProxy - Connecting to ResourceManager at /0.0.0.0:8032 2016-02-21 17:34:24,440 [main] INFO org.apache.pig.tools.pigstats.ScriptState - Pig script settings are added to the job 2016-02-21 17:34:24,527 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.JobControlCompiler - mapred.job.reduce.markreset.buffer.percent is not set, set to default 0.3 2016-02-21 17:34:24,530 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.JobControlCompiler - Reduce phase detected, estimating # of required reducers. 2016-02-21 17:34:24,534 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.JobControlCompiler - Using reducer estimator: org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.InputSizeReducerEstimator 2016-02-21 17:34:24,541 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.InputSizeReducerEstimator - BytesPerReducer=1000000000 maxReducers=999 totalInputFileSize=142 2016-02-21 17:34:24,541 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.JobControlCompiler - Setting Parallelism to 1 2016-02-21 17:34:25,128 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.JobControlCompiler - creating jar file Job662989067023626482.jar 2016-02-21 17:34:31,290 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.JobControlCompiler - jar file Job662989067023626482.jar created 2016-02-21 17:34:31,335 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.JobControlCompiler - Setting up single store job 2016-02-21 17:34:31,338 [main] INFO org.apache.pig.data.SchemaTupleFrontend - Key [pig.schematuple] is false, will not generate code. 2016-02-21 17:34:31,338 [main] INFO org.apache.pig.data.SchemaTupleFrontend - Starting process to move generated code to distributed cache 2016-02-21 17:34:31,338 [main] INFO org.apache.pig.data.SchemaTupleFrontend - Setting key [pig.schematuple.classes] with classes to deserialize [] 2016-02-21 17:34:31,549 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher - 1 map-reduce job(s) waiting for submission. 2016-02-21 17:34:31,550 [main] INFO org.apache.hadoop.conf.Configuration.deprecation - mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address 2016-02-21 17:34:31,556 [JobControl] INFO org.apache.hadoop.yarn.client.RMProxy - Connecting to ResourceManager at /0.0.0.0:8032 2016-02-21 17:34:31,607 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation - fs.default.name is deprecated. Instead, use fs.defaultFS 2016-02-21 17:34:31,918 [JobControl] INFO org.apache.hadoop.mapreduce.lib.input.FileInputFormat - Total input paths to process : 1 2016-02-21 17:34:31,918 [JobControl] INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedUtil - Total input paths to process : 1 2016-02-21 17:34:31,921 [JobControl] INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedUtil - Total input paths (combined) to process : 1 2016-02-21 17:34:31,979 [JobControl] INFO org.apache.hadoop.mapreduce.JobSubmitter - number of splits:1 2016-02-21 17:34:32,092 [JobControl] INFO org.apache.hadoop.mapreduce.JobSubmitter - Submitting tokens for job: job_1454294818944_0034 2016-02-21 17:34:32,192 [JobControl] INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl - Submitted application application_1454294818944_0034 2016-02-21 17:34:32,198 [JobControl] INFO org.apache.hadoop.mapreduce.Job - The url to track the job: http://quickstart.cloudera:8088/proxy/application_1454294818944_0034/ 2016-02-21 17:34:32,198 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher - HadoopJobId: job_1454294818944_0034 2016-02-21 17:34:32,198 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher - Processing aliases filtered_records,grouped_records,records 2016-02-21 17:34:32,198 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher - detailed locations: M: records[1,10],records[-1,-1],filtered_records[2,19],grouped_records[3,18] C: R: 2016-02-21 17:34:32,198 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher - More information at: http://localhost:50030/jobdetails.jsp?jobid=job_1454294818944_0034 2016-02-21 17:34:32,428 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher - 0% complete 2016-02-21 17:35:02,623 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher - 50% complete 2016-02-21 17:35:23,469 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher - 100% complete 2016-02-21 17:35:23,470 [main] INFO org.apache.pig.tools.pigstats.SimplePigStats - Script Statistics: HadoopVersion PigVersion UserId StartedAt FinishedAt Features 2.6.0-cdh5.5.0 0.12.0-cdh5.5.0 cloudera 2016-02-21 17:34:24 2016-02-21 17:35:23 GROUP_BY,FILTER Success! Job Stats (time in seconds): JobId Maps Reduces MaxMapTime MinMapTIme AvgMapTime MedianMapTime MaxReduceTime MinReduceTime AvgReduceTime MedianReducetime Alias Feature Outputs job_1454294818944_0034 1 1 12 12 12 12 16 16 16 16 filtered_records,grouped_records,records GROUP_BY hdfs://quickstart.cloudera:8020/tmp/temp-1703423271/tmp-988597361, Input(s): Successfully read 10 records (525 bytes) from: "/user/hduser/input/maxtemppig.tsv" Output(s): Successfully stored 0 records in: "hdfs://quickstart.cloudera:8020/tmp/temp-1703423271/tmp-988597361" Counters: Total records written : 0 Total bytes written : 0 Spillable Memory Manager spill count : 0 Total bags proactively spilled: 0 Total records proactively spilled: 0 Job DAG: job_1454294818944_0034 2016-02-21 17:35:23,646 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher - Success! 2016-02-21 17:35:23,648 [main] INFO org.apache.hadoop.conf.Configuration.deprecation - fs.default.name is deprecated. Instead, use fs.defaultFS 2016-02-21 17:35:23,648 [main] INFO org.apache.hadoop.conf.Configuration.deprecation - mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address 2016-02-21 17:35:23,649 [main] INFO org.apache.pig.data.SchemaTupleBackend - Key [pig.schematuple] was not set... will not generate code. 2016-02-21 17:35:23,660 [main] INFO org.apache.hadoop.mapreduce.lib.input.FileInputFormat - Total input paths to process : 1 2016-02-21 17:35:23,660 [main] INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedUtil - Total input paths to process : 1 Commands that I tried: records = LOAD '/user/hduser/input/maxtemppig.tsv' AS (year:chararray, temperature:int, quality:int); filtered_records = FILTER records BY temperature IN (-10,19) AND quality IN (0,1,4,5,9); DUMP filtered_records; grouped_records = GROUP filtered_records BY year; DUMP grouped_records; max_temp = FOREACH grouped_records GENERATE group, MAX(filtered_records.temperature); DUMP max_temp; My input tsv file... 1950 32 01459 1951 33 01459 1950 21 01459 1940 24 01459 1950 33 01459 2000 30 01459 2010 44 01459 2014 -10 01459 2016 -20 01459 2011 19 01459 What am I missing?
