Increment and Decrement operators in scheme programming language - scheme

What are the increment and decrement operators in scheme programming language.
I am using "Dr.Racket" and it is not accepting -1+ and 1+ as operators.
And, I have also tried incf and decf, but no use.

They are not defined as such since Scheme and Racket try to avoid mutation; but you can easily define them yourself:
(define-syntax incf
(syntax-rules ()
((_ x) (begin (set! x (+ x 1)) x))
((_ x n) (begin (set! x (+ x n)) x))))
(define-syntax decf
(syntax-rules ()
((_ x) (incf x -1))
((_ x n) (incf x (- n)))))
then
> (define v 0)
> (incf v)
1
> v
1
> (decf v 2)
-1
> v
-1
Note that these are syntactic extensions (a.k.a. macros) rather than plain procedures because Scheme does not pass parameters by reference.

Your reference to “DrRacket” somewhat suggests you’re in Racket. According to this, you may already be effectively using #lang racket. Either way, you’re probably looking for add1 and sub1.
-> (add1 3)
4
-> (sub1 3)
2

The operators 1+ and -1+ do /not/ mutate, as a simple experiment in MIT Scheme will show:
1 ]=> (define a 3)
;Value: a
1 ]=> (1+ a)
;Value: 4
1 ]=> (-1+ a)
;Value: 2
1 ]=> a
;Value: 3
So you can implement your own function or syntactic extensions of those functions by having them evaluate to (+ arg 1) and (- arg 1) respectively.

It's easy to just define simple functions like these yourself.
;; Use: (increment x)
;; Before: x is a number
;; Value: x+1
(define (increment x)
(+ 1 x)
)

Related

Calling a function that takes no parameter with a parameter in scheme

How does this code work? It does not seem like any of these functions have a parameter but yet you are able to call it with a parameter
(define (make-add-one)
(define (inc x) (+ 1 x))
inc)
(define myfn (make-add-one))
(myfn 2)
This runs and returns 3.
Lets use substitution rules. make-add-one can be rewritten like this:
(define make-add-one (lambda ()
(define inc (lambda (x) (+ 1 x))
inc))
Since inc is just returned we can simplify it further to this:
(define make-add-one (lambda ()
(lambda (x) (+ 1 x)))
Now myfn we can replace the call to make-add-one with the code that the lambda has inside:
(define myfn (make-add-one)) ; ==
(define myfn (lambda (x) (+ 1 x)))
And at last, we can use substitution rules on the last call:
(myfn 2) ; ==
((lambda (x) (+ 1 x)) 2) ; ==
(+ 1 2) ; ==
3
Now make-add-one makes a new function that is identical to all other functions it makes. It doesn't really add anything. A good example of where this is useful is this example:
(define (make-add by-what)
(lambda (value) (+ value by-what)))
(define inc (make-add 1))
(define add5 (make-add 5))
(map add5 '(1 2 3)) ; ==> (6 7 8)
(map inc '(1 2 3)) ; ==> (2 3 4)
Just to see it's the same:
(add5 2) ; ==
((make-add 5) 2) ; ==
((lambda (value) (+ value 5)) 2) ; ==
(+ 2 5) ; ==
; ==> 7
And how does this work. In a lexically scoped language, all lambda forms captures the variables that are not bound in their own parameter list from the scope which it was created. This is known as a closure. A simple example of this is here:
(define x 10)
(define test
(let ((x 20)
(lambda (y) (+ x y))))
(test 2) ; ==> 22
So in Scheme test uses x from the let even after the scope is out since the lambda was created in that scope. In a dynamically scoped language (test 2) would return 12 and the two previous examples would also produce other results and errors.
Lexical scoping came first to Algol, which is the predecessor to all the C language family languages like C, java, perl. Scheme was proably the first lisp and it was the essential design of the language itself. Without closure first version of Scheme was the same as its host langugage, MacLisp.
Lift the definition of inc out of make-add-one:
(define (inc x) (+ 1 x))
(define (make-add-one)
inc)
Now it's clearer that the expression (make-add-one) is the same as inc, and inc is clearly a procedure with one parameter.
In other words, invoking make-add-one with no arguments produces a procedure that takes one argument.
You can use the substitution method to follow the evaluation:
(myfn 2)
==> ((make-add-one) 2)
==> (inc 2)
==> (+ 1 2)
==> 3

Why Scheme requires apply in Y-combinator implementation, but Racket doesn't?

