Glyph to unicode string translation - winapi

Given a glyph index for a specific font, I need to get the unicode translation of the glyph. in order to build a glyph-to-unicode translation I'm using GetGlyphIndices for the whole unicode range and from the result I build the reverse translation (glyph to unicode character map). However, this gives me a translation between a single glyph to a single unicode character, and I can see that in Hindi for example, two unicode characters can be represented by one glyph.
For example, in the word namaste (नमस्ते) there are 6 unicode characters which are represented by 5 glyphs (the middle two unicode characters are represented by one glyph). I can see this by attaching to notepad.exe, inserting a breakpoint in ExtTextOut and printing this word from notepad.
Is there any way I can translate a glyph to a unicode string (in case the glyph represents more than one unicode character)?

1) For all but very simple cases, you should use Uniscribe functions (not GetGlyphIndices) for converting a string (sequence of Unicodes) into glyphs. This is noted in the documentation for GetGlyphIndices: http://msdn.microsoft.com/en-us/library/windows/desktop/dd144890(v=vs.85).aspx
2) There is no way to reliably do what you want to do for all cases. Even for most cases. This is the result of something known as complex script shaping, which translates a sequence of input Unicodes into a sequence of output glyphs. This is done using a number of tables in the font data. The two of most interest are the cmap and the GSUB.
The cmap maps Unicode values to font-specific glyphs. The cmap may specify multiple Unicodes mapping to a single glyph (multi-mapping). This is a commonly-used scheme in many fonts. Also, many glyphs in the font may not even be mapped in the cmap. Thus with this alone, you cannot reliably reverse-map a glyph to a single Unicode.
But it gets even more difficult: the GSUB may specify numerous rules and may convert one input glyph to many output glyphs, or a series of input glyphs into one output glyph. It can even specify contexts under which the conversion will occur (for example, it could say something like "convert 'A' to 'B' but only when the 'A' is preceded by a 'C'", so CA -> CB but DA -> DA). In some cases, specifically with Hindi and other Indic languages, the output glyph sequence may even be in a different order than the logical Unicode input sequence. The net result is that the output sequence of glyphs may map back to a single Unicode, or multiple Unicodes, or none at all. It may be possible to decode the rules of the GSUB + the logic of the script-shaping engine to narrow things down a bit (an adventure not suitable for the weak of spirit!), but the problem is still that multiple input Unicodes could end up resolving to the same output glyph.
Bottom line: it's best to view the process of converting a string -> font-specific glyphs as a one-way trip.
For a better understanding of these concepts, I strongly recommend that you read up on complex script shaping as implemented in Windows: http://www.microsoft.com/typography/otspec/TTOCHAP1.htm . As for coding in an application, the Uniscribe reference is also very informative: http://msdn.microsoft.com/en-us/library/windows/desktop/dd374091(v=vs.85).aspx

Related

What are Unicode codepoint types for?