There is a high chance that the parsing is not working and you are filtering all records. Try records = LOAD '/user/hduser/input/maxtemppig.tsv' USING PigStorage('\t') AS (year:chararray, temperature:int, quality:int);
Some tasks in map() fails when I run it on AWS
I was running page rank on s3://aws-publicdatasets/common-crawl/parse-output/segment/1346876860819/metadata-XXXX dataset. The program worked when I use 10 files (about 1GB) with 2 m1.medium, but when I use 300 files(20GB) with 5 m3.xlarge instances, it fails at map 39%, reduce 4%. Could you please find the possible reason for the failure? Here are the logs. stderr: AttemptID:attempt_1411372099942_0001_m_000010_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000014_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000015_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000057_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000103_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000094_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000109_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000108_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000133_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000136_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000010_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000151_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000014_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000168_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000167_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000015_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000174_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000175_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000057_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000181_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000182_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000190_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000103_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000109_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000094_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000200_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000108_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000133_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000199_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000136_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000010_2 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000151_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000206_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000207_0 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000014_2 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000168_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000175_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000167_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000174_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000015_2 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000057_2 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000181_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000182_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000190_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000103_2 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000094_2 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000200_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000109_2 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000108_2 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000133_2 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000199_1 Timed out after 600 secs AttemptID:attempt_1411372099942_0001_m_000136_2 Timed out after 600 secs part of syslog: 08:24:24,791 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000168_1, Status : FAILED 2014-09-22 08:24:46,873 INFO org.apache.hadoop.mapreduce.Job (main): map 39% reduce 4% 2014-09-22 08:24:54,903 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000175_1, Status : FAILED 2014-09-22 08:24:54,904 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000167_1, Status : FAILED 2014-09-22 08:24:54,904 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000174_1, Status : FAILED 2014-09-22 08:24:55,908 INFO org.apache.hadoop.mapreduce.Job (main): map 38% reduce 4% 2014-09-22 08:25:13,968 INFO org.apache.hadoop.mapreduce.Job (main): map 39% reduce 4% 2014-09-22 08:25:25,007 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000015_2, Status : FAILED 2014-09-22 08:26:24,210 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000057_2, Status : FAILED 2014-09-22 08:26:54,322 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000181_1, Status : FAILED 2014-09-22 08:27:24,432 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000182_1, Status : FAILED 2014-09-22 08:27:25,435 INFO org.apache.hadoop.mapreduce.Job (main): map 38% reduce 4% 2014-09-22 08:27:54,543 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000190_1, Status : FAILED 2014-09-22 08:28:54,751 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000103_2, Status : FAILED 2014-09-22 08:29:24,851 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000094_2, Status : FAILED 2014-09-22 08:29:24,852 