Efficiently filling empty cells in 3D matrix - algorithm

I have a 3D "cubical" matrix, with some cells filled and others empty. A closed region enclosed by filled cells represents a hollow shape. For example, the matrix could have cells filled in such a way that together they form the surface of a hollow sphere. Now, I want an efficient way to fill the interior of this sphere: if a cell C0 is surrounded in all directions by filled cells (filled cell in any direction need not be an immediate neighbor of C0), then fill C0.
A naive way would be the following :-
For each cell, scan in the +X, -X, +Y, -Y, +Z, -Z direction, and see
if you encounter a filled cell in each and every direction.
If a filled cell is encountered in each and every direction, then fill this
cell (as it is part of the interior of some shape).
If you reach the end of grid even in one direction without encountering any filled
cell, then the cell under consideration is not interior to any shape,
and should remain unfilled.
The complexity of above approach is O(n^4), where dimension of 3D grid is n*n*n.
An optimization could be to as follows :-
If for an unfilled cell C[x][y][z], we encountered one filled cell
each in all the 6 directions, then not only C[x][y][z] needs to
be filled, it is also guaranteed that all the cells which we scanned
just now (i.e. {in +X direction, all cells C[x][y][z], C[x+1][y][z],
C[x+2][y][z], ..., till the first filled cell}, similarly for -X, +Y,
-Y, +Z, -Z direction) must be part of the interior of some shape, and hence must be filled.
Another could be as follows :-
If for an unfilled cell C[x][y][z], we DO NOT encounter any filled
cell in, say, +X direction, then not only will C[x][y][z] remain
unfilled, it is also guaranteed that all the cells which we scanned
just now (i.e. in +X direction, all cells C[x][y][z], C[x+1][y][z],
C[x+2][y][z], ..., till the end of grid) must be part of the exterior
and hence, must remain unfilled.
Can someone suggest a more efficient approach to this problem? Even simple optimizations like above, which might not reduce the order of time complexity, are welcome.

You are dealing with 3D Flood Fill. See detailed Wikipedia article http://en.m.wikipedia.org/wiki/Flood_fill

Ok, as this is a closed hollow shapes, we can simply use a BFS or DFS to solve the problem.
BFS:
Starting with an empty queue, add to the queue any cell that lies inside the hollow shape. From the top of the queue, pop out one cell, fill this cell and check 6 other neighbors of this cell, if this neighbor is not filled, add it to the queue, else just ignore this cell. Continue this process until the queue is empty.
The remaining problem is to find a cell that located inside the hollow shape, one trick is the you need to find the cell located at the corner of the shape, which has at least three filled neighbors.
Time complexity is O(number of needed to filled cell * 6 direction need to check)
Tip to move to 6 direction:
int[] x = {0,0,0,0,1,-1};
int[] y = {0,0,1,-1,0,0};
int[] z = {1,-1,0,0,0,0};
Point p = // point in space with three dimension x,y,z
for(int i = 0; i < 6; i++){
int a = p.x + x[i];
int b = p.y + y[i];
int c = p.z + z[i];
}

For each cell, scan in the +X, -X, +Y, -Y, +Z, -Z direction, and see if you encounter a filled cell in each and every direction.
If a filled cell is encountered in each and every direction, then fill this cell (as it is part of the interior of some shape).
The above statement is incorrect unless you are only dealing with convex hulls. The image below shows that the point in question is not enclosed in the blue shape but it will still intersect in all (x,y,z) directions.
Instead, to handle the general case of finding hollowed shapes, you can add all cells to a Set. Then start at a boundary cell. The cell at the boundary is part of a hollowed shape if it is filled, otherwise it is part of a background (non-filled) shape.
Then, similar to #Pham Trung's answer, you can traverse outward in all directions until you have traversed all cells that are within the shape, ignoring the colored cells at the boundaries. Choose another cell at the boundary of the previous shape and start the process over until all cells are traversed.
In the end you will have each cell labeled as either part of a hollow shape or the background.

