Stored procedure hangs occasionally - performance

I have a stored procedure in Oracle 11g that hangs time by time. When this happens I can't recompile it either and the only option I have is to kill SQL Developer process. I agree that the procedure does scan tons of records across different tables, views and materialized views but when there's no such problem it only takes 1-2 seconds to return the result set. I've tried killing all the sessions and even restarting the database but nothing seems to help. And it just gets fixed by itself. I'm posting the procedure content in case you need to see
create or replace
PROCEDURE SP_STAJ_FOR_AGAPUS(
V_SSN IN NUMBER,
V_WEYEARNEW OUT NUMBER,
V_WEMONTHNEW OUT NUMBER,
V_WEDAYNEW OUT NUMBER,
V_LS_YEAR OUT NUMBER,
V_LS_MONTH OUT NUMBER)
AS
BEGIN
SELECT NVL(TRUNC(MDC.DAY_COUNT / 360),0) WEYEARNEW, NVL(TRUNC(MOD(MDC.DAY_COUNT,360) / 30),0)
WEMONTHNEW, NVL(MOD(MOD( MDC.DAY_COUNT,360),30),0) WEDAYNEW,NVL(LS.LS_YEAR,0)LS_YEAR,NVL(
LS.LS_MONTH,0)LS_MONTH
INTO V_WEYEARNEW,V_WEMONTHNEW,V_WEDAYNEW,V_LS_YEAR,V_LS_MONTH
FROM SSPF_CENTRE.PERSONS PER
LEFT JOIN
( SELECT SSN, SUM(DAY_COUNT) DAY_COUNT FROM
( SELECT SSN, YEAR, AG.CHECK_PERIOD_MDSS(SSN,YEAR) DAY_COUNT FROM
( SELECT SSN, YEAR FROM SSPF_CENTRE.PERSON_ACCOUNTS GROUP BY SSN,YEAR
UNION ALL
SELECT SSN, SPECIAL_YEAR YEAR
FROM SSPF_CENTRE.person_accounts_06
GROUP BY SSN,SPECIAL_YEAR
UNION ALL SELECT
P.COMMON_SSN, PA.YEAR FROM SSPF_CENTRE.PERSON_ACCOUNTS PA, SSPF_CENTRE.PERSONS P
WHERE
--COMMON_SSN = V_SSN AND
PA.SSN = P.SSN(+) AND P.COMMON_SSN <> P.SSN GROUP BY P.COMMON_SSN,PA.YEAR
) GROUP BY SSN,YEAR
) GROUP BY SSN
) MDC ON PER.SSN=MDC.SSN
LEFT JOIN
( SELECT SSN, AG.CALCULATE_YEAR(LS_DAYS) LS_YEAR, AG.CALCULATE_MONTH( LS_DAYS) LS_MONTH FROM
( SELECT SSN, GET_DAYS(SSN) LS_DAYS FROM MAT_SERVICE_NEW GROUP BY SSN
)
) LS ON PER.SSN=LS.SSN
WHERE PER.SSN=V_SSN;
EXCEPTION
WHEN NO_DATA_FOUND THEN
BEGIN
V_WEYEARNEW:=0;
V_WEMONTHNEW:=0;
V_WEDAYNEW:=0;
V_LS_YEAR:=0;
V_LS_MONTH:=0;
END;
END SP_STAJ_FOR_AGAPUS;

This sort of thing can be hard to diagnose even when we're sitting at the server with access to all the tools. Remotely is virtually impossible.
But here are a couple of observations:
in Oracle writers don't block readers. So this is not a locking problem (except, see next point). But perhaps there is something other transaction occurring simultaneously which sucks up all the system resource? You'd need access to V$SESSION at the very least to tell that, and preferably OEM.
You appear to have a couple of functions in your query (AG.CALCULATE_YEAR, GET_DATES, etc). Now they shouldn't be writing database state, but itr would be worthwhile looking at what they do do, in case they have a dependency of particular resources.

Related

Is there a hint to generate execution plan ignoring the existing one from shared pool?