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000200_1, Status : FAILED 2014-09-22 08:29:24,853 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000109_2, Status : FAILED 2014-09-22 08:29:48,931 INFO org.apache.hadoop.mapreduce.Job (main): map 39% reduce 4% 2014-09-22 08:29:54,954 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000108_2, Status : FAILED 2014-09-22 08:30:24,066 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000133_2, Status : FAILED 2014-09-22 08:32:54,599 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000199_1, Status : FAILED 2014-09-22 08:32:54,600 INFO org.apache.hadoop.mapreduce.Job (main): Task Id : attempt_1411372099942_0001_m_000136_2, Status : FAILED 2014-09-22 08:34:25,910 INFO org.apache.hadoop.mapreduce.Job (main): map 100% reduce 100% 2014-09-22 08:34:25,915 INFO org.apache.hadoop.mapreduce.Job (main): Job job_1411372099942_0001 failed with state FAILED due to: Task failed task_1411372099942_0001_m_000010 Job failed as tasks failed. failedMaps:1 failedReduces:0 Attempts for: s-1W7C8YIFC87Y8, Job 1411372099942_0001, Task 2014-09-22 08:18:27,238 WARN main org.apache.hadoop.conf.Configuration: job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval; Ignoring. 2014-09-22 08:18:27,322 WARN main org.apache.hadoop.conf.Configuration: job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts; Ignoring. 2014-09-22 08:18:28,462 INFO main org.apache.hadoop.metrics2.impl.MetricsConfig: loaded properties from hadoop-metrics2.properties 2014-09-22 08:18:28,496 INFO main org.apache.hadoop.metrics2.sink.cloudwatch.CloudWatchSink: Initializing the CloudWatchSink for metrics. 2014-09-22 08:18:28,795 INFO main org.apache.hadoop.metrics2.impl.MetricsSinkAdapter: Sink file started 2014-09-22 08:18:28,967 INFO main org.apache.hadoop.metrics2.impl.MetricsSystemImpl: Scheduled snapshot period at 300 second(s). 2014-09-22 08:18:28,967 INFO main org.apache.hadoop.metrics2.impl.MetricsSystemImpl: MapTask metrics system started 2014-09-22 08:18:28,982 INFO main org.apache.hadoop.mapred.YarnChild: Executing with tokens: 2014-09-22 08:18:28,983 INFO main org.apache.hadoop.mapred.YarnChild: Kind: mapreduce.job, Service: job_1411372099942_0001, Ident: (org.apache.hadoop.mapreduce.security.token.JobTokenIdentifier#3fc15856) 2014-09-22 08:18:29,157 INFO main org.apache.hadoop.mapred.YarnChild: Sleeping for 0ms before retrying again. Got null now. 2014-09-22 08:18:29,880 INFO main org.apache.hadoop.mapred.YarnChild: mapreduce.cluster.local.dir for child: /mnt/var/lib/hadoop/tmp/nm-local-dir/usercache/hadoop/appcache/application_1411372099942_0001,/mnt1/var/lib/hadoop/tmp/nm-local-dir/usercache/hadoop/appcache/application_1411372099942_0001,/mnt2/var/lib/hadoop/tmp/nm-local-dir/usercache/hadoop/appcache/application_1411372099942_0001 2014-09-22 08:18:30,164 WARN main org.apache.hadoop.conf.Configuration: job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval; Ignoring. 2014-09-22 08:18:30,182 WARN main org.apache.hadoop.conf.Configuration: job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts; Ignoring. 2014-09-22 08:18:31,063 INFO main org.apache.hadoop.conf.Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id 2014-09-22 08:18:32,100 INFO main org.apache.hadoop.mapred.Task: Using ResourceCalculatorProcessTree : [ ] 2014-09-22 08:18:32,605 INFO main org.apache.hadoop.mapred.MapTask: Processing split: s3://aws-publicdatasets/common-crawl/parse-output/segment/1346876860819/metadata-00122:0+67108864 2014-09-22 08:18:32,810 INFO main amazon.emr.metrics.MetricsSaver: MetricsSaver YarnChild root:hdfs:///mnt/var/em/ period:120 instanceId:i-ec84e7c1 jobflow:j-27XODJ8WMW4VP 2014-09-22 08:18:33,205 WARN main org.apache.hadoop.conf.Configuration: job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval; Ignoring. 2014-09-22 08:18:33,219 WARN main org.apache.hadoop.conf.Configuration: job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts; Ignoring. 2014-09-22 08:18:33,221 INFO main com.amazon.ws.emr.hadoop.fs.guice.EmrFSBaseModule: Consistency disabled, using com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem as FileSystem implementation. 2014-09-22 08:18:35,024 INFO main com.amazon.ws.emr.hadoop.fs.EmrFileSystem: Using com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem as filesystem implementation 2014-09-22 08:18:36,001 WARN main org.apache.hadoop.conf.Configuration: job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval; Ignoring. 2014-09-22 08:18:36,002 WARN main org.apache.hadoop.conf.Configuration: job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts; Ignoring. 2014-09-22 08:18:36,024 INFO main org.apache.hadoop.mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer 2014-09-22 08:18:36,514 INFO main org.apache.hadoop.mapred.MapTask: (EQUATOR) 0 kvi 52428796(209715184) 2014-09-22 08:18:36,514 INFO main org.apache.hadoop.mapred.MapTask: mapreduce.task.io.sort.mb: 200 2014-09-22 08:18:36,514 INFO main org.apache.hadoop.mapred.MapTask: soft limit at 167772160 2014-09-22 08:18:36,514 INFO main org.apache.hadoop.mapred.MapTask: bufstart = 0; bufvoid = 209715200 2014-09-22 08:18:36,514 INFO main org.apache.hadoop.mapred.MapTask: kvstart = 52428796; length = 13107200 2014-09-22 08:18:36,597 INFO main com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem: Opening 's3://aws-publicdatasets/common-crawl/parse-output/segment/1346876860819/metadata-00122' for reading 2014-09-22 08:18:36,716 INFO main org.apache.hadoop.io.compress.zlib.ZlibFactory: Successfully loaded & initialized native-zlib library 2014-09-22 08:18:36,720 INFO main org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor ht t p: //. gz 2014-09-22 08:18:36,726 INFO main org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor 2014-09-22 08:18:36,726 INFO main org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor 2014-09-22 08:18:36,727 INFO main org.apache.hadoop.io.compress.CodecPool: Got brand-new decompressor Edited by: paraxx on Sep 22, 2014 10:25 AM