Just for completeness, two more. YMMV depending on a lot of factors.
1. Find the surface
If you are dealing with a large number of voxels, one optimisation possibility would be to find the border surface of the hollow. This can be done as in Pham Trung's answer but only accepting cells which have at least one of their 6 neighbours filled.
After the border surface has been determined, it can be filled line-by-line using 1D fills, as the directions "inside" and "outside" are known.
This method keeps the set size much smaller if you have a large number of voxels (scales as n^2 instead of n^3). Set lookups are usually very fast, but if the set does not fit into RAM, they slow down a lot.
2. Slice to 2D
Another possibility would be to slice the shape into 2D slices and connect the resulting cavities layer-by-layer. Then only two slices need to be kept in memory at the same time.
The principal idea is to give every separate connected 2D region an own identifier and then find its connections to the already known regions in the neighbouring layer. After handling all layers, connected 3D regions remain.
The challenging part is to find the best algorithm to connect the 2D regions in neighbouring layers. It seems that this method is fast with simple shapes (few disconnected regions in the 2D slices) but slow with complex shapes ("wormholes in tree"). Also, a quick algorithm to find a single common point in two sets is needed. (I.e. no full set intersection is required, just the information whether the sets have at least one common point or not.)
Again, if your sets are of reasonable size, the trivial algorithm described by Pham Trung is probably the best choice.

Related

Find the rectangle with the maximum area, containing a specific point in an occupancy grid

Problem
Given an occupancy grid, for example:
...................*
*...............*...
*..*.............*..
...........*........
....................
..*.......X.........
............*.*.*...
....*..........*....
...*........*.......
..............*.....
Where, * represents an occupied block, . represents a free block and X represents a point (or block) of interest, what is the most time-efficient algorithm to find the largest rectangle which includes X, but does not include any obstacles, i.e. any *?
For example, the solution to the provided grid would be:
.....######........*
*....######.....*...
*..*.######......*..
.....######*........
.....######.........
..*..#####X.........
.....######.*.*.*...
....*######....*....
...*.######.*.......
.....######...*.....
My Thoughts
Given we have a known starting point X, I can't help but think there must be a straightforwards solution to "snap" lines to the outer boundaries to create the largest rectangle.
My current thinking is to snap lines to the maximum position offsets (i.e. go to the next row or column until you encounter an obstacle) in a cyclic manner. E.g. you propagate a horizontal line from the point X down until there is a obstacle along that line, then you propagate a vertical line left until you encounter an obstacle, then a horizontal line up and a vertical line right. You repeat this starting at with one of the four moving lines to get four rectangles, and then you select the rectangle with the largest area. However, I do not know if this is optimal, nor the quickest approach.
This problem is a well-known one in Computational Geometry. A simplified version of this problem (without a query point) is briefly described here. The problem with query point can be formulated in the following way:
Let P be a set of n points in a fixed axis-parallel rectangle B in the plane. A P-empty rectangle (or just an empty rectangle for short) is any axis-parallel rectangle that is contained in
B and its interior does not contain any point of P. We consider the problem of preprocessing
P into a data structure so that, given a query point q, we can efficiently find the largest-area
P-empty rectangle containing q.
The paragraph above has been copied from this paper, where authors describe an algorithm and data structure for the set with N points in the plane, which allow to find a maximal empty rectangle for any query point in O(log^4(N)) time. Sorry to say, it's a theoretic paper, which doesn't contain any algorithm implementation details.
A possible approach could be to somehow (implicitly) rule out irrelevant occupied cells: those that are in the "shadow" of others with respect to the starting point:
0 1 X
01234567890123456789 →
0....................
1....................
2...*................
3...........*........
4....................
5..*.......X.........
6............*.......
7....*...............
8....................
9....................
↓ Y
Looking at this picture, you could state that
there are only 3 relevant xmin values for the rectangle: [3,4,5], each having an associated ymin and ymax, respectively [(3,6),(0,6),(0,9)]
there are only 3 relevant xmax values for the rectangle: [10,11,19], each having an associated ymin and ymax, respectively [(0,9),(4,9),(4,5)]
So the problem can be reduced to finding the rectangle with the highest area out of the 3x3 set of unique combinations of xmin and xmax values
If you take into account the preparation part of selecting relevant occupied cells, this has the complexity of O(occ_count), not taking into sorting if this would still be needed and with occ_count being the number of occupied cells.
Finding the best solution (in this case 3x3 combinations) would be O(min(C,R,occ_count)²). The min(C,R) includes that you could choose the 'transpose' the approach in case R<C, (which is actually true in this example) and that that the number of relevant xmins and xmaxs have the number of occupied cells as an upper limit.

