More issues with pool allocator with free list - c++11

In std::map, this ends up causing an error when the first object is constructed. I've checked the debugger, and I see that free_list::init() creates the consecutive memory addresses correctly. I'm aware this allocator cannot be used in vector or other related containers, but it's only meant to work with the nodular containers.
I get a run-time error from this in xutility (in VC12), at line 158:
_Container_proxy *_Parent_proxy = _Parent->_Myproxy;
Checking the debugger, it appears that _Parent was never initialized, bringing about the 0xC0000005 run-time error. Why or how it didn't get initialized and why this occurred when the first object was being constructed (after std::map did 3 separate allocations), I do not know.
I would like to have this work with std::map and std::list and the other nodular containers and am not worried about whether it can perform in std::vector, etc.
#include <algorithm>
class free_list {
public:
free_list() {}
free_list(free_list&& other)
: m_next(other.m_next) {
other.m_next = nullptr;
}
free_list(void* data, std::size_t num_elements, std::size_t element_size) {
init(data, num_elements, element_size);
}
free_list& operator=(free_list&& other) {
m_next = other.m_next;
other.m_next = nullptr;
}
void init(void* data, std::size_t num_elements, std::size_t element_size) {
union building {
void* as_void;
char* as_char;
free_list* as_self;
};
building b;
b.as_void = data;
m_next = b.as_self;
b.as_char += element_size;
free_list* runner = m_next;
for (std::size_t s = 1; s < num_elements; ++s) {
runner->m_next = b.as_self;
runner = runner->m_next;
b.as_char += element_size;
}
runner->m_next = nullptr;
}
free_list* obtain() {
if (m_next == nullptr) {
return nullptr;
}
free_list* head = m_next;
m_next = head->m_next;
return head;
}
void give_back(free_list* ptr) {
ptr->m_next = m_next;
m_next = ptr;
}
free_list* m_next;
};
template<class T>
class pool_alloc {
typedef pool_alloc<T> myt;
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T* pointer;
typedef const T* const_pointer;
typedef std::false_type propagate_on_container_copy_assignment;
typedef std::true_type propagate_on_container_move_assignment;
typedef std::true_type propagate_on_container_swap;
template<class U> struct rebind {
typedef pool_alloc<U> other;
};
~pool_alloc() {
destroy();
}
pool_alloc() : data(nullptr), fl(), capacity(4096) {
}
pool_alloc(size_type capacity) : data(nullptr), fl(), capacity(capacity) {}
pool_alloc(const myt& other)
: data(nullptr), fl(), capacity(other.capacity) {}
pool_alloc(myt&& other)
: data(other.data), fl(std::move(other.fl)), capacity(other.capacity) {
other.data = nullptr;
}
template<class U>
pool_alloc(const pool_alloc<U>& other)
: data(nullptr), fl(), capacity(other.max_size()) {}
myt& operator=(const myt& other) {
destroy();
capacity = other.capacity;
}
myt& operator=(myt&& other) {
destroy();
data = other.data;
other.data = nullptr;
capacity = other.capacity;
fl = std::move(other.fl);
}
static pointer address(reference ref) {
return &ref;
}
static const_pointer address(const_reference ref) {
return &ref;
}
size_type max_size() const {
return capacity;
}
pointer allocate(size_type) {
if (data == nullptr) create();
return reinterpret_cast<pointer>(fl.obtain());
}
void deallocate(pointer ptr, size_type) {
fl.give_back(reinterpret_cast<free_list*>(ptr));
}
template<class... Args>
static void construct(pointer ptr, Args&&... args) {
::new (ptr) T(std::forward<Args>(args)...);
}
static void destroy(pointer ptr) {
ptr->~T();
}
bool operator==(const myt& other) const {
return reinterpret_cast<char*>(data) ==
reinterpret_cast<char*>(other.data);
}
bool operator!=(const myt& other) const {
return !operator==(other);
}
private:
void create() {
data = ::operator new(capacity * sizeof(value_type));
fl.init(data, capacity, sizeof(value_type));
}
void destroy() {
::operator delete(data);
data = nullptr;
}
void* data;
free_list fl;
size_type capacity;
};
template<>
class pool_alloc < void > {
public:
template <class U> struct rebind { typedef pool_alloc<U> other; };
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
};
The problem comes when std::pair is being constructed (in MSVC12 utility at line 214):
template<class _Other1,
class _Other2,
class = typename enable_if<is_convertible<_Other1, _Ty1>::value
&& is_convertible<_Other2, _Ty2>::value,
void>::type>
pair(_Other1&& _Val1, _Other2&& _Val2)
_NOEXCEPT_OP((is_nothrow_constructible<_Ty1, _Other1&&>::value
&& is_nothrow_constructible<_Ty2, _Other2&&>::value))
: first(_STD forward<_Other1>(_Val1)),
second(_STD forward<_Other2>(_Val2))
{ // construct from moved values
}
Even after stepping in, the run-time error occurs, the same as described above with _Parent not being initialized.