I recently read the UTF-8 Everywhere manifesto, a document arguing for handling text with UTF-8 by default. The manifesto argues that Unicode codepoints aren't a generally useful concept and shouldn't be directly interacted with outside of programs/libraries specializing in text processing.
However, some modern languages that use the UTF-8 default have built-in codepoint types, such as rune in Go and char in Rust.
What are these types actually useful for? Are they legacy from times before the meaninglessness of codepoints was broadly understood? Or is that an incomplete perspective?
Texts have many different meaning and usages, so the question is difficult to answer.
First: about codepoint. We uses the term codepoint because it is easy, it implies a number (code), and not really confuseable with other terms. Unicode tell us that it doesn't use the term codepoint and character in a consistent way, but also that it is not a problem: context is clear, and they are often interchangeable (but for few codepoints which are not characters, like surrogates, and few reserved codepoints). Note: Unicode is mostly about characters, and ISO 10646 was most about codepoints. So original ISO was about a table with numbers (codepoint) and names, and Unicode about properties of characters. So we may use codepoints where Unicode character should be better, but character is easy confuseable with C char, and with font glyphs/graphemes.
Codepoints are one basic unit, so useful for most of programs, e.g. to store in databases, to exchange to other programs, to save files, for sorting, etc. For this exact reasons program languages uses the codepoint as type. UTF-8 code units may be an alternative, but it would be more difficult to navigate (see a UTF-8 as a tape disk where you should read sequentially, and codepoint text as an hard disk where you can just in middle of a text). Not a 100% appropriate, because you may need some context bytes. If you are getting user text, your program probably do not need to split in graphemes, to do liguatures, etc. if it will just store the data in a database. Codepoint is really low level and so fast for most operations.
The other part of text: displaying (or speech). This part is very complex, because we have many different scripts with very different rules, and then different languages with own special cases. So we needs a series of libraries, e.g. text layout (so word separation, etc. like pango), sharper engine (to find which glyph to use, combining characters, where to put next characters, e.g. HarfBuzz), and a font library which display the font (cairo plus freetype). it is complex, but most programmers do not need special handling: just reading text from database and sent to screen, so we just uses the relevant library (and it depends on operating system), and just going on. It is too complex for a language specification (and also a moving target, maybe in 30 years things are more standardized). So it is complex, and with many operation, so we may use complex structures (array of array of codepoint: so array of graphemes): not much a slow down. Note: fonts have codepoint tables to perform various operation before to find the glyph index. Various API uses Unicode strings (as codepoint array, UTF-16, UTF-8, etc.).
Naturally things are more complex, and it requires a lot of knowledge of different part of Unicode, if you are trying to program an editor (WYSIWYG, but also with terminals): you mix both worlds, and you need much more information (e.g. for selection of text). But in this case you must create your own structures.
And really: things are complex: do you want to just show first x characters on your blog? (maybe about assessment), or split at words (some language are not so linear, so the interpretation may be very wrong). For now just humans can do a good job for all languages, so also not yet need to a supporting type in different languages.
The manifesto argues that Unicode codepoints aren't a generally useful concept and shouldn't be directly interacted with outside of programs/libraries specializing in text processing.
Where? It merely outlines advantages and disadvantages of code points. Two examples are:
Some abstract characters can be encoded by different code points; U+03A9 greek capital letter omega and U+2126 ohm sign both correspond to the same abstract character Ω, and must be treated identically.
Moreover, for some abstract characters, there exist representations using multiple code points, in addition to the single coded character form. The abstract character ǵ can be coded by the single code point U+01F5 latin small letter g with acute, or by the sequence <U+0067 latin small letter g, U+0301 combining acute accent>.
In other words: code points just index which graphemes Unicode supports.
Sometimes they're meant as single characters: one prominent example would be € (EURO SIGN), having only the code point U+20AC.
Sometimes the same character has multiple code-points as per context: the dollar sign exists as:
﹩ = U+FE69 (SMALL DOLLAR SIGN)
$ = U+FF04 (FULLWIDTH DOLLAR SIGN)
💲 = U+1F4B2 (HEAVY DOLLAR SIGN)
Storage wise when searching for one variant you might want to match all 3 variants instead on relying on the exact code point only.
Sometimes multiple code points can be combined to form up a single character:
á = U+00E1 (LATIN SMALL LETTER A WITH ACUTE), also termed "precomposed"
á = combination of U+0061 (LATIN SMALL LETTER A) and U+0301 (COMBINING ACUTE ACCENT) - in a text editor trying to delete á (from the right side) will mostly result in actually deleting the acute accent first. Searching for either variant should find both variants.
Storage wise you avoid to need searching for both variants by performing Unicode normalization, i.e. NFC to always favor precombined code points over two combined code points to form one character.
As for homoglyphs code points clearly distinguish the contextual meaning:
A = U+0041 (LATIN CAPITAL LETTER A)
Α = U+0391 (GREEK CAPITAL LETTER ALPHA)
А = U+0410 (CYRILLIC CAPITAL LETTER A)
Copy the greek or cyrillic character, then search this website for that letter - it will never find the other letters, no matter how similar they look. Likewise the latin letter A won't find the greek or cyrillic one.
Writing system wise code points can be used by multiple alphabets: the CJK portion is an attempt to use as few code points as possible while supporting as many languages as possible - Chinese (simplified, traditional, Hong Kong), Japanese, Korean, Vietnamese:
今 = U+4ECA
入 = U+5165
才 = U+624D
Dealing as a programmer with code points has valid reasons. Programming languages which support these may (or may not) support correct encodings (UTF-8 vs. UTF-16 vs. ISO-8859-1) and may (or may not) correctly produce surrogates for UTF-16. Text wise users should not be concerned about code points, although it would help them distinguishing homographs.