Is there a hint to generate execution plan ignoring the existing one from the shared pool?
There is not a hint to create an execution plan that ignores plans in the shared pool. A more common way of phrasing this question is: how do I get Oracle to always perform a hard parse?
There are a few weird situations where this behavior is required. It would be helpful to fully explain your reason for needing this, as the solution varies depending why you need it.
Strange performance problem. Oracle performs some dynamic re-optimization of SQL statements after the first run, like adaptive cursor sharing and cardinality feedback. In the rare case when those features backfire you might want to disable them.
Dynamic query. You have a dynamic query that used Oracle data cartridge to fetch data in the parse step, but Oracle won't execute the parse step because the query looks static to Oracle.
Misunderstanding. Something has gone wrong and this is an XY problem.
Solutions
The simplest way to solve this problem are by using Thorsten Kettner's solution of changing the query each time.
If that's not an option, the second simplest solution is to flush the query from the shared pool, like this:
--This only works one node at a time.
begin
for statements in
(
select distinct address, hash_value
from gv$sql
where sql_id = '33t9pk44udr4x'
order by 1,2
) loop
sys.dbms_shared_pool.purge(statements.address||','||statements.hash_value, 'C');
end loop;
end;
/
If you have no control over the SQL, and need to fix the problem using a side-effect style solution, Jonathan Lewis and Randolf Geist have a solution using Virtual Private Database, that adds a unique predicate to each SQL statement on a specific table. You asked for something weird, here's a weird solution. Buckle up.
-- Create a random predicate for each query on a specific table.
create table hard_parse_test_rand as
select * from all_objects
where rownum <= 1000;
begin
dbms_stats.gather_table_stats(null, 'hard_parse_test_rand');
end;
/
create or replace package pkg_rls_force_hard_parse_rand is
function force_hard_parse (in_schema varchar2, in_object varchar2) return varchar2;
end pkg_rls_force_hard_parse_rand;
/
create or replace package body pkg_rls_force_hard_parse_rand is
function force_hard_parse (in_schema varchar2, in_object varchar2) return varchar2
is
s_predicate varchar2(100);
n_random pls_integer;
begin
n_random := round(dbms_random.value(1, 1000000));
-- s_predicate := '1 = 1';
s_predicate := to_char(n_random, 'TM') || ' = ' || to_char(n_random, 'TM');
-- s_predicate := 'object_type = ''TABLE''';
return s_predicate;
end force_hard_parse;
end pkg_rls_force_hard_parse_rand;
/
begin
DBMS_RLS.ADD_POLICY (USER, 'hard_parse_test_rand', 'hard_parse_policy', USER, 'pkg_rls_force_hard_parse_rand.force_hard_parse', 'select');
end;
/
alter system flush shared_pool;
You can see the hard-parsing in action by running the same query multiple times:
select * from hard_parse_test_rand;
select * from hard_parse_test_rand;
select * from hard_parse_test_rand;
select * from hard_parse_test_rand;
Now there are three entries in GV$SQL for each execution. There's some odd behavior in Virtual Private Database that parses the query multiple times, even though the final text looks the same.
select *
from gv$sql
where sql_text like '%hard_parse_test_rand%'
and sql_text not like '%quine%'
order by 1;
I think there is no hint indicating that Oracle shall find a new execution plan everytime it runs the query.
This is something we'd want for select * from mytable where is_active = :active, with is_active being 1 for very few rows and 0 for maybe billions of other rows. We'd want an index access for :active = 1 and a full table scan for :active = 0 then. Two different plans.
As far as I know, Oracle uses bind variable peeking in later versions, so with a look at the statistics it really comes up with different execution plans for different bind varibale content. But in older versions it did not, and thus we'd want some hint saying "make a new plan" there.
Oracle only re-used an execution plan for exactly the same query. It sufficed to add a mere blank to get a new plan. Hence a solution might be to generate the query everytime you want to run it with a random number included in a comment:
select /* 1234567 */ * from mytable where is_active = :active;
Or just don't use bind variables, if this is the problem you want to address:
select * from mytable where is_active = 0;
select * from mytable where is_active = 1;

