Algorithm - find closest two factors of an integer (minimal remainder) - algorithm

Probably known issue, however, due to lack of knowledge and bad english, I wasn't able to query such a question properly.
Goal:
Given a positive integer N, find the non-negative integers a,b,c such that N = a*b + c where c is minimized. Respecting the following:
a <= b
(b / a) < 2
c <= (a / 2)
Examples:
N = 24 -> a = 4, b = 6, c = 0
N = 25 -> a = 5, b = 5, c = 0
N = 26 -> a = 5, b = 5, c = 1
N = 27 -> a = 5, b = 5, c = 2
N = 28 -> a = 4, b = 7, c = 0
N = 29 -> a = 4, b = 7, c = 1
N = 30 -> a = 5, b = 6, c = 0
N = 31 -> a = 5, b = 6, c = 1
N = 32 -> a = 5, b = 6, c = 2

you don't say which language so I will do pseudocode.
function findFactors(num) {
bestFactors = (0,0)
bestRemainder = num
for (x=num; x>0; x--) {
for (y=num; y>0; y--) {
if (x*y <= num) {
if (num % (x*y) < bestRemainder) {
bestFactors =(x,y)
}
}
}
}
return bestFactors
}
admittedly with a bigO of n-squared this method is a little unruly. There's probably a better way with recursion but I don't intend to expend that kind of brainpower right now.

If N is prime return pair ((N-1) / 2, 2)
Otherwise factorize N, N = p1 * p2 * ... * pk, pi != 1 return (p1, p2 * ... * pk)
For this algorithm c <= 1

Related

Bounded square sum algorithm

The problem goes as follows:
You are given two arrays of integers a and b, and two integers lower and upper.
Your task is to find the number of pairs (i, j) such that lower ≤ a[i] * a[i] + b[j] * b[j] ≤ upper.
Example:
For a = [3, -1, 9], b = [100, 5, -2], lower = 7, and upper = 99, the output should be boundedSquareSum(a, b, lower, upper) = 4.
There are only four pairs that satisfy the requirement:
If i = 0 and j = 1, then a[0] = 3, b[1] = 5, and 7 ≤ 3 * 3 + 5 * 5 = 9 + 25 = 36 ≤ 99.
If i = 0 and j = 2, then a[0] = 3, b[2] = -2, and 7 ≤ 3 * 3 + (-2) * (-2) = 9 + 4 = 13 ≤ 99.
If i = 1 and j = 1, then a[1] = -1, b[1] = 5, and 7 ≤ (-1) * (-1) + 5 * 5 = 1 + 25 = 26 ≤ 99.
If i = 2 and j = 2, then a[2] = 9, b[2] = -2, and 7 ≤ 9 * 9 + (-2) * (-2) = 81 + 4 = 85 ≤ 99.
For a = [1, 2, 3, -1, -2, -3], b = [10], lower = 0, and upper = 100, the output should be boundedSquareSum(a, b, lower, upper) = 0.
Since the array b contains only one element 10 and the array a does not contain 0, it is not possible to satisfy 0 ≤ a[i] * a[i] + 10 * 10 ≤ 100.
Now, I know there is a brute force way to solve this, but what would be the optimal solution for this problem?
Sort the smaller array using the absolute value of the elements, then for each element in the unsorted array, binary search the interval on the sorted one.
You can break loop when calculation goes higher than upper limit.
I will reduce execution time.
function boundedSquareSum(a, b, lower, upper) {
let result = 0;
a = a.sort((i,j) => Math.abs(i) - Math.abs(j));
b = b.sort((i,j) => Math.abs(i) - Math.abs(j))
for(let i = 0; i < a.length; i++) {
let aValue = a[i] ** 2;
if(aValue > upper) {
break; // Don't need to check further
}
for(let j = 0; j < b.length; j++) {
let bValue = b[j] ** 2;
let total = aValue + bValue;
if(total > upper) {
break; // Don't need to check further
}
if((total >= lower && total <= upper) ) {
result++;
}
}
}
return result;
}

which solution is better in terms of space.time complexity?