Does it exist some kind of sorting convention?

Does it exist some established convention of sorting lines (characters)? Some convention which should play the similar role as PCRE for regular expressions.
For example, if you try to sort 0A1b-a2_B (each character on its own line) with Sublime Text (Ctrl-F9) and Vim (:%sort), the result will be the same (see below). However, I'm not sure it will be the same with another editors and IDEs.
-
0
1
2
A
B
_
a
b
Generally, characters are sorted based on their numeric value. While this used to only be applied to ASCII characters, this has also been adopted by unicode encodings as well. http://www.asciitable.com/
If no preference is given to the contrary, this is the de facto standard for sorting characters. Save for the actual alphabetical characters, the ordering is somewhat arbitrary.
There are two main ways of sorting character strings:
Lexicographic: numeric value of either the codepoint values or the code unit values or the serialized code unit values (bytes). For some character encodings, they would all be the same. The algorithm is very simple but this method is not human-friendly.
Culture/Locale-specific: an ordinal database for each supported culture is used. For the Unicode character set, it's called the CLDR. Also, in applying sorting for Unicode, sorting can respect grapheme clusters. A grapheme cluster is a base codepoint followed by a sequence of zero or more non-spacing (applied as extensions of the previous glyph) marks.
For some older character sets with one encoding, designed for only one or two scripts, the two methods might amount to the same thing.
Sometimes, people read a format into strings, such as a sequence of letters followed by a sequence of digits, or one of several date formats. These are very specialized sorts that need to be applied where users expect. Note: The ISO 8601 date format for the Julian calendar sorts correctly regardless of method (for all? character encodings).

How to Decode UTF-8 Text Sequence \ud83e\udd14

I'm reading UTF-8 text that contains "\ud83e\udd14". Reading the specification, it says that U+D800 to U+DFFF are not used. Yet if I run this through a decoder such as Microsoft's System.Web.Helpers.Json.Decode, it yields the correct result of an emoticon of a face with a tongue hanging out. The text originates through Twitter's search api.
My question: how should this sequence be decoded? I'm looking for what the final hex sequence would be and how it is obtained. Thanks for any guidance. If my question isn't clear, please let me know and I will try to improve it.
You are coming at this from an interesting perspective. The first thing to note is that you're dealing with two levels of text: a JSON document and a string within it.
Synopsis: You don't need to write code to decode it. Use a library that deserializes JSON into objects, such as Newtonsoft's JSON.Net.
But, first, Unicode. Unicode is a character set with a bit of a history. Unlike almost every character set, 1) it has more than one encoding, and 2) it is still growing. A couple of decades ago, it had <65636 codepoints and that was thought to be enough. So, encoding each codepoint with as 2-byte integer was the plan. It was called UCS-2 or, simply, the Unicode encoding. (Microsoft has stuck with Encoding.Unicode in .NET, which causes some confusion.)
Aside: Codepoints are identified for discussion using the U+ABCD (hexadecimal) format.
Then the Unicode consortium decided to add more codepoints: all the way to U+10FFFF. For that, encodings need at least 21 bits. UTF-32, integers with 32 bits, is an obvious solution but not very dense. So, encodings that use a variable number of code units where invented. UTF-8 uses one to four 8-bit code units, depending on the codepoint.
But a lot of languages were adopting UCS-2 in the 1990s. Documents, of course, can be transformed at will but code that processes UCS-2 would break without a compatible encoding for the expanded character set. Since U+D800 to U+DFFF where unassigned, UCS-2 could stay the same and those "surrogate codepoints" could be used to encode new codepoints. The result is UTF-16. Each codepoint is encoded in one or two 16-bit code units. So, programs that processed UCS-2 could automatically process UTF-16 as long as they didn't need to understand it. Programs written in the same system could be considered to be processing UTF-16, especially with libraries that do understand it. There is still the hazard of things like string length giving the number of UTF-16 code units rather than the number of codepoints, but it has otherwise worked out well.
As for the \ud83e\udd14 notation, languages use Unicode in their syntax or literal strings desired a way to accept source files in a non-Unicode encoding and still support all the Unicode codepoints. Being designed in the 1990s, they simply wrote the UCS-2 code units in hexadecimal. Of course, that too is extended to UTF-16. This UTF-16 code unit escaped syntax allows intermediary systems to handle source code files with a non-Unicode encoding.
Now, JSON is based on JavaScript and JavaScript's strings are sequences of UTF-16 code units. So JSON has adopted th UTF-16 code unit escaped syntax from JavaScript. However, it's not very useful (unless you have to deal with intermediary systems that can't be made to use UTF-8 or treat files they don't understand as binary). The old JSON standard requires JSON documents exchanged between systems to be encoded with UTF-8, UTF-16 or UTF-32. The new RFC8259 requires UTF-8.
So, you don't have "UTF-8 text", you have Unicode text encoding with UTF-8. The text itself is a JSON document. JSON documents have names and values that are Unicode text as sequences of UTF-16 code units with escapes allowed. Your document has the codepoint U+1F914 written, not as "🤔" but as "\ud83e\udd14".
There are plenty of libraries that transform JSON to objects so you shouldn't need to decode the names or values in a JSON document. To do it manually, you'd recognize the escape prefix and take the next 4 characters as the bits of a surrogate, extracting the data bits, then combine them with the bits from the paired surrogate that should follow.
Thought I'd read up on UTF-16 to see if it gave me any clues, and it turns out this is what it calls a surrogate pair. The hex formula for decoding is:
(H - D800) * 400 + (L - DC00) + 10000
where H is the first (high) codepoint and L is the second (low) codepoint.
So \ud83e\udd14 becomes 1f914
Apparently UTF-8 decoders must anticipate UTF-16 surrogate pairs.

