Randomized Algorithm - algorithm

I'm having trouble with a randomized problem. :)
A, a randomized algorithm, determines whether an input x is a prime number.
This algorithm works the following way:
1- If x is prime, then A outputs YES
2- If x is not prime, then A outputs NO with the probability 3/4.
At least how many times should we run A, if we want to have the algorithm A output NO with the probability at least 1- (1/k)?
Note: One NO answer implies that a given input x is not prime.
Any idea?

If a number x is not a prime, the probability to yield 'yes' in n repeats of the algorithm is (1/4)^n = 4^(-n) = 2^(-2n).
So, if you want to achieve 1-(1/k), you are actually looking for False Positive with probability of at most 1/k, and from the above we want:
2^(-2n) <= 1/k //log_2 on both sides:
-2n <= log(1/k) = log(1)-log(k) = 0 - log(k)
2n >= log(k)
n >= log(k)/2
So you want to chose the smallest integer n possible such that n >= log(k)/2, to guarantee True Negative with probability of 1-1/k.
(Note: All log() are with base 2).
Example:
If you want to be correct 99% of the time, you actually are looking for 1-1/k=0.99, so 1/k=1/100 and k=100.
Now, according to the above formula, note that log_2(100) ~= 6.64, and thus the smallest n such that n >= log_2(100)/2 is n==4.
Meaning, you need to repeat the algorithm 4 times to achieve 99%.
Let's check this is correct:
First check that the probability is indeed greater than 99%: 1-(1/4)^4 = 1-(1/256) ~= 0.996 >= 0.99, so the probability is fine.
Check that for a smaller integer (n==3), we would have got worse than 99% correct answer: 1-(1/4)^3 = 1-1/64 ~= 0.984 < 0.99 - so we would have failed for n==3.

Related

Count "cool" divisors of given number N

I'm trying to solve pretty complex problem with divisors and number theory.
Namely for a given number m we can say that k is cool divisor if k<m k|m (k divides m evenly), and for a given number n the number k^n (k to the power of n) is not divisor of m. Let s(x) - number of cool divisors of x.
Now for given a and b we should find D = s(a) + s(a+1) + s(a+2) + s(a+3) + ... + s(a+b).
Limits for all values:
(1 <= a <= 10^6), (1 <= b <= 10^7), (2<=n<=10)
Example
Let's say a=32, b=1, n=3;
x = 32, n = 3 divisors of 32 are {1,2,4,8,16,32}. However only {4,8,16} fill the conditions so s(32) = 3
x = 33, n = 3 divisors of 33 are {1,3,11,33}. Only the numbers {3,11} fill the conditions so s(33)=2;
D = s(32) + s(33) = 3 + 2 = 5
What I have tried
We should answer all those questions for 100 test cases in 3 seconds time limit.
I have two ideas, the first one: I iterate in the interval [a, a+b] and for each value i in the range I check how many cool divisors are there for that value, we can check this in O(sqrt(N)) if the function for getting number of power of N is considered as O(1) so the total function for this is O(B*sqrt(B)).
The second one, I'm now sure if it will work and how fast it will be. First I do a precomputation, I have a for loop that iterates from 1 to N, where N = 10^7
and now in the range [2, N] for each number whose divisor is i, where i is in the range [2,N] and I check if i to the power of n is not divisor of j then we update that the number j has one more cool divisor. With this I think that the complexity will be O(NlogN) and for the answers O(B).
Your first idea works but you can improve it.
Instead of checking all numbers from 1 to sqrt(N) whether they are cool divisors, you can factorize N=*p0^q0*p1^q1*p2^q2...pk^qk*. Then the number of cool divisors should then be (q0+1)(q1+1)...(qk+1) - (q0/n+1)(q1/n+1)...(qk/n+1).
So you can first preprocess and find out all the prime numbers using some existing algo like Sieve of Eratosthenes and for each number N between [a,a+b] you do a factorization. The complexity should be roughly O(BlogB).
Your second idea works as well.
For each number i between [2,a+b], you can just check the multiples of i between [a,a+b] and see whether i is a cool divisor of those multiples. The complexity should be O(BlogB) as well. Some tricks can be played in this idea to speed up the program is that, once you don't need to use divide/mod operations from time to time to check whether i is a cool divisor. You can compute the first number m between [a, a+b] that i^n|m. This m should be m=ceiling(a/(i^n))(i^n). And then you know i^n|m+p*i does not hold for p between [1,i^(n-1) - 1] and holds for p=i^n-1. Basically, you know i is not a cool divisor every i^(n-1) multiples, and you do not need to use divide/mod to figure it out, which will speed the program up.

Is this number a power of two?