optimizing a dup delete statement Oracle

I have 2 delete statements that are taking a long time to complete. There are several indexes on the columns in where clause.
What is a duplicate?
If 2 or more records have same values in columns id,cid,type,trefid,ordrefid,amount and paydt then there are duplicates.
The DELETEs delete about 1 million record.
Can they be re-written in any way to make it quicker.
DELETE FROM TABLE1 A WHERE loaddt < (
SELECT max(loaddt) FROM TABLE1 B
WHERE
a.id=b.id and
a.cid=b.cid and
NVL(a.type,'-99999') = NVL(b.type,'-99999') and
NVL(a.trefid,'-99999')=NVL(b.trefid,'-99999') and
NVL(a.ordrefid,'-99999')= NVL(b.ordrefid,'-99999') and
NVL(a.amount,'-99999')=NVL(b.amount,'-99999') and
NVL(a.paydt,TO_DATE('9999-12-31','YYYY-MM-DD'))=NVL(b.paydt,TO_DATE('9999-12-31','YYYY-MM-DD'))
);
COMMIT;
DELETE FROM TABLE1 a where rowid > (
Select min(rowid) from TABLE1 b
WHERE
a.id=b.id and
a.cid=b.cid and
NVL(a.type,'-99999') = NVL(b.type,'-99999') and
NVL(a.trefid,'-99999')=NVL(b.trefid,'-99999') and
NVL(a.ordrefid,'-99999')= NVL(b.ordrefid,'-99999') and
NVL(a.amount,'-99999')=NVL(b.amount,'-99999') and
NVL(a.paydt,TO_DATE('9999-12-31','YYYY-MM-DD'))=NVL(b.paydt,TO_DATE('9999-12-31','YYYY-MM-DD'))
);
commit;
Explain Plan:
DELETE TABLE1
HASH JOIN 1296491
Access Predicates
AND
A.ID=ITEM_1
A.CID=ITEM_2
ITEM_3=NVL(TYPE,'-99999')
ITEM_4=NVL(TREFID,'-99999')
ITEM_5=NVL(ORDREFID,'-99999')
ITEM_6=NVL(AMOUNT,(-99999))
ITEM_7=NVL(PAYDT,TO_DATE(' 9999-12-31 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))
Filter Predicates
LOADDT<MAX(LOADDT)
TABLE ACCESS TABLE1 FULL 267904
VIEW VW_SQ_1 690385
SORT GROUP BY 690385
TABLE ACCESS TABLE1 FULL 267904
How large is the table? If count of deleted rows is up to 12% then you may think about index.
Could you somehow partition your table - like week by week and then scan only actual week?
Maybe this could be more effecient. When you're using aggregate function, then oracle must walk through all relevant rows (in your case fullscan), but when you use exists it stops when the first occurence is found. (and of course the query would be much faster, when there was one function-based(because of NVL) index on all columns in where clause)
DELETE FROM TABLE1 A
WHERE exists (
SELECT 1
FROM TABLE1 B
WHERE
A.loaddt != b.loaddt
a.id=b.id and
a.cid=b.cid and
NVL(a.type,'-99999') = NVL(b.type,'-99999') and
NVL(a.trefid,'-99999')=NVL(b.trefid,'-99999') and
NVL(a.ordrefid,'-99999')= NVL(b.ordrefid,'-99999') and
NVL(a.amount,'-99999')=NVL(b.amount,'-99999') and
NVL(a.paydt,TO_DATE('9999-12-31','YYYY-MM-DD'))=NVL(b.paydt,TO_DATE('9999-12-31','YYYY-MM-DD'))
);
Although some may disagree, I am a proponent of running large, long running deletes procedurally. In my view it is much easier to control and track progress (and your DBA will like you better ;-) Also, not sure why you need to join table1 to itself to identify duplicates (and I'd be curious if you ever run into snapshot too old issues with your current approach). You also shouldn't need multiple delete statements, all duplicates should be handled in one process. Finally, you should check WHY you're constantly re-introducing duplicates each week, and perhaps change the load process (maybe doing a merge/upsert rather than all inserts).
That said, you might try something like:
-- first create mat view to find all duplicates
create materialized view my_dups_mv
tablespace my_tablespace
build immediate
refresh complete on demand
as
select id,cid,type,trefid,ordrefid,amount,paydt, count(1) as cnt
from table1
group by id,cid,type,trefid,ordrefid,amount,paydt
having count(1) > 1;
-- dedup data (or put into procedure and schedule along with mat view refresh above)
declare
-- make sure my_dups_mv is refreshed first
cursor dup_cur is
select * from my_dups_mv;
type duprec_t is record(row_id rowid);
duprec duprec_t;
type duptab_t is table of duprec_t index by pls_integer;
duptab duptab_t;
l_ctr pls_integer := 0;
l_dupcnt pls_integer := 0;
begin
for rec in dup_cur
loop
l_ctr := l_ctr + 1;
-- assuming needed indexes exist
select rowid
bulk collect into duptab
from table1
where id = rec.id
and cid = rec.cid
and type = rec.type
and trefid = rec.trefid
and ordrefid = rec.ordrefid
and amount = rec.amount
and paydt = rec.paydt
-- order by whatever makes sense to make the "keeper" float to top
order by loaddt desc
;
for i in 2 .. duptab.count
loop
l_dupcnt := l_dupcnt + 1;
delete from table1 where rowid = duptab(i).row_id;
end loop;
if (mod(l_ctr, 10000) = 0) then
-- log to log table here (calling autonomous procedure you'll need to implement)
insert_logtable('Table1 deletes', 'Commit reached, deleted ' || l_dupcnt || ' rows');
commit;
end if;
end loop;
commit;
end;
Check your log table for progress status.
1. Parallel
alter session enable parallel dml;
DELETE /*+ PARALLEL */ FROM TABLE1 A WHERE loaddt < (
...
Assuming you have Enterprise Edition, a sane server configuration, and you are on 11g. If you're not on 11g, the parallel syntax is slightly different.
2. Reduce memory requirements
The plan shows a hash join, which is probably a good thing. But without any useful filters, Oracle has to hash the entire table. (Tbone's query, that only use a GROUP BY, looks nicer and may run faster. But it will also probably run into the same problem trying to sort or hash the entire table.)
If the hash can't fit in memory it must be written to disk, which can be very slow. Since you run this query every week, only one of the tables needs to look at all the rows. Depending on exactly when it runs, you can add something like this to the end of the query: ) where b.loaddt >= sysdate - 14. This may significantly reduce the amount of writing to temporary tablespace. And it may also reduce read IO if you use some partitioning strategy like jakub.petr suggested.
3. Active Report
If you want to know exactly what your query is doing, run the Active Report:
select dbms_sqltune.report_sql_monitor(sql_id => 'YOUR_SQL_ID_HERE', type => 'active')
from dual;
(Save the output to an .html file and open it with a browser.)