i have 2 lists of integers. they are both sorted already. I want to find the elements (one from each list) that add up to a given number.
-first idea is to iterate over first list and use binary search to look for the number needed to sum to the given number. i know this will take nlogn time.
the other is to store one of the lists in a hashtable/map (i dont really know the difference) and iterate over other list and look up the needed value. does this take n time? and n memory?
overall which would be better?
You are comparing it right. But both has different aspects. Hashing is not a good choice if you have memory constraints. But if you have plenty of memory then yes, you can afford to do that.
Also you will see many times in Computer Science the notion of space-time tradeoff. It will always be some gain by losing some. Hashing runs in O(n) and space complexity is O(n). But in case of searching only O(nlogn) time complexity but space complexity is O(1)
Long story short, scenario lets you decide which one to select. I have shown just one aspect. There can be many. Know the constraints and tradeoffs of each and you will be able to decide it.
A better solution : (Time complexity: O(n) Space complexity: O(1))
Suppose there are 2 array a and b.
Now WLOG suppose a is sorted in ascending and another in descending (Even if it is not the case we can traverse it accordingly).
index1=0;index2=0; // considered 0 indexing
while(index1 <= N1-1 && index2 <= N2-1)
{
if ((a[index1] + b[index2]) == x)
// success
else if ((a[index1] + b[index2]) > x)
index2++;
else
index1++;
}
//failure no such element.
Sort list A in ascending order, and list B in descending order. Set a = 1 and b = 1.
If A[a] + B[b] = T, record the pair, increment a, and repeat.
Otherwise, A[a] + B[b] < T, increment a, and repeat from 1.
Otherwise, A[a] + B[b] > T, increment b, and repeat from 1.
Naturally, if a or b exceeds the size of A or B, respectively, terminate.
Example:
A = 1, 2, 2, 6, 8, 10, 11
B = 9, 8, 4, 3, 1, 1
T = 10
a = 1, b = 1
A[a] + B[b] = A[1] + B[1] = 10; record; a = a + 1 = 2; repeat.
A[a] + B[b] = A[2] + B[1] = 11; b = b + 1 = 2; repeat.
A[a] + B[b] = A[2] + B[2] = 10; record; a = a + 1 = 3; repeat.
A[a] + B[b] = A[3] + B[2] = 10; record; a = a + 1 = 4; repeat.
A[a] + B[b] = A[4] + B[2] = 14; b = b + 1 = 3; repeat.
A[a] + B[b] = A[4] + B[3] = 10; record; a = a + 1 = 5; repeat.
A[a] + B[b] = A[5] + B[3] = 12; b = b + 1 = 4; repeat.
A[a] + B[b] = A[5] + B[4] = 11; b = b + 1 = 5; repeat.
A[a] + B[b] = A[5] + B[5] = 9; a = a + 1 = 6; repeat.
A[a] + B[b] = A[6] + B[5] = 11; b = b + 1 = 6; repeat.
A[a] + B[b] = A[6] + B[6] = 11; b = b + 1 = 7; repeat.
Terminate.
You can do this without additional space if instead of having B sorted in descending order, you set b = |B| and decrement it instead of incrementing it, effectively reading it backwards.
The above procedure misses out on some duplicate answers where B has a string of duplicate values, for instance:
A = 2, 2, 2
B = 8, 8, 8
The algorithm as described above will yield three pairs, but you might want nine. This can be fixed by detecting this case, keeping separate counters ca and cb for the lengths of the runs of A[a] and B[b] you have seen, and adding ca * cb - ca copies of the last pair you added to the bag. In this example:
A = 2, 2, 2
B = 8, 8, 8
a = 1, b = 1
ca = 0, cb = 0
A[a] + B[b] = 10; record pair, a = a + 1 = 2, ca = ca + 1 = 2, repeat.
A[a] + B[b] = 10; record pair, a = a + 1 = 3, ca = ca + 1 = 2, repeat.
A[a] + B[b] = 10; record pair, a = a + 1 = 4;
a exceeds bounds, value of A[a] changed;
increment b to count run of B's;
b = b + 1 = 2, cb = cb + 1 = 2
b = b + 1 = 3, cb = cb + 1 = 3
b = b + 1 = 4;
b exceeds bounds, value of B[b] changed;
add ca * cb - ca = 3 * 3 - 3 = 6 copies of pair (2, 8).