I have a number (in base 10) represented as a string with up to 10^6 digits. I want to check if this number is a power of two. One thing I can think of is binary search on exponents and using FFT and fast exponentiation algorithm, but it is quite long and complex to code. Let n denote the length of the input (i.e., the number of decimal digits in the input). What's the most efficient algorithm for solving this problem, as a function of n?
There are either two or three powers of 2 for any given size of a decimal number, and it is easy to guess what they are, since the size of the decimal number is a good approximation of its base 10 logarithm, and you can compute the base 2 logarithm by just multiplying by an appropriate constant (log210). So a binary search would be inefficient and unnecessary.
Once you have a trial exponent, which will be on the order of three million, you can use the squaring exponentiation algorithm with about 22 bugnum decimal multiplications. (And up to 21 doublings, but those are relatively easy.)
Depending on how often you do this check, you might want to invest in fast bignum code. But if it is infrequent, simple multiplication should be ok.
If you don't expect the numbers to be powers of 2, you could first do a quick computation mod 109 to see if the last 9 digits match. That will eliminate all but a tiny percentage of random numbers. Or, for an even faster but slightly weaker filter, using 64-bit arithmetic check that the last 20 digits are divisible by 220 and not by 10.
Here is an easy probabilistic solution.
Say your number is n, and we want to find k: n = 2^k. Obviously, k = log2(n) = log10(n) * log2(10). We can estimate log10(n) ~ len(n) and find k' = len(n) * log2(10) with a small error (say, |k - k'| <= 5, I didn't check but this should be enough). Probably you'll need this part in any solutions that can come in mind, it was mentioned in other answers as well.
Now let's check that n = 2^k for some known k. Select a random prime number P with from 2 to k^2. If remainders are not equal that k is definitely not a match. But what if they are equal? I claim that false positive rate is bounded by 2 log(k)/k.
Why it is so? Because if n = 2^k (mod P) then P divides D = n-2^k. The number D has length about k (because n and 2^k has similar magnitude due to the first part) and thus cannot have more than k distinct prime divisors. There are around k^2 / log(k^2) primes less than k^2, so a probability that you've picked a prime divisor of D at random is less than k / (k^2 / log(k^2)) = 2 log(k) / k.
In practice, primes up to 10^9 (or even up to log(n)) should suffice, but you have to do a bit deeper analysis to prove the probability.
This solution does not require any long arithmetics at all, all calculations could be made in 64-bit integers.
P.S. In order to select a random prime from 1 to T you may use the following logic: select a random number from 1 to T and increment it by one until it is prime. In this case the distribution on primes is not uniform and the former analysis is not completely correct, but it can be adapted to such kind of random as well.
i am not sure if its easy to apply, but i would do it in the following way:
1) show the number in binary. now if the number is a power of two, it would look like:
1000000....
with only one 1 and the rest are 0. checking this number would be easy. now the question is how is the number stored. for example, it could have leading zeroes that will harden the search for the 1:
...000010000....
if there are only small number of leading zeroes, just search from left to right. if the number of zeroes is unknown, we will have to...
2) binary search for the 1:
2a) cut in the middle.
2b) if both or neither of them are 0 (hopefully you can check if a number is zero in reasonable time), stop and return false. (false = not power of 2)
else continue with the non-zero part.
stop if the non-zero part = 1 and return true.
estimation: if the number is n digits (decimal), then its 2^n digits binary.
binary search takes O(log t), and since t = 2^n, log t = n. therefore the algorithm should take O(n).
assumptions:
1) you can access the binary view of the number.
2) you can compare a number to zero in a reasonable time.