Here is the Y-combinator in Racket:
#lang lazy
(define Y (λ(f)((λ(x)(f (x x)))(λ(x)(f (x x))))))
(define Fact
(Y (λ(fact) (λ(n) (if (zero? n) 1 (* n (fact (- n 1))))))))
(define Fib
(Y (λ(fib) (λ(n) (if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2))))))))
Here is the Y-combinator in Scheme:
(define Y
(lambda (f)
((lambda (x) (x x))
(lambda (g)
(f (lambda args (apply (g g) args)))))))
(define fac
(Y
(lambda (f)
(lambda (x)
(if (< x 2)
1
(* x (f (- x 1))))))))
(define fib
(Y
(lambda (f)
(lambda (x)
(if (< x 2)
x
(+ (f (- x 1)) (f (- x 2))))))))
(display (fac 6))
(newline)
(display (fib 6))
(newline)
My question is: Why does Scheme require the apply function but Racket does not?
Racket is very close to plain Scheme for most purposes, and for this example, they're the same. But the real difference between the two versions is the need for a delaying wrapper which is needed in a strict language (Scheme and Racket), but not in a lazy one (Lazy Racket, a different language).
That wrapper is put around the (x x) or (g g) -- what we know about this thing is that evaluating it will get you into an infinite loop, and we also know that it's going to be the resulting (recursive) function. Because it's a function, we can delay its evaluation with a lambda: instead of (x x) use (lambda (a) ((x x) a)). This works fine, but it has another assumption -- that the wrapped function takes a single argument. We could just as well wrap it with a function of two arguments: (lambda (a b) ((x x) a b)) but that won't work in other cases too. The solution is to use a rest argument (args) and use apply, therefore making the wrapper accept any number of arguments and pass them along to the recursive function. Strictly speaking, it's not required always, it's "only" required if you want to be able to produce recursive functions of any arity.
On the other hand, you have the Lazy Racket code, which is, as I said above, a different language -- one with call-by-need semantics. Since this language is lazy, there is no need to wrap the infinitely-looping (x x) expression, it's used as-is. And since no wrapper is required, there is no need to deal with the number of arguments, therefore no need for apply. In fact, the lazy version doesn't even need the assumption that you're generating a function value -- it can generate any value. For example, this:
(Y (lambda (ones) (cons 1 ones)))
works fine and returns an infinite list of 1s. To see this, try
(!! (take 20 (Y (lambda (ones) (cons 1 ones)))))
(Note that the !! is needed to "force" the resulting value recursively, since Lazy Racket doesn't evaluate recursively by default. Also, note the use of take -- without it, Racket will try to create that infinite list, which will not get anywhere.)
Scheme does not require apply function. you use apply to accept more than one argument.
in the factorial case, here is my implementation which does not require apply
;;2013/11/29
(define (Fact-maker f)
(lambda (n)
(cond ((= n 0) 1)
(else (* n (f (- n 1)))))))
(define (fib-maker f)
(lambda (n)
(cond ((or (= n 0) (= n 1)) 1)
(else
(+ (f (- n 1))
(f (- n 2)))))))
(define (Y F)
((lambda (procedure)
(F (lambda (x) ((procedure procedure) x))))
(lambda (procedure)
(F (lambda (x) ((procedure procedure) x))))))