I was able to answer my own question through extensive debugging. Apparently, VC12's std::map implementation at least at times will cast an _Alnod (permanent allocator that stays in scope for the life of the map, which is used to allocate and deallocate the nodes in the map, what I'd expect to be what actually calls allocate() and deallocate()) as an _Alproxy, a temporary allocator which creates some sort of object called _Mproxy (or something like that) using allocate(). The problem, though, is that VC12's implementation then lets _Alproxy go out of scope while still expecting the pointer to the allocated object to remain valid, so it is clear then that I would have to use ::operator new and ::operator delete on an object like _Mproxy: using a memory pool that then goes out of scope while a pointer to a location in it remains is what causes the crash.
I came up with what I suppose could be called a dirty trick, a test that is performed when copy-constructing or copy-assigning an allocator to another allocator type:
template<class U>
pool_alloc(const pool_alloc<U>& other)
: data(nullptr), fl(), capacity(other.max_size()), use_data(true) {
if (sizeof(T) < sizeof(U)) use_data = false;
}
I added the bool member use_data to the allocator class, which if true means to use the memory pool and which if false means to use ::operator new and ::operator delete. By default, it is true. The question of its value arises when the allocator gets cast as another allocator type whose template parameter's size is smaller than that of the source allocator; in that case, use_data is set to false. Because this _Mproxy object or whatever it's called is rather small, this fix seems to work, even when using std::set with char as the element type.
I've tested this using std::set with type char in both VC12 and GCC 4.8.1 in 32-bit and have found that in both cases it works. When allocating and deallocating the nodes in both cases, the memory pool is used.
Here is the full source code:
#include <algorithm>
class free_list {
public:
free_list() {}
free_list(free_list&& other)
: m_next(other.m_next) {
other.m_next = nullptr;
}
free_list(void* data, std::size_t num_elements, std::size_t element_size) {
init(data, num_elements, element_size);
}
free_list& operator=(free_list&& other) {
if (this != &other) {
m_next = other.m_next;
other.m_next = nullptr;
}
return *this;
}
void init(void* data, std::size_t num_elements, std::size_t element_size) {
union building {
void* as_void;
char* as_char;
free_list* as_self;
};
building b;
b.as_void = data;
m_next = b.as_self;
b.as_char += element_size;
free_list* runner = m_next;
for (std::size_t s = 1; s < num_elements; ++s) {
runner->m_next = b.as_self;
runner = runner->m_next;
b.as_char += element_size;
}
runner->m_next = nullptr;
}
free_list* obtain() {
if (m_next == nullptr) {
return nullptr;
}
free_list* head = m_next;
m_next = head->m_next;
return head;
}
void give_back(free_list* ptr) {
ptr->m_next = m_next;
m_next = ptr;
}
free_list* m_next;
};
template<class T>
class pool_alloc {
typedef pool_alloc<T> myt;
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T* pointer;
typedef const T* const_pointer;
typedef std::false_type propagate_on_container_copy_assignment;
typedef std::true_type propagate_on_container_move_assignment;
typedef std::true_type propagate_on_container_swap;
myt select_on_container_copy_construction() const {
return *this;
}
template<class U> struct rebind {
typedef pool_alloc<U> other;
};
~pool_alloc() {
clear();
}
pool_alloc() : data(nullptr), fl(), capacity(4096), use_data(true) {}
pool_alloc(size_type capacity) : data(nullptr), fl(),
capacity(capacity), use_data(true) {}
pool_alloc(const myt& other)
: data(nullptr), fl(), capacity(other.capacity),
use_data(other.use_data) {}
pool_alloc(myt&& other)
: data(other.data), fl(std::move(other.fl)), capacity(other.capacity),
use_data(other.use_data) {
other.data = nullptr;
}
template<class U>
pool_alloc(const pool_alloc<U>& other)
: data(nullptr), fl(), capacity(other.max_size()), use_data(true) {
if (sizeof(T) < sizeof(U)) use_data = false;
}
myt& operator=(const myt& other) {
if (*this != other) {
clear();
capacity = other.capacity;
use_data = other.use_data;
}
}
myt& operator=(myt&& other) {
if (*this != other) {
clear();
data = other.data;
other.data = nullptr;
capacity = other.capacity;
use_data = other.use_data;
fl = std::move(other.fl);
}
return *this;
}
template<class U>
myt& operator=(const pool_alloc<U>& other) {
if (this != reinterpret_cast<myt*>(&other)) {
capacity = other.max_size();
if (sizeof(T) < sizeof(U))
use_data = false;
else
use_data = true;
}
return *this;
}
static pointer address(reference ref) {
return &ref;
}
static const_pointer address(const_reference ref) {
return &ref;
}
size_type max_size() const {
return capacity;
}
pointer allocate(size_type) {
if (use_data) {
if (data == nullptr) create();
return reinterpret_cast<pointer>(fl.obtain());
} else {
return reinterpret_cast<pointer>(::operator new(sizeof(T)));
}
}
void deallocate(pointer ptr, size_type) {
if (use_data) {
fl.give_back(reinterpret_cast<free_list*>(ptr));
} else {
::operator delete(reinterpret_cast<void*>(ptr));
}
}
template<class... Args>
static void construct(pointer ptr, Args&&... args) {
::new ((void*)ptr) value_type(std::forward<Args>(args)...);
}
static void destroy(pointer ptr) {
ptr->~value_type();
}
bool operator==(const myt& other) const {
return reinterpret_cast<char*>(data) ==
reinterpret_cast<char*>(other.data);
}
bool operator!=(const myt& other) const {
return !operator==(other);
}
private:
void create() {
size_type size = sizeof(value_type) < sizeof(free_list*) ?
sizeof(free_list*) : sizeof(value_type);
data = ::operator new(capacity * size);
fl.init(data, capacity, size);
}
void clear() {
::operator delete(data);
data = nullptr;
}
void* data;
free_list fl;
size_type capacity;
bool use_data;
};
template<>
class pool_alloc < void > {
public:
template <class U> struct rebind { typedef pool_alloc<U> other; };
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
};
template<class Container, class Alloc>
void change_capacity(Container& c, typename Alloc::size_type new_capacity) {
Container temp(c, Alloc(new_capacity));
c = std::move(temp);
}
Since the allocator is not automatic-growing (don't know how to make such a thing), I have added the change_capacity() function.