Find prime factors such that difference is smallest as possible

Suppose n, a, b are positive integers where n is not a prime number, such that n=ab with a≥b and (a−b) is small as possible. What would be the best algorithm to find the values of a and b if n is given?
I read a solution where they try to represent n as the difference between two squares via searching for a square S bigger than n such that S - n = (another square). Why would that be better than simply finding the prime factors of n and searching for the combination where a,b are factors of n and a - b is minimized?
Firstly....to answer why your approach
simply finding the prime factors of n and searching for the combination where a,b are factors of n and a - b is minimized
is not optimal:
Suppose your number is n = 2^7 * 3^4 * 5^2 * 7 * 11 * 13 (=259459200), well within range of int. From the combinatorics theory, this number has exactly (8 * 5 * 3 * 2 * 2 * 2 = 960) factors. So, firstly you find all of these 960 factors, then find all pairs (a,b) such that a * b = n, which in this case will be (6C1 + 9C2 + 11C3 + 13C4 + 14C5 + 15C6 + 16C7 + 16C8) ways. (if I'm not wrong, my combinatorics is a bit weak). This is of the order 1e5 if implemented optimally. Also, implementation of this approach is hard.
Now, why the difference of squares approach
represent S - n = Q, such that S and Q are perfect squares
is good:
This is because if you can represent S - n = Q, this implies, n = S - Q
=> n = s^2 - q^2
=> n = (s+q)(s-q)
=> Your reqd ans = 2 * q
Now, even if you iterate for all squares, you will either find your answer or terminate when difference of 2 consecutive squares is greater than n
But I don't think this will be doable for all n (eg. if n=6, there is no solution for (S,Q).)
Another approach:
Iterate from floor(sqrt(n)) to 1. The first number (say, x), such that x|n will be one of the numbers in the required pair (a,b). Other will be, obvs, y = x/n. So, your answer will be y - x.
This is O(sqrt(n)) time complex algorithm.
A general method could be this:
Find the prime factorization of your number: n = Π pi ai. Except for the worst cases where n is prime or semiprime, this will be substantially faster than O(n1/2) time of the iteration down from the square root, which won't divide the found factors out of the number.
Recall that the simplest, trial division, prime factorization is done by repeatedly trying to divide the number by increasing odd numbers (or by primes) below the number's square root, dividing out of the number each factor -- thus prime by construction -- as it is found (n := n/f).
Then, lazily enumerate the factors of n in order from its prime factorization. Stop after producing half of them. Having thus found n's (not necessarily prime) factor that is closest to its square root, find the second factor by simple division.
In case this must repeatedly run many times, it will greatly pay out to precalculate the needed primes below the n's square root, to use in the factorizations.

Is there a polynomial time algorithm to test whether a number exponent of some number?

Just study the famous paper PRIMES is in P and get confused.
First step of the proposed algorithm is If (n=a^b for nature number a and b>1), output COMPOSITE. Since the whole algorithm runs in polynomial time, this step must also complete in O((log n)^c)(given input size is O(log n). However, I can't figure out any algorithm to hit the target after some googling.
QUESTION:
Is there any algorithm available to test whether a number exponent of some other number in polynomial time?
Thanks and Best Regards!
If n=a^b (for a > 1) then b ≤ log2 n, we can check for all b's smaller than log n to test this, we can iterate for finding b from 2 to log n, and for finding a we should do binary search between 1..sqrt(n). But binary search takes O(logn) time for iteration, finally in each step of search(for any found a for checking) we should check that whether ab == n and this takes O(log n), so total search time will be O(log3n). may be there is a faster way but by knowing that AKS is O(log6n) this O(log3n) doesn't harm anything.
A number n is a perfect power if there exists b and e for which b^e = n. For instance 216 = 6^3 = 2^3 * 3^3 is a perfect power, but 72 = 2^3 * 3^2 is not. The trick to determining if a number is a perfect power is to know that, if the number is a perfect power, then the exponent e must be less than log2 n, because if e is greater then 2^e will be greater than n. Further, it is only necessary to test prime e, because if a number is a perfect power to a composite exponent it will also be a perfect power to the prime factors of the composite component; for instance, 2^15 = 32768 = 32^3 = 8^5 is a perfect cube root and also a perfect fifth root. Thus, the algorithm is to make a list of primes less than log2 n and test each one. Since log2 n is small, and the list of primes is even smaller, this isn't much work, even for large n.
You can see an implementation here.
public boolean isPerfectPower(int a) {
if(a == 1) return true;
for(int i = 2; i <= (int)Math.sqrt(a); i++){
double pow = Math.log10(a)/Math.log10(i);
if(pow == Math.floor(pow) && pow > 1) return true;
}
return false;
}

Calculating sum of geometric series (mod m)