Using a vector as column-indices into rows of a matrix, in Octave

Let's say I have a matrix A and a vector B. Is it possible to use the values in vector B as indices to select one value from each row in matrix A? Example:
A = [1, 2, 3;
4, 5, 6;
7, 8, 9;]
B = [1;3;1]
C = A(B) or C = A(:,B)
giving:
C = [1; 6; 7]
Of course I could do this with a for loop but with bigger matrices it will take a while. I would also like to use this to make a logical matrix in the following fashion:
A = zeros(3,3)
B = [1;3;1]
A(B) = 1
A = [1, 0, 0;
0, 0, 1;
1, 0, 0]
Thanks for any advice you are able to give me.
You need to create linear indices for that. Following your example:
octave-3.8.2> a = [1 2 3
4 5 6
7 8 9];
octave-3.8.2> b = [1 3 1];
octave-3.8.2> ind = sub2ind (size (a), 1:rows (a), b);
octave-3.8.2> c = a(ind)
c =
1 6 7
As per my understanding, the way to go about creating a logical matrix is below:
>A = eye(3,3)
>B = [1;3;1]
>A(B,:) =
>
>[ 1 0 0;
> 0 0 1;
> 1 0 0; ]

n steps with 1, 2 or 3 steps taken. How many ways to get to the top?