Related

A container that accumulates its elements metrics

I'm looking into a solution of building containers which track stored size of their elements in addition to basic functions.
So far I didn't saw a solution which doesn't create a huge amount of boilerplate code of each invalidating member of container. This also assumes that stored elements cannot change size after being stored.
Unless standard containers have some feature that allows to inject such behaviour. The following example should be working one, albeit abridged for brevity. The declarations used are:
typedef uint8_t Byte;
typedef Byte PacketId;
template <class T>
struct CollectionTraits {
typedef T collection_type;
typedef typename collection_type::value_type value_type;
typedef typename collection_type::size_type size_type;
typedef typename collection_type::iterator iterator;
typedef typename collection_type::reference reference;
typedef typename collection_type::const_iterator const_iterator;
const_iterator begin() const { return _collection.begin(); }
const_iterator end() const { return _collection.end(); }
iterator begin() { return _collection.begin(); }
iterator end() { return _collection.end(); }
size_type size() const { return _collection.size(); }
protected:
T _collection;
};
struct Packet : CollectionTraits<std::vector<Byte>>
{
PacketId id;
};
The container itself:
struct PacketList : CollectionTraits<std::deque<Packet>>
{
public:
typedef Packet::size_type data_size;
void clear() { _collection.clear(); _total_size = 0; }
data_size total_size() const { return _total_size; }
void push_back(const Packet& v) {
_collection.push_back(v);
_add(v);
}
void push_back(const Packet&& v) {
_collection.push_back(std::move(v));
_add(v);
}
void push_front(const Packet& v) {
_collection.push_front(v);
_add(v);
}
void push_front(const Packet&& v) {
_collection.push_front(std::move(v));
_add(v);
}
void pop_back() {
_remove(_collection.back());
_collection.pop_back();
}
void erase(const_iterator first, const_iterator last) {
for(auto it = first; it != last; ++it) _remove(*it);
_collection.erase(first, last);
}
PacketList() : _total_size(0) {}
PacketList(const PacketList& other) : _total_size(other._total_size) {}
private:
void _add(const Packet& v) { _total_size += v.size(); }
void _remove(const Packet& v) { _total_size -= v.size(); }
data_size _total_size;
};
The interface in result should similar to a standard container. Is there a way to avoid this amount of repeated code? Is there some standard solution for this problem?