How to? Correct sql syntax for finding the next available identifier

I think I could use some help here from more experienced users...
I have an integer field name in a table, let's call it SO_ID in a table SO, and to each new row I need to calculate a new SO_ID based on the following rules
1) SO_ID consists of 6 letters where first 3 are an area code, and the last three is the sequenced number within this area.
309001
309002
309003
2) so the next new row will have a SO_ID of value
309004
3) if someone deletes the row with SO_ID value = 309002, then the next new row must recycle this value, so the next new row has got to have the SO_ID of value
309002
can anyone please provide me with either a SQL function or PL/SQL (perhaps a trigger straightaway?) function that would return the next available SO_ID I need to use ?
I reckon I could get use of keyword rownum in my sql, but the follwoing just doens't work properly
select max(so_id),max(rownum) from(
select (so_id),rownum,cast(substr(cast(so_id as varchar(6)),4,3) as int) from SO
where length(so_id)=6
and substr(cast(so_id as varchar(6)),1,3)='309'
and cast(substr(cast(so_id as varchar(6)),4,3) as int)=rownum
order by so_id
);
thank you for all your help!
This kind of logic is fraught with peril. What if two sessions calculate the same "next" value, or both try to reuse the same "deleted" value? Since your column is an integer, you'd probably be better off querying "between 309001 and 309999", but that begs the question of what happens when you hit the thousandth item in area 309?
Is it possible to make SO_ID a foreign key to another table as well as a unique key? You could pre-populate the parent table with all valid IDs (or use a function to generate them as needed), and then it would be a simple matter to select the lowest one where a child record doesn't exist.
well, we came up with this... sort of works.. concurrency is 'solved' via unique constraint
select min(lastnumber)
from
(
select so_id,so_id-LAG(so_id, 1, so_id) OVER (ORDER BY so_id) AS diff,LAG(so_id, 1, so_id) OVER (ORDER BY so_id)as lastnumber
from so_miso
where substr(cast(so_id as varchar(6)),1,3)='309'
and length(so_id)=6
order by so_id
)a
where diff>1;
Do you really need to compute & store this value at the time a row is inserted? You would normally be better off storing the area code and a date in a table and computing the SO_ID in a view, i.e.
SELECT area_code ||
LPAD( DENSE_RANK() OVER( PARTITION BY area_code
ORDER BY date_column ),
3,
'0' ) AS so_id,
<<other columns>>
FROM your_table
or having a process that runs periodically (nightly, for example) to assign the SO_ID using similar logic.
If your application is not pure sql, you could do this in application code (ie: Java code). This would be more straightforward.
If you are recycling numbers when rows are deleted, your base table must be consulted when generating the next number. "Legacy" pre-relational schemes that attempt to encode information in numbers are a pain to make airtight when numbers must be recycled after deletes, as you say yours must.
If you want to avoid having to scan your table looking for gaps, an after-delete routine must write the deleted number to a separate table in a "ReuseMe" column. The insert routine does this:
begins trans
selects next-number table for update
uses a reuseme number if available else uses the next number
clears the reuseme number if applicable or increments the next-number in the next-number table
commits trans
Ignoring the issues about concurrency, the following should give a decent start.
If 'traffic' on the table is low enough, go with locking the table in exclusive mode for the duration of the transaction.
create table blah (soc_id number(6));
insert into blah select 309000 + rownum from user_tables;
delete from blah where soc_id = 309003;
commit;
create or replace function get_next (i_soc in number) return number is
v_min number := i_soc* 1000;
v_max number := v_min + 999;
begin
lock table blah in exclusive mode;
select min(rn) into v_min
from
(select rownum rn from dual connect by level <= 999
minus
select to_number(substr(soc_id,4))
from blah
where soc_id between v_min and v_max);
return v_min;
end;