If we have n steps and we can go up 1 or 2 steps at a time, there is a Fibonacci relation between the number of steps and the ways to climb them. IF and ONLY if we do not count 2+1 and 1+2 as different.
However, this no longer the case, as well as having to add we add a third option, taking 3 steps. How do I do this?
What I have:
1 step = 1 way
2 steps = 2 ways: 1+1, 2
3 steps = 4 ways: 1+1+1, 2+1, 1+2, 3
I have no idea where to go from here to find out the number of ways for n stairs
I get 7 for n = 4 and 14 for n= 5 i get 14+7+4+2+1 by doing the sum of all the combinations before it. so ways for n steps = n-1 ways + n-2 ways + .... 1 ways assuming i kept all the values. DYNAMIC programming.
1 2 and 3 steps would be the base-case is that correct?
I would say that the formula will look in the following way:
K(1) = 1
K(2) = 2
k(3) = 4
K(n) = K(n-3) + K(n-2) + K(n - 1)
The formula says that in order to reach the n'th step we have to firstly reach:
n-3'th step and then take 3 steps at once i.e. K(n-3)
or n-2'th step and then take 2 steps at once i.e. K(n-2)
or n-1'th step and then take 1 steps at once i.e. K(n-1)
K(4) = 7, K(5) = 13 etc.
You can either utilize the recursive formula or use dynamic programming.
Python solutions:
Recursive O(n)
This is based on the answer by Michael. This requires O(n) CPU and O(n) memory.
import functools
#functools.lru_cache(maxsize=None)
def recursive(n):
if n < 4:
initial = [1, 2, 4]
return initial[n-1]
else:
return recursive(n-1) + recursive(n-2) + recursive(n-3)
Recursive O(log(n))
This is per a comment for this answer. This tribonacci-by-doubling solution is analogous to the fibonacci-by-doubling solution in the algorithms by Nayuki. Note that multiplication has a higher complexity than constant. This doesn't require or benefit from a cache.
def recursive_doubling(n):
def recursive_tribonacci_tuple(n):
"""Return the n, n+1, and n+2 tribonacci numbers for n>=0.
Tribonacci forward doubling identities:
T(2n) = T(n+1)^2 + T(n)*(2*T(n+2) - 2*T(n+1) - T(n))
T(2n+1) = T(n)^2 + T(n+1)*(2*T(n+2) - T(n+1))
T(2n+2) = T(n+2)^2 + T(n+1)*(2*T(n) + T(n+1))
"""
assert n >= 0
if n == 0:
return 0, 0, 1 # T(0), T(1), T(2)
a, b, c = recursive_tribonacci_tuple(n // 2)
x = b*b + a*(2*(c - b) - a)
y = a*a + b*(2*c - b)
z = c*c + b*(2*a + b)
return (x, y, z) if n % 2 == 0 else (y, z, x+y+z)
return recursive_tribonacci_tuple(n)[2] # Is offset by 2 for the steps problem.
Iterative O(n)
This is motivated by the answer by 太極者無極而生. It is a modified tribonacci extension of the iterative fibonacci solution. It is modified from tribonacci in that it returns c, not a.
def iterative(n):
a, b, c = 0, 0, 1
for _ in range(n):
a, b, c = b, c, a+b+c
return c
Iterative O(log(n)) (left to right)
This is per a comment for this answer. This modified iterative tribonacci-by-doubling solution is derived from the corresponding recursive solution. For some background, see here and here. It is modified from tribonacci in that it returns c, not a. Note that multiplication has a higher complexity than constant.
The bits of n are iterated from left to right, i.e. MSB to LSB.
def iterative_doubling_l2r(n):
"""Return the n+2 tribonacci number for n>=0.
Tribonacci forward doubling identities:
T(2n) = T(n+1)^2 + T(n)*(2*T(n+2) - 2*T(n+1) - T(n))
T(2n+1) = T(n)^2 + T(n+1)*(2*T(n+2) - T(n+1))
T(2n+2) = T(n+2)^2 + T(n+1)*(2*T(n) + T(n+1))
"""
assert n >= 0
a, b, c = 0, 0, 1 # T(0), T(1), T(2)
for i in range(n.bit_length() - 1, -1, -1): # Left (MSB) to right (LSB).
x = b*b + a*(2*(c - b) - a)
y = a*a + b*(2*c - b)
z = c*c + b*(2*a + b)
bit = (n >> i) & 1
a, b, c = (y, z, x+y+z) if bit else (x, y, z)
return c
Notes:
list(range(m - 1, -1, -1)) == list(reversed(range(m)))
If the bit is odd (1), the sequence is advanced by one iteration. This intuitively makes sense after understanding the same for the efficient integer exponentiation problem.
Iterative O(log(n)) (right to left)
This is per a comment for this answer. The bits of n are iterated from right to left, i.e. LSB to MSB. This approach is probably not prescriptive.
def iterative_doubling_r2l(n):
"""Return the n+2 tribonacci number for n>=0.
Tribonacci forward doubling identities:
T(2n) = T(n+1)^2 + T(n)*(2*T(n+2) - 2*T(n+1) - T(n))
T(2n+1) = T(n)^2 + T(n+1)*(2*T(n+2) - T(n+1))
T(2n+2) = T(n+2)^2 + T(n+1)*(2*T(n) + T(n+1))
Given Tribonacci tuples (T(n), T(n+1), T(n+2)) and (T(k), T(k+1), T(k+2)),