Stack overflow when thread number is large enough (i.e, 50)

My code runs ok when thread number is 15 or less, but when I run it with larger thread number (but still a very tiny number) say 50. I ran into following error when main function exits, seems like error occurs in the cleaning up process. I couldn't figure out where the bug is. My development tool is Visual Studio 2017. Here's my code:
threadsafe_queue class:
#pragma once
#include <memory>
#include <mutex>
template<typename T>
class threadsafe_queue
{
private:
struct Node {
std::shared_ptr<T> data;
std::unique_ptr<Node> next;
};
Node* tail;
std::unique_ptr<Node> head;
std::mutex head_mutex;
std::mutex tail_mutex;
std::condition_variable data_cond;
Node* get_tail();
std::unique_ptr<Node> pop_head();
std::unique_lock<std::mutex> wait_for_data();
public:
threadsafe_queue();
~threadsafe_queue();
threadsafe_queue(const threadsafe_queue& t) = delete;
threadsafe_queue operator = (const threadsafe_queue& t) = delete;
void push(T);
bool try_pop(T&);
std::shared_ptr<T> try_pop();
void wait_and_pop(T&);
std::shared_ptr<T> wait_and_pop();
bool empty();
};
using namespace std;
template<typename T>
threadsafe_queue<T>::threadsafe_queue() {
head = std::unique_ptr<Node>(new Node);
tail = head.get();
}
template<typename T>
threadsafe_queue<T>::~threadsafe_queue()
{
}
template<typename T>
typename threadsafe_queue<T>::Node* threadsafe_queue<T>::get_tail() {
lock_guard<mutex> lock(tail_mutex);
return tail;
}
template<typename T>
unique_ptr<typename threadsafe_queue<T>::Node> threadsafe_queue<T>::pop_head()
{
auto old_head = move(head);
head = move(old_head->next);
return old_head;
}
template<typename T>
unique_lock<mutex> threadsafe_queue<T>::wait_for_data()
{
unique_lock<mutex> headLock(head_mutex);
data_cond.wait(headLock, [&] {return head.get() != get_tail(); });
return std::move(headLock);
}
template<typename T>
void threadsafe_queue<T>::wait_and_pop(T & value)
{
unique_lock<mutex> lock(wait_for_data());
value = move(pop_head()->data);
}
template<typename T>
shared_ptr<T> threadsafe_queue<T>::wait_and_pop()
{
unique_lock<mutex> lock(wait_for_data());
return pop_head()->data;
}
template<typename T>
void threadsafe_queue<T>::push(T newValue)
{
shared_ptr<T> data(make_shared<T>(std::move(newValue)));
unique_ptr<Node> new_tail(new Node);
{
lock_guard<mutex> lock(tail_mutex);
tail->data = data;
Node* new_tail_ptr = new_tail.get();
tail->next = move(new_tail);
tail = new_tail_ptr;
}
data_cond.notify_one();
}
template<typename T>
bool threadsafe_queue<T>::try_pop(T & value)
{
lock_guard<mutex> headLock(head_mutex);
if (head == get_tail())
return false;
value = move(pop_head()->data);
return true;
}
template<typename T>
shared_ptr<T> threadsafe_queue<T>::try_pop()
{
lock_guard<mutex> headLock(head_mutex);
if (head == get_tail())
return shared_ptr<T>();
return pop_head()->data;
}
template<typename T>
bool threadsafe_queue<T>::empty()
{
lock_guard<mutex> lock(head_mutex);
return head.get() == get_tail();
}
main function:
#pragma once
#include "threadsafe_queue.h"
#include <assert.h>
#include <memory>
#include <atomic>
#include <vector>
#include <thread>
using namespace std;
void worker(threadsafe_queue<int>& queue, std::atomic<int>& count, int const & pushcount, int const & popcount) {
for (unsigned i = 0; i < pushcount; i++) {
queue.push(i);
count++;
}
for (unsigned i = 0; i < popcount; i++) {
queue.wait_and_pop();
count--;
}
}
int main() {
threadsafe_queue<int> queue;
std::atomic<int> item_count = 0;
std::vector<thread*> threads;
unsigned const THREAD_COUNT=50, PUSH_COUT=100, POP_COUNT=50;
for (unsigned i = 0; i < THREAD_COUNT; i++) {
threads.push_back(new thread(worker, ref(queue), ref(item_count), ref(PUSH_COUT), ref(POP_COUNT)));
}
for (auto thread : threads) {
thread->join();
}
for (auto thread : threads) {
delete thread;
}
assert(item_count == THREAD_COUNT * (PUSH_COUT-POP_COUNT));
return 0;
}
error message:
Unhandled exception at 0x00862899 in Sample.exe: 0xC00000FD: Stack overflow
(parameters: 0x00000001, 0x00E02FDC). occurred
The location of the error is in memory library code:
const pointer& _Myptr() const _NOEXCEPT
{ // return const reference to pointer
return (_Mypair._Get_second());
}
The answer is based on #IgorTandetnik 's comment above. Basically I needed to implement ~threadsafe_queue to destroy the nodes iteratively. The nodes are linked, so they will be destructed in recursive manner, which causes stack overflow when number of nodes remaining in the queue is relatively large. Below is the destructor code.
threadsafe_queue<T>::~threadsafe_queue(){
Node* current = head.release();
while (current != tail) {
Node* temp = (current->next).release();
delete current;
current = temp;
}
delete tail;
}