ways to avoid global temp tables in oracle

We just converted our sql server stored procedures to oracle procedures. Sql Server SP's were highly dependent on session tables (INSERT INTO #table1...) these tables got converted as global temporary tables in oracle. We ended up with aroun 500 GTT's for our 400 SP's
Now we are finding out that working with GTT's in oracle is considered a last option because of performance and other issues.
what other alternatives are there? Collections? Cursors?
Our typical use of GTT's is like so:
Insert into GTT
INSERT INTO some_gtt_1
(column_a,
column_b,
column_c)
(SELECT someA,
someB,
someC
FROM TABLE_A
WHERE condition_1 = 'YN756'
AND type_cd = 'P'
AND TO_NUMBER(TO_CHAR(m_date, 'MM')) = '12'
AND (lname LIKE (v_LnameUpper || '%') OR
lname LIKE (v_searchLnameLower || '%'))
AND (e_flag = 'Y' OR
it_flag = 'Y' OR
fit_flag = 'Y'));
Update the GTT
UPDATE some_gtt_1 a
SET column_a = (SELECT b.data_a FROM some_table_b b
WHERE a.column_b = b.data_b AND a.column_c = 'C')
WHERE column_a IS NULL OR column_a = ' ';
and later on get the data out of the GTT. These are just sample queries, in actuality the queries are really complext with lot of joins and subqueries.
I have a three part question:
Can someone show how to transform
the above sample queries to
collections and/or cursors?
Since
with GTT's you can work natively
with SQL...why go away from the
GTTs? are they really that bad.
What should be the guidelines on
When to use and When to avoid GTT's
Let's answer the second question first:
"why go away from the GTTs? are they
really that bad."
A couple of days ago I was knocking up a proof of concept which loaded a largish XML file (~18MB) into an XMLType. Because I didn't want to store the XMLType permanently I tried loading it into a PL/SQL variable (session memory) and a temporary table. Loading it into a temporary table took five times as long as loading it into an XMLType variable (5 seconds compared to 1 second). The difference is because temporary tables are not memory structures: they are written to disk (specifically your nominated temporary tablespace).
If you want to cache a lot of data then storing it in memory will stress the PGA, which is not good if you have lots of sessions. So it's a trade-off between RAM and time.
To the first question:
"Can someone show how to transform the
above sample queries to collections
and/or cursors?"
The queries you post can be merged into a single statement:
SELECT case when a.column_a IS NULL OR a.column_a = ' '
then b.data_a
else column_a end AS someA,
a.someB,
a.someC
FROM TABLE_A a
left outer join TABLE_B b
on ( a.column_b = b.data_b AND a.column_c = 'C' )
WHERE condition_1 = 'YN756'
AND type_cd = 'P'
AND TO_NUMBER(TO_CHAR(m_date, 'MM')) = '12'
AND (lname LIKE (v_LnameUpper || '%') OR
lname LIKE (v_searchLnameLower || '%'))
AND (e_flag = 'Y' OR
it_flag = 'Y' OR
fit_flag = 'Y'));
(I have simply transposed your logic but that case() statement could be replaced with a neater nvl2(trim(a.column_a), a.column_a, b.data_a) ).
I know you say your queries are more complicated but your first port of call should be to consider rewriting them. I know how seductive it is to break a gnarly query into lots of baby SQLs stitched together with PL/SQL but pure SQL is way more efficient.
To use a collection it is best to define the types in SQL, because it gives us the flexibility to use them in SQL statements as well as PL/SQL.
create or replace type tab_a_row as object
(col_a number
, col_b varchar2(23)
, col_c date);
/