Convert lists into functions

I have a little noob question. I have to do a homework on genetic programming in scheme and the first step is to finish some given functions.
I got to a point where i have to execute a randomly generated function with all the possible parameters in a range (using map). The "function" is list like '(* (+ 1 x) (- x (* 2 3))).
How can i execute it with a given parameter? (for example x = 2). By the way, the generated function has a maximum of 1 parameter (it's x or none).
Thanks!
Here's my solution:
(define (execute expr)
(lambda (x)
(let recur ((expr expr))
(case expr
((x) x)
((+) +)
((-) -)
((*) *)
((/) /)
(else
(if (list? expr)
(apply (recur (car expr)) (map recur (cdr expr)))
expr))))))
Example usage:
> (define foo (execute '(* (+ 1 x) (- x (* 2 3)))))
> (foo 42)
=> 1548

Filter a list into two parts by a predicate

I want to do
(filter-list-into-two-parts #'evenp '(1 2 3 4 5))
; => ((2 4) (1 3 5))
where a list is split into two sub-lists depending on whether a predicate evaluates to true. It is easy to define such a function:
(defun filter-list-into-two-parts (predicate list)
(list (remove-if-not predicate list) (remove-if predicate list)))
but I would like to know if there is a built-in function in Lisp that can do this, or perhaps a better way of writing this function?
I don't think there is a built-in and your version is sub-optimal because it traverses the list twice and calls the predicate on each list element twice.
(defun filter-list-into-two-parts (predicate list)
(loop for x in list
if (funcall predicate x) collect x into yes
else collect x into no
finally (return (values yes no))))
I return two values instead of the list thereof; this is more idiomatic (you will be using multiple-value-bind to extract yes and no from the multiple values returned, instead of using destructuring-bind to parse the list, it conses less and is faster, see also values function in Common Lisp).
A more general version would be
(defun split-list (key list &key (test 'eql))
(let ((ht (make-hash-table :test test)))
(dolist (x list ht)
(push x (gethash (funcall key x) ht '())))))
(split-list (lambda (x) (mod x 3)) (loop for i from 0 to 9 collect i))
==> #S(HASH-TABLE :TEST FASTHASH-EQL (2 . (8 5 2)) (1 . (7 4 1)) (0 . (9 6 3 0)))
Using REDUCE:
(reduce (lambda (a b)
(if (evenp a)
(push a (first b))
(push a (second b)))
b)
'(1 2 3 4 5)
:initial-value (list nil nil)
:from-end t)
In dash.el there is a function -separate that does exactly what you ask:
(-separate 'evenp '(1 2 3 4)) ; => '((2 4) (1 3))
You can ignore the rest of the post if you use -separate. I had to implement Haskell's partition function in Elisp. Elisp is similar1 in many respects to Common Lisp, so this answer will be useful for coders of both languages. My code was inspired by similar implementations for Python
(defun partition-push (p xs)
(let (trues falses) ; initialized to nil, nil = '()
(mapc (lambda (x) ; like mapcar but for side-effects only
(if (funcall p x)
(push x trues)
(push x falses)))
xs)
(list (reverse trues) (reverse falses))))
(defun partition-append (p xs)
(reduce (lambda (r x)
(if (funcall p x)
(list (append (car r) (list x))
(cadr r))
(list (car r)
(append (cadr r) (list x)))))
xs
:initial-value '(() ()) ; (list nil nil)
))
(defun partition-reduce-reverse (p xs)
(mapcar #'reverse ; reverse both lists
(reduce (lambda (r x)
(if (funcall p x)
(list (cons x (car r))
(cadr r))
(list (car r)
(cons x (cadr r)))))
xs
:initial-value '(() ())
)))
push is a destructive function that prepends an element to list. I didn't use Elisp's add-to-list, because it only adds the same element once. mapc is a map function2 that doesn't accumulate results. As Elisp, like Common Lisp, has separate namespaces for functions and variables3, you have to use funcall to call a function received as a parameter. reduce is a higher-order function4 that accepts :initial-value keyword, which allows for versatile usage. append concatenates variable amount of lists.
In the code partition-push is imperative Common Lisp that uses a widespread "push and reverse" idiom, you first generate lists by prepending to the list in O(1) and reversing in O(n). Appending once to a list would be O(n) due to lists implemented as cons cells, so appending n items would be O(n²). partition-append illustrates adding to the end. As I'm a functional programming fan, I wrote the no side-effects version with reduce in partition-reduce-reverse.
Emacs has a profiling tool. I run it against these 3 functions. The first element in a list returned is the total amount of seconds. As you can see, appending to list works extremely slow, while the functional variant is the quickest.
ELISP> (benchmark-run 100 (-separate #'evenp (number-sequence 0 1000)))
(0.043594004 0 0.0)
ELISP> (benchmark-run 100 (partition-push #'evenp (number-sequence 0 1000)))
(0.468053176 7 0.2956386049999793)
ELISP> (benchmark-run 100 (partition-append #'evenp (number-sequence 0 1000)))
(7.412973128 162 6.853687342999947)
ELISP> (benchmark-run 100 (partition-reduce-reverse #'evenp (number-sequence 0 1000)))
(0.217411618 3 0.12750035599998455)
References
Differences between Common Lisp and Emacs Lisp
Map higher-order function
Technical Issues of Separation in Function Cells and Value Cells
Fold higher-order function
I don't think that there is a partition function in the common lisp standard, but there are libraries that provide such an utility (with documentation and source).
CL-USER> (ql:quickload :arnesi)
CL-USER> (arnesi:partition '(1 2 3 4 5) 'evenp 'oddp)
((2 4) (1 3 5))
CL-USER> (arnesi:partition '(1 2 b "c") 'numberp 'symbolp 'stringp)
((1 2) (B) ("c"))