Nearest neighbor search in 2D using a grid partitioning

I have a fairly large set of 2D points (~20000) in a set, and for each point in the x-y plane want to determine which point from the set is closest. (Actually, the points are of different types, and I just want to know which type is closest. And the x-y plane is a bitmap, say 640x480.)
From this answer to the question "All k nearest neighbors in 2D, C++" I got the idea to make a grid. I created n*m C++ vectors and put the points in the vector, depending on which bin it falls into. The idea is that you only have to check the distance of the points in the bin, instead of all points. If there is no point in the bin, you continue with the adjacent bins in a spiralling manner.
Unfortunately, I only read Oli Charlesworth's comment afterwards:
Not just adjacent, unfortunately (consider that points in the cell two
to the east may be closer than points in the cell directly north-east,
for instance; this problem gets much worse in higher dimensions).
Also, what if the neighbouring cells happen to have less than 10
points in them? In practice, you will need to "spiral out".
Fortunately, I already had the spiraling code figured out (a nice C++ version here, and there are other versions in the same question). But I'm still left with the problem:
If I find a hit in a cell, there could be a closer hit in an adjacent cell (yellow is my probe, red is the wrong choice, green the actual closest point):
If I find a hit in an adjacent cell, there could be a hit in a cell 2 steps away, as Oli Charlesworth remarked:
But even worse, if I find a hit in a cell two steps away, there could still be a closer hit in a hit three steps away! That means I'd have to consider all cells with dx,dy= -3...3, or 49 cells!
Now, in practice this won't happen often, because I can choose my bin size so the cells are filled enough. Still, I'd like to have a correct result, without iterating over all points.
So how do I find out when to stop "spiralling" or searching? I heard there is an approach with multiple overlapping grids, but I didn't quite understand it. Is it possible to salvage this grid technique?
Since the dimensions of your bitmap are not large and you want to calculate the closest point for every (x,y), you can use dynamic programming.
Let V[i][j] be the distance from (i,j) to the closest point in the set, but considering only the points in the set that are in the "rectangle" [(1, 1), (i, j)].
Then V[i][j] = 0 if there is a point in (i, j), or V[i][j] = min(V[i'][j'] + dist((i, j), (i', j'))) where (i', j') is one of the three neighbours of (i,j):
i.e.
(i - 1, j)
(i, j - 1)
(i - 1, j - 1)
This gives you the minimum distance, but only for the "upper left" rectangle. We do the same for the "upper right", "lower left", and "lower right" orientations, and then take the minimum.
The complexity is O(size of the plane), which is optimal.
For you task usually a Point Quadtree is used, especially when the points are not evenly distributed.
To save main memory you als can use a PM or PMR-Quadtree which uses buckets.
You search in your cell and in worst case all quad cells surounding the cell.
You can also use a k-d tree.
A solution im trying
First make a grid such that you have an average of say 1 (more if you want larger scan) points per box.
Select the center box. Continue selecting neighbor boxes in a circular manner until you find at least one neighbor. At this point you can have 1 or 9 or so on boxes selected
Select one more layer of adjacent boxes
Now you have a fairly small list of points, usually not more than 10 which you can punch into the distance formula to find the nearest neighbor.
Since you have on average 1 points per box, you will mostly be selecting 9 boxes and comparing 9 distances. Can adjust grid size according to your dataset properties to achieve better results.
Also, if your data has a lot of variance, you can try 2 levels of grid (or even more) so if selection works and returns more than 50 points in a single query, start a next grid search with a grid 1/10th the size ...
One solution would be to construct multiple partitionings with different grid sizes.
Assume you create partitions at levels 1,2,4,8,..
Now, search for a point in grid size 1 (you are basically searching in 9 squares). If there is a point in the search area and if distance to that point is less than 1, stop. Otherwise move on to the next grid size.
The number of grids you need to construct is about twice as compared to creating just one level of partitioning.