create or replace type tab_a_nt as table of tab_a_row;
/
Here's a sample function, which returns a result set:
create or replace function get_table_a
(p_arg in number)
return sys_refcursor
is
tab_a_recs tab_a_nt;
rv sys_refcursor;
begin
select tab_a_row(col_a, col_b, col_c)
bulk collect into tab_a_recs
from table_a
where col_a = p_arg;
for i in tab_a_recs.first()..tab_a_recs.last()
loop
if tab_a_recs(i).col_b is null
then
tab_a_recs(i).col_b := 'something';
end if;
end loop;
open rv for select * from table(tab_a_recs);
return rv;
end;
/
And here it is in action:
SQL> select * from table_a
2 /
COL_A COL_B COL_C
---------- ----------------------- ---------
1 whatever 13-JUN-10
1 12-JUN-10
SQL> var rc refcursor
SQL> exec :rc := get_table_a(1)
PL/SQL procedure successfully completed.
SQL> print rc
COL_A COL_B COL_C
---------- ----------------------- ---------
1 whatever 13-JUN-10
1 something 12-JUN-10
SQL>
In the function it is necessary to instantiate the type with the columns, in order to avoid the ORA-00947 exception. This is not necessary when populating a PL/SQL table type:
SQL> create or replace procedure pop_table_a
2 (p_arg in number)
3 is
4 type table_a_nt is table of table_a%rowtype;
5 tab_a_recs table_a_nt;
6 begin
7 select *
8 bulk collect into tab_a_recs
9 from table_a
10 where col_a = p_arg;
11 end;
12 /
Procedure created.
SQL>
Finally, guidelines
"What should be the guidelines on When
to use and When to avoid GTT's"
Global temp tables are very good when we need share cached data between different program units in the same session. For instance if we have a generic report structure generated by a single function feeding off a GTT which is populated by one of several procedures. (Although even that could also be implemented with dynamic ref cursors ...)
Global temporary tables are also good if we have a lot of intermediate processing which is just too complicated to be solved with a single SQL query. Especially if that processing must be applied to subsets of the retrieved rows.
But in general the presumption should be that we don't need to use a temporary table. So
Do it in SQL unless it is too hard it which case ...
... Do it in PL/SQL variables (usually collections) unless it takes too much memory it which case ...
... Do it with a Global Temporary Table
Generally I'd use a PL/SQL collection for storing small volumes of data (maybe a thousand rows). If the data volumes were much larger, I'd use a GTT so that they don't overload the process memory.
So I might select a few hundred rows from the database into a PL/SQL collection, then loop through them to do some calculation/delete a few or whatever, then insert that collection into another table.
If I was dealing with hundreds of thousands of rows, I would try to push as much of the 'heavy lifting' processing into large SQL statements. That may or may not require GTT.
You can use SQL level collection objects as something that translates quite easily between SQL and PL/SQL
create type typ_car is object (make varchar2(10), model varchar2(20), year number(4));
/
create type typ_coll_car is table of typ_car;
/
select * from table (typ_coll_car(typ_car('a','b',1999), typ_car('A','Z',2000)));
MAKE MODEL YEAR
---------- -------------------- ---------------
a b 1,999.00
A Z 2,000.00
declare
v_car1 typ_car := typ_car('a','b',1999);
v_car2 typ_car := typ_car('A','Z',2000);
t_car typ_coll_car := typ_coll_car();
begin
t_car := typ_coll_car(v_car1, v_car2);
FOR i in (SELECT * from table(t_car)) LOOP
dbms_output.put_line(i.year);
END LOOP;
end;
/