binary trees searching inside

Can anyone tell me what I need to do here?
(define (count-values abst v)
(cond [(empty? abst) 0]
[else (+ (cond [(equal? v (bae-fn abst)) 1]
(else 0))
(count-values .... v)
(count-values .... v ))]))
I basically need a function that counts the amount of symbols v inside a binary tree
(define bae
(make-bae '+
(make-bae '* (make-bae '+ 4 1)
(make-bae '+ 5 2))
(make-bae '- 6 3)))
(count-values bae '+) => 3
because there are 3 '+ in bae
You need to:
Post the definition of the tree - I'm guessing bae is a struct - don't assume we know your code, post all the relevant information as part of the question
Make sure that the code you post works at least in part - for instance, the (define bae ...) part won't work even if you provided the definition of bae, because of a naming conflict
Follow the recipe for traversing a binary tree, I bet it's right in the text book
The general idea for the solution goes like this, without taking a look at the actual implementation of the code you've done so far is the only help I can give you:
If the tree is empty, then return 0
If the current element's value equals the searched value, add 1; otherwise add 0
Either way, add the value to the result of recursively traversing the left and right subtrees
If you define your data structure recursively, then a recursive count algorithm will naturally arise:
;; Utils
(define (list-ref-at n)
(lambda (l) (list-ref l n)))
(define (eq-to x)
(lambda (y) (eq? x y)))
;; Data Type
(define (make-bae op arg1 arg2)
`(BAE ,op, arg1, arg2))
(define (bae? thing)
(and (list? thing) (eq? 'BAE (car thing)) (= 4 (length thing))))
(define bae-op (list-ref-at 1))
(define bae-arg1 (list-ref-at 2))
(define bae-arg2 (list-ref-at 3))
;; Walk
(define (bae-walk func bae) ;; 'pre-ish order'
(if (not (bae? bae))
(func bae)
(begin
(func (bae-op bae))
(bae-walk func (bae-arg1 bae))
(bae-walk func (bae-arg2 bae)))))
;; Count
(define (bae-count-if pred bae)
(let ((count 0))
(bae-walk (lambda (x)
(if (pred x)
(set! count (+ 1 count))))
bae)
count))
(define (bae-count-if-plus bae)
(bae-count-if (eq-to '+) bae))
> bae
(BAE + (BAE * (BAE + 4 1) (BAE + 5 2)) (BAE - 6 3))
> (bae-count-if-plus bae)
3
;; Find
(define (bae-find-if pred bae)
(call/cc (lambda (exit)
(bae-walk (lambda (x)
(if (pred x) (exit #t)))
bae)
#f)))

Resources