What is meaning of assume char set is ASCII?

I was solving below problem while reading its solution in first line I read this
can anyone help me in explaining assume char set is ASCII **I Don't want any other solution for this problem I just want to understand the statement **
Implement an algorithm to determine if a string has all unique characters. What if you can not use additional data structures
Thanks in advance for the help.
There is no text but encoded text.
Text is a sequence of "characters", members of a character set. A character set is a one-to-one mapping between a notional character and a non-negative integer, called a codepoint.
An encoding is a mapping between a codepoint and a sequence of bytes.
Examples:
ASCII, 128 codepoints, one encoding
OEM437, 256 codepoints, one encoding
Windows-1252, 251 codepoints, one encoding
ISO-8859-1, 256 codepoints, one encoding
Unicode, 1,114,112 codepoints, many encodings: UTF-8, UTF-16, UTF-32,…
When you receive a byte stream or read a file that represents text, you have to know the character set and encoding. Conversely, when you send a byte stream or write a file that represents text, you have let the receiver know the character set and encoding. Otherwise, you have a failed communication.
Note: Program source code is almost always text files. So, this communication requirement also applies between you, your editor/IDE and your compiler.
Note: Program console input and output are text streams. So, this communication requirement also applies between the program, its libraries and your console (shell). Go locale or chcp to find out what the encoding is.
Many character sets are a superset of ASCII and some encodings map the same characters with the same byte sequences. This causes a lot of confusion, limits learning, promotes usage of poor terminology and the partial interoperablity leads to buggy code. A deliberate approach to specifications and coding eliminates that.
Examples:
Some people say "ASCII" when they mean the common subset of characters between ASCII and the character set they are actually using. In Unicode and elsewhere this is called C0 Controls and Basic Latin.
Some people say "ASCII Code" when they just mean codepoint or the codepoint's encoded bytes (or code units).
The context of your question is unclear but the statement is trying to say that the distinct characters in your data are in the ASCII character set and therefore their number is less than or equal to 128. Due to the similarity between character sets, you can assume that the codepoint range you need to be concerned about is 0 to 127. (Put comments, asserts or exceptions as applicable in your code to make that clear to readers and provide some runtime checking.)
What this means in your programming language depends on the programming language and its libraries. Many modern programming languages use UTF-16 to represent strings and UTF-8 for streams and files. Programs are often built with standard libraries that account for the console's encoding (actual or assumed) when reading or writing from the console.
So, if your data comes from a file, you must read it using the correct encoding. If your data comes from a console, your program's standard libraries will possibly change encodings from the console's encoding to the encoding of the language's or standard library's native character and string datatypes. If your data comes from a source code file, you have to save it in one specific encoding and tell the compiler what that is. (Usually, you would use the default source code encoding assumed by the compiler because that generally doesn't change from system to system or person to person.)
The "additional" data structures bit probably refers to what a language's standard libraries provide, such as list, map or dictionary. Use what you've been taught so far, like maybe just an array. Of course, you can just ask.
Basically, assume that character codes will be within the range 0-127. You won't need to deal with crazy accented characters.
More than likely though, they won't use many, if any codes below 32; since those are mostly non-printables.
Characters such as 'a' 'b' '1' or '#' are encoded into a binary number when stored and used by a computer.
e.g.
'a' = 1100001
'b' = 1100010
There are a number of different standards that you could use for this encoding. ASCII is one of those standards. The other most common standard is called UTF-8.
Not all characters can be encoded by all standards. ASCII has a much more limited set of characters than UTF-8. As such an encoding also defines the set of characters "char set" that are supported by that encoding.
ASCII encodes each character into a single byte. It supports the letters A-Z, and lowercase a-z, the digits 0-9, a small number of familiar symbols, and a number of control characters that were used in early communication protocols.
The full set of characters supported by ASCII can be seen here: https://en.wikipedia.org/wiki/ASCII