task_1411372099942_0001_m_000010 has timed out. Try increasing the timeout configuration parameter. mapreduce.task.timeout=12000000
My MapReduce job become Fails
a have a mapreduce program in Eclipse. and I want to run it.. I follow the program from below url: http://www.orzota.com/step-by-step-mapreduce-programming/ I do all things that the page says and run the program. but it show me error and my job fails.. the program create output folder but it is empty.. here is my cod: package org.orzota.bookx.mappers; import java.io.IOException; import org.apache.hadoop.io.*; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reporter; public class MyHadoopMapper extends MapReduceBase implements Mapper <LongWritable, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); public void map(LongWritable _key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String st = value.toString(); String[] bookdata = st.split("\";\""); output.collect(new Text(bookdata[3]), one); } } public class MyHadoopReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable>{ public void reduce(Text _key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { Text key = _key; int freq = 0; while (values.hasNext()){ IntWritable value = (IntWritable) values.next(); freq += value.get(); } output.collect(key, new IntWritable(freq)); } } public class MyHadoopDriver { public static void main(String[] args) { JobClient client = new JobClient(); JobConf conf = new JobConf( org.orzota.bookx.mappers.MyHadoopDriver.class); conf.setJobName("BookCrossing1.0"); // TODO: specify output types conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); // TODO: specify a mapper conf.setMapperClass(org.orzota.bookx.mappers.MyHadoopMapper.class); // TODO: specify a reducer conf.setReducerClass(org.orzota.bookx.mappers.MyHadoopReducer.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); client.setConf(conf); try { JobClient.runJob(conf); } catch (Exception e) { e.printStackTrace(); } } } and here is the errors: 13/09/03 12:19:11 INFO util.ProcessTree: setsid exited with exit code 0 13/09/03 12:19:11 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin#3c2378 13/09/03 12:19:11 INFO mapred.MapTask: Processing split: file:/home/ubuntu/Eclip/Runs/input/BX-Books.csv:0+33554432 13/09/03 12:19:11 INFO mapred.MapTask: numReduceTasks: 1 13/09/03 12:19:12 INFO mapred.MapTask: io.sort.mb = 100 13/09/03 12:19:12 INFO mapred.MapTask: data buffer = 79691776/99614720 13/09/03 12:19:12 INFO mapred.MapTask: record buffer = 262144/327680 13/09/03 12:19:12 INFO mapred.JobClient: map 0% reduce 0% 13/09/03 12:19:13 INFO mapred.MapTask: Starting flush of map output 13/09/03 12:19:14 INFO mapred.MapTask: Finished spill 0 13/09/03 12:19:14 INFO mapred.Task: Task:attempt_local1379860058_0001_m_000000_0 is done. And is in the process of commiting 13/09/03 12:19:14 INFO mapred.LocalJobRunner: file:/home/ubuntu/Eclipse/Runs/input/BX-Books.csv:0+33554432 13/09/03 12:19:14 INFO mapred.Task: Task 'attempt_local1379860058_0001_m_000000_0' done. 13/09/03 12:19:14 INFO mapred.LocalJobRunner: Finishing task: attempt_local1379860058_0001_m_000000_0 13/09/03 12:19:14 INFO mapred.LocalJobRunner: Starting task: attempt_local1379860058_0001_m_000001_0 13/09/03 12:19:14 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin#15dd910 13/09/03 12:19:14 INFO mapred.MapTask: Processing split: file:/home/ubuntu/Eclipse/Runs/input/BX-Books.csv:33554432+33554432 13/09/03 12:19:14 INFO mapred.MapTask: numReduceTasks: 1 13/09/03 12:19:14 INFO mapred.MapTask: io.sort.mb = 100 13/09/03 12:19:14 INFO mapred.MapTask: data buffer = 79691776/99614720 13/09/03 12:19:14 INFO mapred.MapTask: record buffer = 262144/327680 13/09/03 12:19:14 INFO mapred.JobClient: map 20% reduce 0% 13/09/03 12:19:15 INFO mapred.MapTask: Starting flush of map output 13/09/03 12:19:15 INFO mapred.MapTask: Finished spill 0 13/09/03 12:19:15 INFO mapred.Task: Task:attempt_local1379860058_0001_m_000001_0 is done. And is in the process of commiting 13/09/03 12:19:15 INFO mapred.LocalJobRunner: file:/home/ubuntu/Eclipse/Runs/input/BX-Books.csv:33554432+33554432 13/09/03 12:19:15 INFO mapred.Task: Task 'attempt_local1379860058_0001_m_000001_0' done. 13/09/03 12:19:15 INFO mapred.LocalJobRunner: Finishing task: attempt_local1379860058_0001_m_000001_0 13/09/03 12:19:15 INFO mapred.LocalJobRunner: Starting task: attempt_local1379860058_0001_m_000002_0 13/09/03 12:19:15 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin#7c3885 13/09/03 12:19:15 INFO mapred.MapTask: Processing split: file:/home/ubuntu/Eclipse/Runs/input/BX-Book-Ratings.csv:0+30682276 13/09/03 12:19:15 INFO mapred.MapTask: numReduceTasks: 1 13/09/03 12:19:15 INFO mapred.MapTask: io.sort.mb = 100 13/09/03 12:19:16 INFO mapred.MapTask: data buffer = 79691776/99614720 13/09/03 12:19:16 INFO mapred.MapTask: record buffer = 262144/327680 13/09/03 12:19:16 INFO mapred.LocalJobRunner: Starting task: attempt_local1379860058_0001_m_000003_0 13/09/03 12:19:16 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin#11d2572 13/09/03 12:19:16 INFO mapred.MapTask: Processing split: file:/home/ubuntu/Eclipse/Runs/input/BX-Users.csv:0+12284157 13/09/03 12:19:16 INFO mapred.MapTask: numReduceTasks: 1 13/09/03 12:19:16 INFO mapred.MapTask: io.sort.mb = 100 13/09/03 12:19:16 INFO mapred.MapTask: data buffer = 79691776/99614720 13/09/03 12:19:16 INFO mapred.MapTask: record buffer = 262144/327680 13/09/03 12:19:16 INFO mapred.LocalJobRunner: Starting task: attempt_local1379860058_0001_m_000004_0 13/09/03 12:19:16 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin#164b09c 13/09/03 12:19:16 INFO mapred.MapTask: Processing split: file:/home/ubuntu/Eclipse/Runs/input/BX-Books.csv:67108864+10678575 13/09/03 12:19:16 INFO mapred.MapTask: numReduceTasks: 1 13/09/03 12:19:16 INFO mapred.MapTask: io.sort.mb = 100 13/09/03 12:19:16 INFO mapred.MapTask: data buffer = 79691776/99614720 13/09/03 12:19:16 INFO mapred.MapTask: record buffer = 262144/327680 13/09/03 12:19:16 INFO mapred.JobClient: map 40% reduce 0% 13/09/03 12:19:17 INFO mapred.MapTask: Starting flush of map output 13/09/03 12:19:17 INFO mapred.MapTask: Finished spill 0 13/09/03 12:19:17 INFO mapred.Task: Task:attempt_local1379860058_0001_m_000004_0 is done. And is in the process of commiting 13/09/03 12:19:17 INFO mapred.LocalJobRunner: file:/home/ubuntu/Eclipse/Runs/input/BX-Books.csv:67108864+10678575 13/09/03 12:19:17 INFO mapred.Task: Task 'attempt_local1379860058_0001_m_000004_0' done. 13/09/03 12:19:17 INFO mapred.LocalJobRunner: Finishing task: attempt_local1379860058_0001_m_000004_0 13/09/03 12:19:17 INFO mapred.LocalJobRunner: Map task executor complete. 13/09/03 12:19:17 WARN mapred.LocalJobRunner: job_local1379860058_0001 java.lang.Exception: java.lang.ArrayIndexOutOfBoundsException: 3 at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:354) Caused by: java.lang.ArrayIndexOutOfBoundsException: 3 at org.orzota.bookx.mappers.MyHadoopMapper.map(MyHadoopMapper.java:17) at org.orzota.bookx.mappers.MyHadoopMapper.map(MyHadoopMapper.java:1) at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:50) at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:430) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:366) at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:223) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:441) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:303) at java.util.concurrent.FutureTask.run(FutureTask.java:138) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:662) 13/09/03 12:19:17 INFO mapred.JobClient: map 60% reduce 0% 13/09/03 12:19:17 INFO mapred.JobClient: Job complete: job_local1379860058_0001 13/09/03 12:19:17 INFO mapred.JobClient: Counters: 16 13/09/03 12:19:17 INFO mapred.JobClient: File Input Format Counters 13/09/03 12:19:17 INFO mapred.JobClient: Bytes Read=77795631 13/09/03 12:19:17 INFO mapred.JobClient: FileSystemCounters 13/09/03 12:19:17 INFO mapred.JobClient: FILE_BYTES_READ=178484057 13/09/03 12:19:17 INFO mapred.JobClient: FILE_BYTES_WRITTEN=6981917 13/09/03 12:19:17 INFO mapred.JobClient: Map-Reduce Framework 13/09/03 12:19:17 INFO mapred.JobClient: Map output materialized bytes=2971356 13/09/03 12:19:17 INFO mapred.JobClient: Map input records=271380 13/09/03 12:19:17 INFO mapred.JobClient: Spilled Records=271380 13/09/03 12:19:17 INFO mapred.JobClient: Map output bytes=2428578 13/09/03 12:19:17 INFO mapred.JobClient: Total committed heap usage (bytes)=883687424 13/09/03 12:19:17 INFO mapred.JobClient: CPU time spent (ms)=0 13/09/03 12:19:17 INFO mapred.JobClient: Map input bytes=77787439 13/09/03 12:19:17 INFO mapred.JobClient: SPLIT_RAW_BYTES=306 13/09/03 12:19:17 INFO mapred.JobClient: Combine input records=0 13/09/03 12:19:17 INFO mapred.JobClient: Combine output records=0 13/09/03 12:19:17 INFO mapred.JobClient: Physical memory (bytes) snapshot=0 13/09/03 12:19:17 INFO mapred.JobClient: Virtual memory (bytes) snapshot=0 13/09/03 12:19:17 INFO mapred.JobClient: Map output records=271380 13/09/03 12:19:17 INFO mapred.JobClient: Job Failed: NA java.io.IOException: Job failed! at org.apache.hadoop.mapred.JobClient.runJob(JobClient.java:1357) at org.orzota.bookx.mappers.MyHadoopDriver.main(MyHadoopDriver.java:44) I think the error is from this line: output.collect(new Text(bookdata[3]), one); but I don't know what it says.. can anyone help me please? thanks..
I checked the link you provided. I think the best thing you can do is do a system.out.println() of your input key value pairs (on a small subset of your input dataset), just to be sure. If the input file you are using contains a '\n' then it might be possible that the csv record is broken into 2 seperate records which contain fewer than 8 substrings. The ArrayOutOfBoundsException seems to point in this direction. I don't think it is a mapreduce error. You could also add the following line to your map function: if (bookdata.length!=8){ System.out.println("Warning, bad entry"); return; } If the simulation survives you have isolated the problem..