Improving the performance of keeping the three recent records of each account query

I've a table in an Oracle (10g XE) database, and I'm going to clean it up and only keep the three recent records of each account. Here is what I'm doing right now:
CREATE TABLE ACCOUNT_TRANSACTION_TMP NOLOGGING AS SELECT * FROM ACCOUNT_TRANSACTION WHERE 1=2;
DECLARE
CURSOR mbsacc_cur (account_id_var account_transaction.account_id%TYPE) IS
SELECT * FROM account_transaction WHERE account_id = account_id_var ORDER BY transaction_time DESC;
account_transaction_rec account_transaction%ROWTYPE;
BEGIN
FOR i IN (SELECT DISTINCT(account_id) FROM account_transaction) LOOP
OPEN mbsacc_cur(i.account_id);
LOOP
FETCH mbsacc_cur INTO account_transaction_rec;
EXIT WHEN mbsacc_cur%NOTFOUND OR mbsacc_cur%ROWCOUNT > 3;
INSERT /*+ append */ INTO account_transaction_tmp VALUES account_transaction_rec;
END LOOP;
CLOSE mbsacc_cur;
END LOOP;
END;
/
And then I'll drop the old table, rename this new one to old one and add constraints.
But the problem is the above code runs forever (~3-4 hours) for about 1 million record which approximately half of them should be removed.
Is there any way to improve the performance of this?
Instead of creating an empty table and populating in an RBAR fashion create a table with the rows you want....
CREATE TABLE ACCOUNT_TRANSACTION_TMP NOLOGGING AS
SELECT account_id, col1, col2, col3, transaction_time from
( select at.*
, row_number()
over (partition by at.account_id
order by at.transaction_time desc) as to_keep
FROM ACCOUNT_TRANSACTION at)
where to_keep <= 3
/
Then skip straight to the renaming part of your plan.
You can do that with analytics (although I am not at all well versed in it myself). Take a look at this question, which seems to address a situation similar to yours:
http://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:1212501913138

Resources