Randomly and efficiently filling space with shapes

What is the most efficient way to randomly fill a space with as many non-overlapping shapes? In my specific case, I'm filling a circle with circles. I'm randomly placing circles until either a certain percentage of the outer circle is filled OR a certain number of placements have failed (i.e. were placed in a position that overlapped an existing circle). This is pretty slow, and often leaves empty spaces unless I allow a huge number of failures.
So, is there some other type of filling algorithm I can use to quickly fill as much space as possible, but still look random?
Issue you are running into
You are running into the Coupon collector's problem because you are using a technique of Rejection sampling.
You are also making strong assumptions about what a "random filling" is. Your algorithm will leave large gaps between circles; is this what you mean by "random"? Nevertheless it is a perfectly valid definition, and I approve of it.
Solution
To adapt your current "random filling" to avoid the rejection sampling coupon-collector's issue, merely divide the space you are filling into a grid. For example if your circles are of radius 1, divide the larger circle into a grid of 1/sqrt(2)-width blocks. When it becomes "impossible" to fill a gridbox, ignore that gridbox when you pick new points. Problem solved!
Possible dangers
You have to be careful how you code this however! Possible dangers:
If you do something like if (random point in invalid grid){ generateAnotherPoint() } then you ignore the benefit / core idea of this optimization.
If you do something like pickARandomValidGridbox() then you will slightly reduce the probability of making circles near the edge of the larger circle (though this may be fine if you're doing this for a graphics art project and not for a scientific or mathematical project); however if you make the grid size 1/sqrt(2) times the radius of the circle, you will not run into this problem because it will be impossible to draw blocks at the edge of the large circle, and thus you can ignore all gridboxes at the edge.
Implementation
Thus the generalization of your method to avoid the coupon-collector's problem is as follows:
Inputs: large circle coordinates/radius(R), small circle radius(r)
Output: set of coordinates of all the small circles
Algorithm:
divide your LargeCircle into a grid of r/sqrt(2)
ValidBoxes = {set of all gridboxes that lie entirely within LargeCircle}
SmallCircles = {empty set}
until ValidBoxes is empty:
pick a random gridbox Box from ValidBoxes
pick a random point inside Box to be center of small circle C
check neighboring gridboxes for other circles which may overlap*
if there is no overlap:
add C to SmallCircles
remove the box from ValidBoxes # possible because grid is small
else if there is an overlap:
increase the Box.failcount
if Box.failcount > MAX_PERGRIDBOX_FAIL_COUNT:
remove the box from ValidBoxes
return SmallCircles
(*) This step is also an important optimization, which I can only assume you do not already have. Without it, your doesThisCircleOverlapAnother(...) function is incredibly inefficient at O(N) per query, which will make filling in circles nearly impossible for large ratios R>>r.
This is the exact generalization of your algorithm to avoid the slowness, while still retaining the elegant randomness of it.
Generalization to larger irregular features