we can "add" them together to get (T(n+k), T(n+k+1), T(n+k+2)).
Tribonacci addition formulas:
T(n+k) = T(n)*(T(k+2) - T(k+1) - T(k)) + T(n+1)*(T(k+1) - T(k)) + T(n+2)*T(k)
T(n+k+1) = T(n)*T(k) + T(n+1)*(T(k+2) - T(k+1)) + T(n+2)*T(k+1)
T(n+k+2) = T(n)*T(k+1) + T(n+1)*(T(k) + T(k+1)) + T(n+2)*T(k+2)
When n == k, these are equivalent to the doubling formulas.
"""
assert n >= 0
a, b, c = 0, 0, 1 # T(0), T(1), T(2)
d, e, f = 0, 1, 1 # T(1), T(2), T(3)
for i in range(n.bit_length()): # Right (LSB) to left (MSB).
bit = (n >> i) & 1
if bit:
# a, b, c += d, e, f
x = a*(f - e - d) + b*(e - d) + c*d
y = a*d + b*(f - e) + c*e
z = a*e + b*(d + e) + c*f
a, b, c = x, y, z
# d, e, f += d, e, f
x = e*e + d*(2*(f - e) - d)
y = d*d + e*(2*f - e)
z = f*f + e*(2*d + e)
d, e, f = x, y, z
return c
Approximations
Approximations are of course useful mainly for very large n. The exponentiation operation is used. Note that exponentiation has a higher complexity than constant.
def approx1(n):
a_pos = (19 + 3*(33**.5))**(1./3)
a_neg = (19 - 3*(33**.5))**(1./3)
b = (586 + 102*(33**.5))**(1./3)
return round(3*b * ((1./3) * (a_pos+a_neg+1))**(n+1) / (b**2 - 2*b + 4))
The approximation above was tested to be correct till n = 53, after which it differed. It's certainly possible that using higher precision floating point arithmetic will lead to a better approximation in practice.
def approx2(n):
return round((0.618363 * 1.8392**n + \
(0.029252 + 0.014515j) * (-0.41964 - 0.60629j)**n + \
(0.029252 - 0.014515j) * (-0.41964 - 0.60629j)**n).real)
The approximation above was tested to be correct till n = 11, after which it differed.
This is my solution in Ruby:
# recursion requirement: it returns the number of way up
# a staircase of n steps, given that the number of steps
# can be 1, 2, 3
def how_many_ways(n)
# this is a bit Zen like, if 0 steps, then there is 1 way
# and we don't even need to specify f(1), because f(1) = summing them up
# and so f(1) = f(0) = 1
# Similarly, f(2) is summing them up = f(1) + f(0) = 1 + 1 = 2
# and so we have all base cases covered
return 1 if n == 0
how_many_ways_total = 0
(1..3).each do |n_steps|
if n >= n_steps
how_many_ways_total += how_many_ways(n - n_steps)
end
end
return how_many_ways_total
end
0.upto(20) {|n| puts "how_many_ways(#{n}) => #{how_many_ways(n)}"}
and a shorter version:
def how_many_ways(n)
# this is a bit Zen like, if 0 steps, then there is 1 way
# if n is negative, there is no way and therefore returns 0
return 1 if n == 0
return 0 if n < 0
return how_many_ways(n - 1) + how_many_ways(n - 2) + how_many_ways(n - 3)
end
0.upto(20) {|n| puts "how_many_ways(#{n}) => #{how_many_ways(n)}"}
and once we know it is similar to fibonacci series, we wouldn't use recursion, but use an iterative method:
#
# from 0 to 27: recursive: 4.72 second
# iterative: 0.03 second
#
def how_many_ways(n)
arr = [0, 0, 1]
n.times do
new_sum = arr.inject(:+) # sum them up
arr.push(new_sum).shift()
end
return arr[-1]
end
0.upto(27) {|n| puts "how_many_ways(#{n}) => #{how_many_ways(n)}"}
output:
how_many_ways(0) => 1
how_many_ways(1) => 1
how_many_ways(2) => 2
how_many_ways(3) => 4
how_many_ways(4) => 7
how_many_ways(5) => 13
how_many_ways(6) => 24
how_many_ways(7) => 44
how_many_ways(8) => 81
how_many_ways(9) => 149
how_many_ways(10) => 274
how_many_ways(11) => 504
how_many_ways(12) => 927
how_many_ways(13) => 1705
.
.
how_many_ways(22) => 410744
how_many_ways(23) => 755476
how_many_ways(24) => 1389537
how_many_ways(25) => 2555757
how_many_ways(26) => 4700770
how_many_ways(27) => 8646064
I like the explanation of #MichałKomorowski and the comment of #rici. Though I think if it depends on knowing K(3) = 4, then it involves counting manually.
Easily get the intuition for the problem:
Think you are climbing stairs and the possible steps you can take are 1 & 2
The total no. of ways to reach step 4 = Total no. of ways to reach step 3 + Total no of ways to reach step 2
How?
Basically, there are only two possible steps from where you can reach step 4.
Either you are in step 3 and take one step
Or you are in step 2 and take two step leap
These two are the only possibilities by which you can ever reach step 4
Similarly, there are only two possible ways to reach step 2
Either you are in step 1 and take one step
Or you are in step 0 and take two step leap
F(n) = F(n-1) + F(n-2)