Most probably the input file you are reading has a row that doesn't have 4 columns. So when you split the row into an Array, String[] bookdata = st.split("\";\""); And you want to access the 4th element output.collect(new Text(bookdata[3]), one); It fails.
hadoop: reduce happened between flush map output and finish spill before maps done
I'm new to hadoop, and i'm trying the examples wordcount/secondsort in src/examples. wordcount test environment: input: file01.txt file02.txt secondsort test environment: input: sample01.txt sample02.txt Which means both the two test would have 2 paths to process. I print some log info trying to understand the process of map/reduce. See what's between Starting flush of map output and Finished spill 0: the wordcount program has another two reduce task before a final reduce while the secondsort program just do the reduce once and it's done. Since these programs are so "small", i dont think the io.sort.mb/io.sort.refactor would affect this. Can anybody explain this? Thanks for your patience for my broken Englisth and the long log. These are the log info (i cut some useless info to make it short): wordcount log: [hadoop#localhost ~]$ hadoop jar test.jar com.abc.example.test wordcount output 13/08/07 18:14:05 INFO mapred.FileInputFormat: Total input paths to process : 2 13/08/07 18:14:06 INFO mapred.JobClient: Running job: job_local_0001 13/08/07 18:14:06 INFO util.ProcessTree: setsid exited with exit code 0 ... 13/08/07 18:14:06 INFO mapred.MapTask: numReduceTasks: 1 13/08/07 18:14:06 INFO mapred.MapTask: io.sort.mb = 100 13/08/07 18:14:06 INFO mapred.MapTask: data buffer = 79691776/99614720 13/08/07 18:14:06 INFO mapred.MapTask: record buffer = 262144/327680 Mapper: 0 | Hello Hadoop GoodBye Hadoop 13/08/07 18:14:06 INFO mapred.MapTask: **Starting flush of map output** Reduce: GoodBye Reduce: GoodBye | 1 Reduce: Hadoop Reduce: Hadoop | 1 Reduce: Hadoop | 1 Reduce: Hello Reduce: Hello | 1 13/08/07 18:14:06 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting 13/08/07 18:14:06 INFO mapred.LocalJobRunner: hdfs://localhost:8020/user/hadoop/wordcount/file02.txt:0+28 13/08/07 18:14:06 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done. 13/08/07 18:14:06 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin#4d16ffed 13/08/07 18:14:06 INFO mapred.MapTask: numReduceTasks: 1 13/08/07 18:14:06 INFO mapred.MapTask: io.sort.mb = 100 13/08/07 18:14:06 INFO mapred.MapTask: data buffer = 79691776/99614720 13/08/07 18:14:06 INFO mapred.MapTask: record buffer = 262144/327680 13/08/07 18:14:06 INFO mapred.MapTask: **Starting flush of map output** Reduce: Bye Reduce: Bye | 1 Reduce: Hello Reduce: Hello | 1 Reduce: world Reduce: world | 1 Reduce: world | 1 13/08/07 18:14:06 INFO mapred.MapTask: **Finished spill 0** 13/08/07 18:14:06 INFO mapred.Task: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting 13/08/07 18:14:06 INFO mapred.LocalJobRunner: hdfs://localhost:8020/user/hadoop/wordcount/file01.txt:0+22 13/08/07 18:14:06 INFO mapred.Task: Task 'attempt_local_0001_m_000001_0' done. 13/08/07 18:14:06 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin#1f3c0665 13/08/07 18:14:06 INFO mapred.LocalJobRunner: 13/08/07 18:14:06 INFO mapred.Merger: Merging 2 sorted segments 13/08/07 18:14:06 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 77 bytes 13/08/07 18:14:06 INFO mapred.LocalJobRunner: Reduce: Bye Reduce: Bye | 1 Reduce: GoodBye Reduce: GoodBye | 1 Reduce: Hadoop Reduce: Hadoop | 2 Reduce: Hello Reduce: Hello | 1 Reduce: Hello | 1 Reduce: world Reduce: world | 2 13/08/07 18:14:06 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting ... 13/08/07 18:14:07 INFO mapred.JobClient: Reduce input groups=5 13/08/07 18:14:07 INFO mapred.JobClient: Combine output records=6 13/08/07 18:14:07 INFO mapred.JobClient: Physical memory (bytes) snapshot=0 13/08/07 18:14:07 INFO mapred.JobClient: Reduce output records=5 13/08/07 18:14:07 INFO mapred.JobClient: Virtual memory (bytes) snapshot=0 13/08/07 18:14:07 INFO mapred.JobClient: Map output records=8 secondsort log info: [hadoop#localhost ~]$ hadoop jar example.jar com.abc.example.example secondsort output 13/08/07 17:00:11 INFO input.FileInputFormat: Total input paths to process : 2 13/08/07 17:00:11 WARN snappy.LoadSnappy: Snappy native library not loaded 13/08/07 17:00:12 INFO mapred.JobClient: Running job: job_local_0001 13/08/07 17:00:12 INFO util.ProcessTree: setsid exited with exit code 0 13/08/07 17:00:12 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin#57d94c7b 13/08/07 17:00:12 INFO mapred.MapTask: io.sort.mb = 100 13/08/07 17:00:12 INFO mapred.MapTask: data buffer = 79691776/99614720 13/08/07 17:00:12 INFO mapred.MapTask: record buffer = 262144/327680 Map: 0 | 5 49 Map: 5 | 9 57 Map: 10 | 19 46 Map: 16 | 3 21 Map: 21 | 9 48 Map: 26 | 7 57 ... 