I have a series
S = i^(m) + i^(2m) + ............... + i^(km) (mod m)
0 <= i < m, k may be very large (up to 100,000,000), m <= 300000
I want to find the sum. I cannot apply the Geometric Progression (GP) formula because then result will have denominator and then I will have to find modular inverse which may not exist (if the denominator and m are not coprime).
So I made an alternate algorithm making an assumption that these powers will make a cycle of length much smaller than k (because it is a modular equation and so I would obtain something like 2,7,9,1,2,7,9,1....) and that cycle will repeat in the above series. So instead of iterating from 0 to k, I would just find the sum of numbers in a cycle and then calculate the number of cycles in the above series and multiply them. So I first found i^m (mod m) and then multiplied this number again and again taking modulo at each step until I reached the first element again.
But when I actually coded the algorithm, for some values of i, I got cycles which were of very large size. And hence took a large amount of time before terminating and hence my assumption is incorrect.
So is there any other pattern we can find out? (Basically I don't want to iterate over k.)
So please give me an idea of an efficient algorithm to find the sum.
This is the algorithm for a similar problem I encountered
You probably know that one can calculate the power of a number in logarithmic time. You can also do so for calculating the sum of the geometric series. Since it holds that
1 + a + a^2 + ... + a^(2*n+1) = (1 + a) * (1 + (a^2) + (a^2)^2 + ... + (a^2)^n),
you can recursively calculate the geometric series on the right hand to get the result.
This way you do not need division, so you can take the remainder of the sum (and of intermediate results) modulo any number you want.
As you've noted, doing the calculation for an arbitrary modulus m is difficult because many values might not have a multiplicative inverse mod m. However, if you can solve it for a carefully selected set of alternate moduli, you can combine them to obtain a solution mod m.
Factor m into p_1, p_2, p_3 ... p_n such that each p_i is a power of a distinct prime
Since each p is a distinct prime power, they are pairwise coprime. If we can calculate the sum of the series with respect to each modulus p_i, we can use the Chinese Remainder Theorem to reassemble them into a solution mod m.
For each prime power modulus, there are two trivial special cases:
If i^m is congruent to 0 mod p_i, the sum is trivially 0.
If i^m is congruent to 1 mod p_i, then the sum is congruent to k mod p_i.
For other values, one can apply the usual formula for the sum of a geometric sequence:
S = sum(j=0 to k, (i^m)^j) = ((i^m)^(k+1) - 1) / (i^m - 1)
TODO: Prove that (i^m - 1) is coprime to p_i or find an alternate solution for when they have a nontrivial GCD. Hopefully the fact that p_i is a prime power and also a divisor of m will be of some use... If p_i is a divisor of i. the condition holds. If p_i is prime (as opposed to a prime power), then either the special case i^m = 1 applies, or (i^m - 1) has a multiplicative inverse.
If the geometric sum formula isn't usable for some p_i, you could rearrange the calculation so you only need to iterate from 1 to p_i instead of 1 to k, taking advantage of the fact that the terms repeat with a period no longer than p_i.
(Since your series doesn't contain a j=0 term, the value you want is actually S-1.)
This yields a set of congruences mod p_i, which satisfy the requirements of the CRT.
The procedure for combining them into a solution mod m is described in the above link, so I won't repeat it here.
This can be done via the method of repeated squaring, which is O(log(k)) time, or O(log(k)log(m)) time, if you consider m a variable.
In general, a[n]=1+b+b^2+... b^(n-1) mod m can be computed by noting that:
a[j+k]==b^{j}a[k]+a[j]
a[2n]==(b^n+1)a[n]
The second just being the corollary for the first.
In your case, b=i^m can be computed in O(log m) time.
The following Python code implements this:
def geometric(n,b,m):
T=1
e=b%m
total = 0
while n>0:
if n&1==1:
total = (e*total + T)%m
T = ((e+1)*T)%m
e = (e*e)%m
n = n/2
//print '{} {} {}'.format(total,T,e)
return total
This bit of magic has a mathematical reason - the operation on pairs defined as
(a,r)#(b,s)=(ab,as+r)
is associative, and the rule 1 basically means that:
(b,1)#(b,1)#... n times ... #(b,1)=(b^n,1+b+b^2+...+b^(n-1))
Repeated squaring always works when operations are associative. In this case, the # operator is O(log(m)) time, so repeated squaring takes O(log(n)log(m)).
One way to look at this is that the matrix exponentiation:
[[b,1],[0,1]]^n == [[b^n,1+b+...+b^(n-1))],[0,1]]
You can use a similar method to compute (a^n-b^n)/(a-b) modulo m because matrix exponentiation gives:
[[b,1],[0,a]]^n == [[b^n,a^(n-1)+a^(n-2)b+...+ab^(n-2)+b^(n-1)],[0,a^n]]
Based on the approach of #braindoper a complete algorithm which calculates
1 + a + a^2 + ... +a^n mod m
looks like this in Mathematica:
geometricSeriesMod[a_, n_, m_] :=
Module[ {q = a, exp = n, factor = 1, sum = 0, temp},
While[And[exp > 0, q != 0],
If[EvenQ[exp],
temp = Mod[factor*PowerMod[q, exp, m], m];
sum = Mod[sum + temp, m];
exp--];
factor = Mod[Mod[1 + q, m]*factor, m];
q = Mod[q*q, m];
exp = Floor[ exp /2];
];
Return [Mod[sum + factor, m]]
]
Parameters:
a is the "ratio" of the series. It can be any integer (including zero and negative values).
n is the highest exponent of the series. Allowed are integers >= 0.
mis the integer modulus != 0
Note: The algorithm performs a Mod operation after every arithmetic operation. This is essential, if you transcribe this algorithm to a language with a limited word length for integers.

Resources