F(0) = 0 and F(1) = 1 are the base cases. From here you can start building F(2), F(3) and so on. This is similar to Fibonacci series.
If the number of possible steps is increased, say [1,2,3], now for every step you have one more option i.e., you can directly leap from three steps prior to it
Hence the formula would become
F(n) = F(n-1) + F(n-2) + F(n-3)
See this video for understanding Staircase Problem Fibonacci Series
Easy understanding of code: geeksforgeeks staircase problem
Count ways to reach the nth stair using step 1, 2, 3.
We can count using simple Recursive Methods.
// Header File
#include<stdio.h>
// Function prototype for recursive Approch
int findStep(int);
int main(){
int n;
int ways=0;
ways = findStep(4);
printf("%d\n", ways);
return 0;
}
// Function Definition
int findStep(int n){
int t1, t2, t3;
if(n==1 || n==0){
return 1;
}else if(n==2){
return 2;
}
else{
t3 = findStep(n-3);
t2 = findStep(n-2);
t1 = findStep(n-1);
return t1+t2+t3;
}
}
def count(steps):
sol = []
sol.append(1)
sol.append(1 + sol[0])
sol.append(1 + sol[1] + sol[0])
if(steps > 3):
for x in range(4, steps+1):
sol[(x-1)%3] = sum(sol)
return sol[(steps-1)%3]
My solution is in java.
I decided to solve this bottom up.
I start off with having an empty array of current paths []
Each step i will add a all possible step sizes {1,2,3}
First step [] --> [[1],[2],[3]]
Second step [[1],[2],[3]] --> [[1,1],[1,2],[1,3],[2,1],[2,2],[2,3],[3,1][3,2],[3,3]]
Iteration 0: []
Iteration 1: [ [1], [2] , [3]]
Iteration 2: [ [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2], [3,3]]
Iteration 3 [ [1,1,1], [1,1,2], [1,1,3] ....]
The sequence lengths are as follows
1
2
3
5
8
13
21
My step function is called build
public class App {
public static boolean isClimedTooHigh(List<Integer> path, int maxSteps){
int sum = 0;
for (Integer i : path){
sum+=i;
}
return sum>=maxSteps;
}
public static void modify(Integer x){
x++;
return;
}
/// 1 2 3
/// 11 12 13
/// 21 22 23
/// 31 32 33
///111 121
public static boolean build(List<List<Integer>> paths, List<Integer> steps, int maxSteps){
List<List<Integer>> next = new ArrayList<List<Integer>>();
for (List<Integer> path : paths){
if (isClimedTooHigh(path, maxSteps)){
next.add(path);
}
for (Integer step : steps){
List<Integer> p = new ArrayList<Integer>(path);
p.add(step);
next.add(p);
}
}
paths.clear();
boolean completed = true;
for (List<Integer> n : next){
if (completed && !isClimedTooHigh(n, maxSteps))
completed = false;
paths.add(n);
}
return completed;
}
public static boolean isPathEqualToMax(List<Integer> path, int maxSteps){
int sum = 0;
for (Integer i : path){
sum+=i;
}
return sum==maxSteps;
}
public static void calculate( int stepSize, int maxSteps ){
List<List<Integer>> paths = new ArrayList<List<Integer>>();
List<Integer> steps = new ArrayList<Integer>();
for (int i =1; i < stepSize; i++){
List<Integer> s = new ArrayList<Integer>(1);
s.add(i);
steps.add(i);
paths.add(s);
}
while (!build(paths,steps,maxSteps));
List<List<Integer>> finalPaths = new ArrayList<List<Integer>>();
for (List<Integer> p : paths){
if (isPathEqualToMax(p, maxSteps)){
finalPaths.add(p);
}
}
System.out.println(finalPaths.size());
}
public static void main(String[] args){
calculate(3,1);
calculate(3,2);
calculate(3,3);
calculate(3,4);
calculate(3,5);
calculate(3,6);
calculate(3,7);
return;
}
}
Count total number of ways to cover the distance with 1, 2 and 3 steps.
Recursion solution time complexity is exponential i.e. O(3n).
Since same sub problems are solved again, this problem has overlapping sub problems property. So min square sum problem has both properties of a dynamic programming problem.
public class MaxStepsCount {
/** Dynamic Programming. */
private static int getMaxWaysDP(int distance) {
int[] count = new int[distance+1];
count[0] = 1;
count[1] = 1;
count[2] = 2;
/** Memorize the Sub-problem in bottom up manner*/
for (int i=3; i<=distance; i++) {
count[i] = count[i-1] + count[i-2] + count[i-3];
}
return count[distance];
}
/** Recursion Approach. */
private static int getMaxWaysRecur(int distance) {
if(distance<0) {
return 0;
} else if(distance==0) {
return 1;
}
return getMaxWaysRecur(distance-1)+getMaxWaysRecur(distance-2)
+getMaxWaysRecur(distance-3);
}
public static void main(String[] args) {
// Steps pf 1, 2 and 3.
int distance = 10;
/** Recursion Approach. */
int ways = getMaxWaysRecur(distance);
System.out.println(ways);
/** Dynamic Programming. */
ways = getMaxWaysDP(distance);