edit: Since you've commented that this is for a game and you are interested in irregular shapes, you can generalize this as follows. For any small irregular shape, enclose it in a circle that represent how far you want it to be from things. Your grid can be the size of the smallest terrain feature. Larger features can encompass 1x2 or 2x2 or 3x2 or 3x3 etc. contiguous blocks. Note that many games with features that span large distances (mountains) and small distances (torches) often require grids which are recursively split (i.e. some blocks are split into further 2x2 or 2x2x2 subblocks), generating a tree structure. This structure with extensive bookkeeping will allow you to randomly place the contiguous blocks, however it requires a lot of coding. What you can do however is use the circle-grid algorithm to place the larger features first (when there's lot of space to work with on the map and you can just check adjacent gridboxes for a collection without running into the coupon-collector's problem), then place the smaller features. If you can place your features in this order, this requires almost no extra coding besides checking neighboring gridboxes for collisions when you place a 1x2/3x3/etc. group.
One way to do this that produces interesting looking results is
create an empty NxM grid
create an empty has-open-neighbors set
for i = 1 to NumberOfRegions
pick a random point in the grid
assign that grid point a (terrain) type
add the point to the has-open-neighbors set
while has-open-neighbors is not empty
foreach point in has-open-neighbors
get neighbor-points as the immediate neighbors of point
that don't have an assigned terrain type in the grid
if none
remove point from has-open-neighbors
else
pick a random neighbor-point from neighbor-points
assign its grid location the same (terrain) type as point
add neighbor-point to the has-open-neighbors set
When done, has-open-neighbors will be empty and the grid will have been populated with at most NumberOfRegions regions (some regions with the same terrain type may be adjacent and so will combine to form a single region).
Sample output using this algorithm with 30 points, 14 terrain types, and a 200x200 pixel world:
Edit: tried to clarify the algorithm.
How about using a 2-step process:
Choose a bunch of n points randomly -- these will become the centres of the circles.
Determine the radii of these circles so that they do not overlap.
For step 2, for each circle centre you need to know the distance to its nearest neighbour. (This can be computed for all points in O(n^2) time using brute force, although it may be that faster algorithms exist for points in the plane.) Then simply divide that distance by 2 to get a safe radius. (You can also shrink it further, either by a fixed amount or by an amount proportional to the radius, to ensure that no circles will be touching.)
To see that this works, consider any point p and its nearest neighbour q, which is some distance d from p. If p is also q's nearest neighbour, then both points will get circles with radius d/2, which will therefore be touching; OTOH, if q has a different nearest neighbour, it must be at distance d' < d, so the circle centred at q will be even smaller. So either way, the 2 circles will not overlap.
My idea would be to start out with a compact grid layout. Then take each circle and perturb it in some random direction. The distance in which you perturb it can also be chosen at random (just make sure that the distance doesn't make it overlap another circle).
This is just an idea and I'm sure there are a number of ways you could modify it and improve upon it.