Typing ALT + 251 and ALT + 0251 at the keyboard produce different character entries

In Windows:
when I press Alt + 251, I get a √ character
when I press Alt + 0251 get û character!
A leading zero doesn't have value.
Actually, I want get check mark(√) from Chr(251) function in Client Report Definition (RDLC) but it gets me û!
I think it interprets four numbers as hex not decimal.
Using a leading zero forces the Windows to interpret the code in the Windows-1252 set. Without 0 the code is interpreted using the OEM set.
Alt+251:
You'll get √, because you'll use OEM 437, where 251 is for square root.
I'll get ¹, because I'll use OEM 850, where 251 is for superscript 1.
Alt+0251:
Both of us will get û, because we'll use Windows-1252, where 251 is for u-circumflex.
This is historical.
From ASCII to Unicode
At the beginning of DOS/Windows, characters were one byte wide and were from the American alphabet, the conversion was set using the ASCII encoding.
Additional characters were needed as soon as the PC was used off the US (many languages use accents for instance). So different codepages were designed and different encoding tables were used for conversion.
But a computer in the US wouldn't use the same codepage than one in Spain. This required the user and the programmer to assume the currently active codepage, and this has been a great period in the history of computing...
At the same period it was determined that using only one byte was not going to make it, more than 256 characters were required to be available at the same time. Different encoding systems were designed by a consortium, and collectively known as Unicode.
In Unicode "characters" can be one to four bytes wide, and the number of bytes for one character may vary in the same string.
Other notions have been introduced, such as codepoint and glyph to deal with the complexity of written language.
While Unicode was being adopted as a standard, Windows retained the old one-byte codepages for efficiency, simplicity and retro-compatibility. Windows also added codepages to deal with glyphs found only in Unicode.
Windows has:
A default OEM codepage which is usually 437 in the US -- your case -- or 850 in Europe -- my case --, used with the command line ("DOS"),
the Windows-1252 codepage (aka Latin-1 and ISO 8859-1, but this is a misuse) to ease conversion to/from Unicode. Current tendency is to replace all such extended codepages by Unicode. Java designers make a drastic decision and use only Unicode to represent strings.
When entering a character with the Alt method, you need to tell Windows which codepage you want to use for its interpretation:
No leading zero: You want the OEM codepage to be used.
Leading zero: You want the Windows codepage to be used.
Note on OEM codepages
OEM codepages are so called because for the first PC/PC-Compatible computers the display of characters was hard-wired, not software-done. The computer had a character generator with a fixed encoding and graphical definitions in a ROM. The BIOS would send a byte and a position (line, position in line) to the generator, and the generator would draw the corresponding glyph at this position. This was named "text-mode" at the time.
A computer sold in the US would have a different character ROM than one sold in Germany. This was really dependent on the manufacturer, and the BIOS was able to read the value of the installed codepage(s).
Later the generation of glyphs became software-based, to deal with unlimited fonts, style, and size. It was possible to define a set of glyphs and its corresponding encoding table at the OS level. This combination could be used on any computer, independently of the installed OEM generator.
Software-generated glyphs started with VGA display adapters, the code required for the drawing of glyphs was part of the VGA driver.
As you understood, +0251 is ASCII character, it does not represent a number.
You must understand that when you write 0 to the left of numbers it does not have any value but here it is ASCII codes and not numbers.

Resources