System.out.println(ways);
}
}
My blog post on this:
http://javaexplorer03.blogspot.in/2016/10/count-number-of-ways-to-cover-distance.html
Recursive memoization based C++ solution:
You ask a stair how many ways we can go to top? If its not the topmost stair, its going to ask all its neighbors and sum it up and return you the result. If its the topmost stair its going to say 1.
vector<int> getAllStairsFromHere(vector<int>& numSteps, int& numStairs, int currentStair)
{
vector<int> res;
for(auto it : numSteps)
if(it + currentStair <= numStairs)
res.push_back(it + currentStair);
return res;
}
int numWaysToClimbUtil(vector<int>& numSteps, int& numStairs, int currentStair, map<int,int>& memT)
{
auto it = memT.find(currentStair);
if(it != memT.end())
return it->second;
if(currentStair >= numStairs)
return 1;
int numWaysToClimb = 0;
auto choices = getAllStairsFromHere(numSteps, numStairs, currentStair);
for(auto it : choices)
numWaysToClimb += numWaysToClimbUtil(numSteps, numStairs, it, memT);
memT.insert(make_pair(currentStair, numWaysToClimb));
return memT[currentStair];
}
int numWaysToClimb(vector<int>numSteps, int numStairs)
{
map<int,int> memT;
int currentStair = 0;
return numWaysToClimbUtil(numSteps, numStairs, currentStair, memT);
}
Here is an O(Nk) Java implementation using dynamic programming:
public class Sample {
public static void main(String[] args) {
System.out.println(combos(new int[]{4,3,2,1}, 100));
}
public static int combos(int[] steps, int stairs) {
int[][] table = new int[stairs+1][steps.length];
for (int i = 0; i < steps.length; i++) {
for (int n = 1; n <= stairs; n++ ) {
int count = 0;
if (n % steps[i] == 0){
if (i == 0)
count++;
else {
if (n <= steps[i])
count++;
}
}
if (i > 0 && n > steps[i]) {
count += table[n - steps[i]][i];
}
if (i > 0)
count += table[n][i-1];
table[n][i] = count;
}
}
for (int n = 1; n < stairs; n++) {
System.out.print(n + "\t");
for (int i = 0; i < steps.length; i++) {
System.out.print(table[n][i] + "\t");
}
System.out.println();
}
return table[stairs][steps.length-1];
}
}
The idea is to fill the following table 1 column at a time from left to right:
N (4) (4,3) (4,3,2) (4,3,2,1)
1 0 0 0 1
2 0 0 1 2
3 0 1 1 3
4 1 1 2 5
5 0 0 1 6
6 0 1 3 9
7 0 1 2 11
8 1 1 4 15
9 0 1 3 18
10 0 1 5 23
11 0 1 4 27
12 1 2 7 34
13 0 1 5 39
..
..
99 0 9 217 7803
100 8037
Below is the several ways to use 1 , 2 and 3 steps
1: 1
2: 11 2
3: 111 12 21 3
4: 1111 121 211 112 22 13 31
5: 11111 1112 1121 1211 2111 122 212 221 113 131 311 23 32
6: 111111 11112 11121 11211 12111 21111 1113 1131 1311 3111 123 132 312 321 213 231 33 222 1122 1221 2211 1212 2121 2112
So according to above combination the soln should be:
K(n) = K(n-3) + K(n-2) + K(n - 1)
k(6) = 24 which is k(5)+k(4)+k(3) = 13+7+4
Java recursive implementation based on Michał's answer:
public class Tribonacci {
// k(0) = 1
// k(1) = 1
// k(2) = 2
// k(3) = 4
// ...
// k(n) = k(n-3) + k(n-2) + k(n - 1)
static int get(int n) {
if (n == 0) {
return 1;
} if (n == 1) {
return 1;
} else if (n == 2) {
return 2;
//} else if (n == 3) {
// return 4;
} else {
return get(n - 3) + get(n - 2) + get(n - 1);
}
}
public static void main(String[] args) {
System.out.println("Tribonacci sequence");
System.out.println(Tribonacci.get(1));
System.out.println(Tribonacci.get(2));
System.out.println(Tribonacci.get(3));
System.out.println(Tribonacci.get(4));
System.out.println(Tribonacci.get(5));
System.out.println(Tribonacci.get(6));
}
}
As the question has got only one input which is stair numbers and simple constraints, I thought result could be equal to a simple mathematical equation which can be calculated with O(1) time complexity. Apparently, it is not as simple as i thought. But, i still could do something!
By underlining this, I found an equation for solution of same question with 1 and 2 steps taken(excluding 3). It took my 1 day to find this out. Harder work can find for 3 step version too.
So, if we were allowed to take 1 or 2 steps, results would be equal to:
First notation is not mathematically perfect, but i think it is easier to understand.
On the other hand, there must be a much simpler equation as there is one for Fibonacci series. But discovering it is out of my skills.
Maybe its just 2^(n-1) with n being the number of steps?
It makes sence for me because with 4 steps you have 8 possibilities:
4,
3+1,
1+3,
2+2,
2+1+1,
1+2+1,
1+1+2,
1+1+1+1,
I guess this is the pattern