Efficient algorithm to find a point not touched by a set of rectangles

Input: a set of rectangles within the area (0, 0) to (1600, 1200).
Output: a point which none of the rectangles contains.
What's an efficient algorithm for this? The only two I can currently think of are:
Create a 1600x1200 array of booleans. Iterate through the area of each rectangle, marking those bits as True. Iterate at the end and find a False bit. Problem is that it wastes memory and can be slow.
Iterate randomly through points. For each point, iterate through the rectangles and see if any of them contain the point. Return the first point that none of the rectangles contain. Problem is that it is really slow for densely populated problem instances.
Why am I doing this? It's not for homework or for a programming competition, although I think that a more complicated version of this question was asked at one (each rectangle had a 'color', and you had to output the color of a few points they gave you). I'm just trying to programmatically disable the second monitor on Windows, and I'm running into problems with a more sane approach. So my goal is to find an unoccupied spot on the desktop, then simulate a right-click, then simulate all the clicks necessary to disable it from the display properties window.
For each rectangle, create a list of runs along the horizontal direction. For example a rectangle of 100x50 will generate 50 runs of 100. Write these with their left-most X coordinate and Y coordinate to a list or map.
Sort the list, Y first then X.
Go through the list. Overlapping runs should be adjacent, so you can merge them.
When you find the first run that doesn't stretch across the whole screen, you're done.
I would allocate an image with my favorite graphics library, and let it do rectangle drawing.
You can try a low res version first (scale down a factor 8), that will work if there is at least a 15x15 area. If it fails, you can try a high res.
Use Windows HRGNs (Region in .net). They were kind of invented for this. But that's not language agnostic no.
Finally you can do rectangle subtraction. Only problem is that you can get up to 4 rectangles each time you subtract one rect from another. If there are lots of small ones, this can get out of hand.
P.S.: Consider optimizing for maximized windows. Then you can tell there are no pixels visible without hit testing.
Sort all X-coordinates (start and ends of rectangles), plus 0 & 1600, remove duplicates. Denote this Xi (0 <= i <= n).
Sort all Y-coordinates (start and ends of rectangles), plus 0 & 1200, remove duplicates. Denote this Yj (0 <= j <= m).
Make a n * m grid with the given Xi and Yj from the previous points, this should be much smaller than the original 1600x1200 one (unless you have a thousand rectangles, in which case this idea doesn't apply). Each point in this grid maps to a rectangle in the original 1600 x 1200 image.
Paint rectangles in this grid: find the coordinates of the rectangles in the sets from the first steps, paint in the grid. Each rectangle will be on the form (Xi1, Yj1, Xi2, Yj2), so you paint in the small grid all points (x, y) such that i1 <= x < i2 && j1 <= y < j2.
Find the first unpainted cell in the grid, take any point from it, the center for example.
Note: Rectangles are assumed to be on the form: (x1, y1, x2, y2), representing all points (x, y) such that x1 <= x < x2 && y1 <= y < y2.
Nore2: The sets of Xi & Yj may be stored in a sorted array or tree for O(log n) access. If the number of rectangles is big.
If you know the minimum x and y dimensions of the rectangles, you can use the first approach (a 2D array of booleans) using fewer pixels.
Take into account that 1600x1200 is less than 2M pixels. Is that really so much memory? If you use a bitvector, you only need 235k.
You first idea is not so bad... you should just change the representation of the data.
You may be interessed in a sparse array of booleans.
A language dependant solution is to use the Area (Java).
If I had to do this myself, I'd probably go for the 2d array of booleans (particularly downscaled as jdv suggests, or using accelerated graphics routines) or the random point approach.
If you really wanted to do a more clever approach, though, you can just consider rectangles. Start with a rectangle with corners (0,0),(1600,1200) = (lx,ly),(rx,ry) and "subtract" the first window (wx1,wy1)(wx2,wy2).
This can generate at most 4 new "still available" rectangles if it is completely contained within the original free rectangle: (eg, all 4 corners of the new window are contained within the old one) they are (lx,ly)-(rx,wy1), (lx,wy1)-(wx1,wy2), (wx2,wy1)-(rx,wy2), and (lx,wy2)-(rx,ry). If just a corner of the window overlaps (only 1 corner is inside the free rectangle), it breaks it into two new rectangles; if a side (2 corners) juts in it breaks it into 3; and if there's no overlap, nothing changes. (If they're all axes aligned, you can't have 3 corners inside).
So then keep looping through the windows, testing for intersection and sub-dividing rectangles, until you have a list (if any) of all remaining free space in terms of rectangles.
This is probably going to be slower than any of the graphics-library powered approaches above, but it'd be more fun to write :)
Keep a list of rectangles that represent uncovered space. Initialize it to the entire area.
For each of the given rectangles
For each rectangle in uncovered space
If they intersect, divide the uncovered space into smaller rectangles around the covering rectangle, and add the smaller rectangles (if any) to your list of uncovered ones.
If your list of uncovered space still has any entries, they contain all points not covered by the given rectangles.
This doesn't depend on the number of pixels in your area, so it will work for large (or infinite) resolution. Each new rectangle in the uncovered list will have corners at unique intersections of pairs of other rectangles, so there will be at most O(n^2) in the list, giving a total runtime of O(n^3). You can make it more efficient by keeping your list of uncovered rectangles an a better structure to check each covering rectangle against.
This is a simple solution with a 1600+1200 space complexity only, it is similar in concept to creating a 1600x1200 matrix but without using a whole matrix:
Start with two boolean arrays W[1600] and H[1200] set to true.
Then for each visible window rectangle with coordinate ranges w1..w2 and h1..h2, mark W[w1..w2] and H[h1..h2] to false.
To check if a point with coordinates (w, h) falls in an empty space just check that
(W[w] && H[h]) == true