13/08/07 17:00:12 INFO mapred.MapTask: **Starting flush of map output** 13/08/07 17:00:12 INFO mapred.MapTask: **Finished spill 0** 13/08/07 17:00:12 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting 13/08/07 17:00:12 INFO mapred.LocalJobRunner: 13/08/07 17:00:12 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done. 13/08/07 17:00:12 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin#f3a1ea1 13/08/07 17:00:12 INFO mapred.MapTask: io.sort.mb = 100 13/08/07 17:00:12 INFO mapred.MapTask: data buffer = 79691776/99614720 13/08/07 17:00:12 INFO mapred.MapTask: record buffer = 262144/327680 Map: 0 | 20 21 Map: 6 | 50 51 Map: 12 | 50 52 Map: 18 | 50 53 Map: 24 | 50 54 ... 13/08/07 17:00:12 INFO mapred.MapTask: **Starting flush of map output** 13/08/07 17:00:12 INFO mapred.MapTask: **Finished spill 0** 13/08/07 17:00:12 INFO mapred.Task: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting 13/08/07 17:00:12 INFO mapred.LocalJobRunner: 13/08/07 17:00:12 INFO mapred.Task: Task 'attempt_local_0001_m_000001_0' done. 13/08/07 17:00:12 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin#cee4e92 13/08/07 17:00:12 INFO mapred.LocalJobRunner: 13/08/07 17:00:12 INFO mapred.Merger: Merging 2 sorted segments 13/08/07 17:00:12 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 1292 bytes 13/08/07 17:00:12 INFO mapred.LocalJobRunner: Reduce: 0:35 ----------------- Reduce: 0:35 | 35 Reduce: 0:54 ----------------- ... 13/08/07 17:00:12 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting 13/08/07 17:00:12 INFO mapred.LocalJobRunner: 13/08/07 17:00:12 INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to commit now 13/08/07 17:00:12 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to output 13/08/07 17:00:12 INFO mapred.LocalJobRunner: reduce > reduce 13/08/07 17:00:12 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done. 13/08/07 17:00:13 INFO mapred.JobClient: map 100% reduce 100% 13/08/07 17:00:13 INFO mapred.JobClient: Job complete: job_local_0001 13/08/07 17:00:13 INFO mapred.JobClient: Counters: 22 13/08/07 17:00:13 INFO mapred.JobClient: File Output Format Counters 13/08/07 17:00:13 INFO mapred.JobClient: Bytes Written=4787 ... 13/08/07 17:00:13 INFO mapred.JobClient: SPLIT_RAW_BYTES=236 13/08/07 17:00:13 INFO mapred.JobClient: Reduce input records=92 PS: The main()s for others to check out. wordcount: public static void main(String[] args) throws Exception { JobConf conf = new JobConf(test.class); conf.setJobName("wordcount"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(Map.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); } secondsort: public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException { Configuration conf = new Configuration(); Job job = new Job(conf, "secondarysort"); job.setJarByClass(example.class); job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); job.setPartitionerClass(FirstPartitioner.class); job.setGroupingComparatorClass(GroupingComparator.class); job.setMapOutputKeyClass(IntPair.class); job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); }
Combine output records=6 This says it all: the reduce function is used both as a combiner and a reducer. So what you are seeing is output from the combiner. The combiner is (sometimes) invoked when output is spilled. I think you should have added your code, at least the part in the main() to show us how your job is set up. This would make it easier to answer your questions.
I think the lines such as Reduce: GoodBye Reduce: GoodBye | 1 are println(...)in your source codes, and you need to check the source code.
Find a local minimum in a special graph
The issue at hand looks easy, but I could not find an easy solution so far. I've got a histogram describing the value distributing of an array of floats, roughly looking like this: As you can see, there is a local maximum near 0, which keeps falling down to a local minimum, then rising quickly to a plateau, and in the end falling to 0. I would like to detect the local minimum. In practice, the histogram is not as smooth: There are lots of spikes, and the local minimum may be stretched and uneven. I'm not sure how to tackle this problem. There is little domain knowledge. The first max may even be higher than the second max. There may be spikes in any direction, values may be as low as 0. This is a real life sample taken from 8 distinct runs. It's scaled to 0 - 10 to make it easier to understand. 