Very interesting program of building pyramid

I have came across this very interesting program of printing numbers in pyramid.
If n = 1 then print the following,
1 2
4 3
if n = 2 then print the following,
1 2 3
8 9 4
7 6 5
if n = 3 then print the following,
1 2 3 4
12 13 14 5
11 16 15 6
10 9 8 7
I can print all these using taking quite a few loops and variables but it looks very specific. You might have noticed that all these pyramid filling starts in one direction until it find path filled. As you might have noticed 1,2,3,4,5,6,7,8,9,10,11,12 filed in outer edges till it finds 1 so after it goes in second row after 12 and prints 13,14 and so on. It prints in spiral mode something like snakes game snakes keep on going until it hits itself.
I would like to know is there any algorithms behind this pyramid generation or its just tricky time consuming pyramid generation program.
Thanks in advance. This is a very interesting challenging program so I kindly request no need of pipeline of down vote :)
I made a small recursive algorithm for your problem.
public int Determine(int n, int x, int y)
{
if (y == 0) return x + 1; // Top
if (x == n) return n + y + 1; // Right
if (y == n) return 3 * n - x + 1; // Bottom
if (x == 0) return 4 * n - y + 1; // Left
return 4 * n + Determine(n - 2, x - 1, y - 1);
}
You can call it by using a double for loop. x and y start at 0:
for (int y=0; y<=n; y++)
for (int x=0; x<=n; x++)
result[x,y] = Determine(n,x,y);
Here is some C code implementing the basic algorithm submitted by #C.Zonnerberg my example uses n=6 for a 6x6 array.
I had to make a few changes to get the output the way I expected it to look. I swapped most the the x's and y's and changed several of the n's to n-1 and changed the comparisons in the for loops from <= to <
int main(){
int x,y,n;
int result[6][6];
n=6;
for (x=0; x<n; x++){
for (y=0; y<n; y++) {
result[x][y] = Determine(n,x,y);
if(y==0)
printf("\n[%d,%d] = %2d, ", x,y, result[x][y]);
else
printf("[%d,%d] = %2d, ", x,y, result[x][y]);
}
}
return 0;
}
int Determine(int n, int x, int y)
{
if (x == 0) return y + 1; // Top
if (y == n-1) return n + x; // Right
if (x == n-1) return 3 * (n-1) - y + 1; // Bottom
if (y == 0) return 4 * (n-1) - x + 1; // Left
return 4 * (n-1) + Determine(n - 2, x - 1, y- 1);
}
Output
[0,0] = 1, [0,1] = 2, [0,2] = 3, [0,3] = 4, [0,4] = 5, [0,5] = 6,
[1,0] = 20, [1,1] = 21, [1,2] = 22, [1,3] = 23, [1,4] = 24, [1,5] = 7,
[2,0] = 19, [2,1] = 32, [2,2] = 33, [2,3] = 34, [2,4] = 25, [2,5] = 8,
[3,0] = 18, [3,1] = 31, [3,2] = 36, [3,3] = 35, [3,4] = 26, [3,5] = 9,
[4,0] = 17, [4,1] = 30, [4,2] = 29, [4,3] = 28, [4,4] = 27, [4,5] = 10,
[5,0] = 16, [5,1] = 15, [5,2] = 14, [5,3] = 13, [5,4] = 12, [5,5] = 11,
With an all-zeros array, you could start with [row,col] = [0,0], fill in this space, then add [0,1] to position (one to the right) until it's at the end or runs into a non-zero.
Then go down (add [1,0]), filling in space until it's the end or runs into a non-zero.
Then go left (add [0,-1]), filling in space until it's the end or runs into a non-zero.
Then go up (add [-1,0]), filling in space until it's the end or runs into a non-zero.
and repeat...

Resources