Random Tile layout

I need to place tiles on a large grid radiating from a central point in a way that looks organic and random. New tiles will need to find an open space on the grid that is touching at least 1 other tile.
Can anyone point me in the right to direction to anything that might help with this?
Or some basic concepts I can read up on that are in this vein?
For example, in this picture, there is a shape already created (yellow) and I may be receiving a new tile, that may be 1x1, 2x2, or 3x3. Trying to find a good way to figure out where I can place the new tile so that it will be touching the maximum amount of current tiles.
Picture:
alt text http://osomer.com/grid.JPG
Alternatively, you could approach this problem as the yellow tiles "eroding" away at the blue/background. To do this, at every step, have a yellow tile add a fixed number to the "erosion sum" E of all of the background tiles neighboring it in a cardinal direction (and perhaps maybe a fraction of that to the background tiles neighboring it diagonally).
Then, when it comes time to place a new tile, you can, for each background tile, pick a random number from 0 to E; the greatest one is "eroded" away. Alternatively, you could do a simple weighted random choice, with E being their weights.
For 2x2 or 3x3 tiles, you can pick only from tiles that suitably "fit" a 2x2 or 3x3 square in it (that is, a 2x2 or 3x3 the eroded tile on its edge, so that it doesn't cause overlap with already-placed tiles). But really, you're never going to get something looking as natural as one-by-one erosion/tile placement.
You can save time recalculating erosion sums by having them persist with each iteration, only, when you add a new tile, up the erosion sums of the ones around it (a simple +=). At this point, it is essentially the same as another answer suggested, albeit with a different perspective/philosophy.
A sample grid of Erosion Sums E, with direct cardinal neighbors being +4, and diagonal neighbors being +1:
Erosion Sums http://img199.imageshack.us/img199/4766/erosion.png
The ones with a higher E are most likely to be "eroded" away; for example, in this one, the two little inlets on the west and south faces are most likely to be eroded away by the yellow, followed by the smaller bays on the north and east faces. Least likely are the ones barely touching the yellow by one corner. You can decide which one either by assigning a random number from 0 to E for each tile and eroding the one with the highest random number, or doing a simple weighted random selection, or by any decision method of your choice.
For purely random, you start with an empty grid and a "candidate" list (also empty).
Place the first tile in the centre of the grid, then add each adjacent tile to the one you just placed into the "candidate" list. Then, each turn, choose a random entry in the "candidate" list and place a tile there. Look at each adjancent grid location next to where you just placed the tile, and for each one that is also empty, put it on the "candidate" list for the next time around (if not already there).
To avoid creating holes in your tile grid, increase the probability of selecting a grid location based on the number of adjacent tiles that are already filled (so if only one adjacent tile is already filled, it has low probably. If they're all filled, it'll have a very high probability).
In pseudo code:
grid = new array[width,height];
candidates = new list();
function place_tile(x,y) {
// place the tile at the given location
grid[x,y] = 1;
// loop through all the adjacent grid locations around the one
// we just placed
for(y1 = y - 1; y1 < y + 1; y1++) {
for(x1 = x - 1; x1 < x + 1; x1++) {
// if this location doesn't have a tile and isn't already in
// the candidate list, add it
if (grid[x,y] != 1 && !candidates.contains(x1,y1)) {
candidates.add(x1,y1);
}
}
}
}
// place the first tile in the centre
place_tile(width/2, height/2);
while (!finished) {
// choose a random tile from the candidate list
int index = rand(0, candidates.length - 1);
// place a tile at that location (remove the entry from
// the candidate list)
x, y = candidates[index];
candidates.remove(index);
place_tile(x, y);
}
The problem with your question is that 'organic and random' can be many different things.
Let me show two links
generating random fractal terrain (look at section 'Cloudy Skies' and imagine that you turn it to b/w, or in your case yellow/background).
simulating erosion (look at the image under 'erode')
The two above samples are 'organic and random' to me, but you might not be satisfied with those. So, I think you will have to better define what is 'organic and random'.
For now, I'll take your definition of the guiding rule for adding new tiles (but don't think it is necessarily the same problem), which I read as:
Given two shapes (assuming bitmaps)
find the relative position of the
shapes such that the number of
touching sides is maximum
I will also assume
overlap is not allowed
you can leave holes inside the resulting, merged shape
you can not rotate shapes
Under such conditions you need to test less then xy solutions and in each you need to
- discard it if there is an overlap
- discard it if they do not touch
- if they touch then count the number of edges that are common
All three of the above tests can be done in constant time by scanning all the yellow tiles (number of which is konstx*y)
So, the above can be easily done in O(n^4), is that good enough for you?
Compute a random spanning tree for the dual graph, that is, the grid whose vertices are the centers of your cells. For that, start at the center of the grid and do a random depth-first search. Then plot cells fro increasing tree distance from the center.

Resources