0: 22% 12% 19% 17% 6% 5% 6% 5% 1: 3% 2% 1% 1% 4% 1% 4% 1% 2: 6% 2% 13% 5% 0% 2% 0% 2% 3: 62% 62% 52% 42% 2% 5% 2% 5% 4: 4% 19% 12% 28% 10% 13% 10% 13% 5: 0% 0% 3% 29% 30% 29% 30% 6: 37% 31% 37% 30% 7: 1% 7% 1% 7% 8: 6% 1% 6% 1% 9: 10: Values rounded down. Missing values denote no occurrence of any value. Explanation of the first line: 0: 22% the initial max 1: 3% local min 2: 6% still min 3: 62% plateau max 4: 4% second min 5: 0% 0 6: no more values 7: 8: 9: 10: For reference, a list of the same data, this time scaled to 0 - 100 (there were no values in the 90-100 range at all). I messed up on the formatting, but it should give a rough idea. 0: 0% 0% 0% 1% 0% 0% 0% 0% 1: 0% 1% 1% 3% 0% 0% 0% 0% 2: 1% 2% 1% 3% 0% 0% 0% 0% 3: 4% 2% 3% 3% 0% 1% 0% 1% 4: 6% 1% 3% 2% 0% 0% 0% 0% 5: 2% 0% 3% 1% 0% 0% 0% 0% 6: 1% 0% 2% 0% 0% 0% 0% 0% 7: 1% 0% 1% 0% 0% 0% 0% 0% 8: 1% 0% 1% 0% 0% 0% 0% 0% 9: 1% 0% 1% 0% 1% 0% 1% 0% 10: 1% 0% 0% 0% 1% 0% 1% 0% 11: 0% 0% 0% 0% 0% 0% 0% 0% 12: 0% 0% 0% 0% 0% 0% 0% 0% 13: 0% 0% 0% 0% 0% 0% 0% 0% 14: 0% 0% 0% 0% 0% 0% 0% 0% 15: 0% 0% 0% 0% 0% 0% 0% 0% 16: 0% 0% 0% 0% 0% 0% 0% 0% 17: 0% 0% 0% 0% 0% 0% 0% 0% 18: 0% 0% 0% 0% 0% 0% 0% 0% 19: 0% 0% 0% 0% 0% 0% 0% 0% 20: 0% 0% 0% 0% 0% 0% 0% 0% 21: 0% 0% 0% 0% 0% 0% 0% 0% 22: 0% 0% 0% 0% 0% 0% 0% 0% 23: 0% 0% 0% 0% 0% 0% 0% 0% 24: 0% 0% 1% 0% 0% 0% 0% 0% 25: 0% 0% 1% 0% 0% 0% 0% 0% 26: 0% 0% 1% 0% 0% 0% 0% 0% 27: 0% 0% 1% 0% 0% 0% 0% 0% 28: 1% 0% 2% 1% 0% 0% 0% 0% 29: 3% 0% 2% 2% 0% 0% 0% 0% 30: 7% 1% 3% 2% 0% 0% 0% 0% 31: 10% 2% 4% 3% 0% 0% 0% 0% 32: 10% 3% 4% 4% 0% 0% 0% 0% 33: 6% 6% 5% 5% 0% 0% 0% 0% 34: 5% 5% 4% 4% 0% 0% 0% 0% 35: 5% 8% 6% 3% 0% 0% 0% 0% 36: 5% 10% 6% 4% 0% 0% 0% 0% 37: 5% 9% 5% 3% 0% 0% 0% 0% 38: 3% 8% 5% 5% 0% 0% 0% 0% 39: 2% 5% 5% 5% 0% 0% 0% 0% 40: 1% 4% 4% 5% 0% 1% 0% 1% 41: 1% 3% 2% 5% 0% 1% 0% 1% 42: 0% 1% 1% 4% 0% 0% 0% 0% 43: 0% 2% 0% 4% 1% 1% 1% 1% 44: 0% 1% 0% 3% 1% 1% 1% 1% 45: 0% 1% 0% 1% 0% 1% 0% 1% 46: 0% 1% 0% 1% 1% 1% 1% 1% 47: 0% 1% 0% 0% 1% 1% 1% 1% 48: 0% 1% 0% 0% 1% 1% 1% 1% 50: 0% 0% 0% 1% 1% 1% 1% 1% 50: 0% 1% 1% 1% 1% 1% 51: 0% 0% 2% 1% 2% 1% 52: 0% 1% 2% 1% 2% 1% 53: 0% 0% 4% 2% 4% 2% 54: 0% 2% 2% 2% 2% 55: 0% 2% 2% 2% 2% 56: 0% 2% 3% 2% 3% 57: 0% 2% 4% 2% 4% 58: 4% 6% 4% 6% 59: 3% 3% 3% 3% 60: 5% 5% 5% 5% 61: 5% 7% 5% 7% 62: 3% 5% 3% 5% 63: 4% 3% 4% 3% 64: 5% 2% 5% 2% 65: 3% 2% 2% 2% 66: 5% 1% 5% 1% 67: 1% 0% 1% 0% 68: 1% 0% 1% 0% 69: 0% 1% 0% 1% 70: 0% 0% 0% 0% 71: 0% 0% 0% 0% 72: 0% 0% 0% 0% 73: 0% 1% 0% 1% 74: 0% 0% 0% 0% 75: 0% 0% 0% 0% 76: 0% 1% 0% 1% 77: 0% 0% 0% 0% 78: 0% 0% 0% 0% 79: 0% 0% 0% 0% 80: 0% 0% 0% 1% 81: 0% 0% 0% 0% 82: 0% 0% 0% 0% 83: 0% 0% 0% 0% 84: 0% 0% 0% 0% 85: 1% 1% 86: 0% 0% 87: 1% 1% 88: 1% 1% 89: 0% 0%
Your "true" histogram is low frequency. Your noise is high frequency. Low-pass filtering the data with an appropriate bandwidth filter will get rid of most of the noise.
Here's an algoithm: Smooth your data set by calculating a moving average for a small window. Test your smoothed data for local minima (i.e. any single datum that it is smaller than its neighbours. If there are more than two local minima, increase the window size, and goto step 1. Update: Having looked at the sample data you posted, I've realised that you need to detect minimal plateaus rather than just individual points, so step two in the algorithm should be tweaked to identify a point as part of a minimum if there are no neighbours with smaller values between the nearest higher value neighbours on either side. Then when counting minima in step 3, a minimal plateau should count as a single minimum. I've tested this algorithm on your example datasets and it performs well, picking minima at: 18, 12, 15, 13, 23, 20, 23and20 for your datasets respectively.
a possible heuristic: using spline approximation to smooth the histogram, and make it polynomical-like and then look for a local minimum. note that this is only a heuristic solution and might fail... but I think will provide a good solution for most cases.
This actually sounds rather like histogram-based image segmentation to me (although this is not an image, so it's really just histogram segmentation). Sounds weird, but bear with me. Is what's important about the minimum the fact that it's a minimum, or that it divides the small maximum from the large maximum? If it's the fact that it divides the maxima, then segmentation is definitely what you want. Have a look at K-means clustering. You'd have two clusters. It's not a terribly complicated procedure, but Wikipedia (and other sources) do a much better job of explaining it than i could, so i'll leave it to them.