Custom thread local STL allocator with Boost pool allocator

We have a huge legacy code base which is multithreaded and uses vectors extensively. To cut down the time spent in dynamic memory allocation, we are moving to a pools. The plan is to use Boost small vector with a custom allocator. The custom allocator will create a thread local pool per each container type. I have implemented a custom allocator based on the above idea and tested it. For some reason, the code falls in an infinite pattern inside find_prev method in Boost simple segregated storage. There are lots of places where there is a nesting of containers, like vector>> etc. Is this the right way of defining allocator ??
template<typename T, typename allocatorType>
class customAllocator
{
public:
static thread_local allocatorType *_allocator;
typedef T value_type;
typedef allocatorType allocator_Type;
template <class X> struct rebind
{
typedef customAllocator<X, allocatorType> other;
};
customAllocator()
{
_allocator = new allocatorType;
assert(_allocator);
return;
}
~customAllocator()
{
delete _allocator;
_allocator = nullptr;
return;
}
template<class X, class Y> customAllocator(const customAllocator<X, Y>& other)
{
_allocator = other._allocator;
return;
}
template<class X, class Y> customAllocator(customAllocator<X, Y>&& other)
{
_allocator = other._allocator;
other._allocator = nullptr;
return;
}
template<class X, class Y> customAllocator& operator=(const customAllocator<X, Y>& other)
{
_allocator = other._allocator;
return *this;
}
template<class X, class Y> customAllocator& operator=(customAllocator<X, Y>&& other)
{
_allocator = other._allocator;
other._allocator = nullptr;
return *this;
}
T* allocate(size_t n)
{
return _allocator->allocate(n * sizeof(T));
}
void deallocate(T* ptr, size_t n)
{
_allocator->deallocate(ptr, n);
return;
}
template<class X, class Y> bool operator==(const customAllocator<X, Y>& other) const noexcept
{ return (*this._allocator == other.allocator); }
template<class X, class Y> bool operator!=(const customAllocator<X, Y>& other) const noexcept
{ return !(*this._allocator == other._allocator); }
};
template <typename T1, typename T2>
thread_local T2 *customAllocator<T1, T2>::_allocator = nullptr;
using smallVector = boost::container::small_vector<
T,
DEFAULT_SMALL_VECTOR_LENGTH,
customAllocator<T,
boost::pool_allocator<
T,
boost::default_user_allocator_new_delete,
boost::details::pool::null_mutex,
2,
4
>>>;

lambda function in c++ and inheritance

i'm new to lambda functions in c++ and am trying to make a simple one but have some problems. i've tried to make a heterogeneous container which include stacks, queues, and lists and one of the exercise is to make a lambda function which check if an element answers a specific condition defined as:
using Condition = bool (*)(T const&);
so here is a piece of my heterogeneous container:
For example for stacks:
template <typename T>
using Condition1 = bool (*)(T const&);
template <typename T>
class LinkedStack {
private:
StackElement<T>* top;
public:
LinkedStack();
LinkedStack(LinkedStack const&);
LinkedStack& operator=(LinkedStack const&);
bool empty() const;
bool member(T const& x);
T peek() const;
void push(T const&);
T pop();
~LinkedStack();
};
template<typename T,typename Condition1>
bool q_filter(Condition1 func,LinkedStack<T>& s){
LinkedStack<T> tmp;
tmp = s;
if((tmp).empty())
return false;
while(!tmp.empty()){
if (func(tmp.peek()))
return true;
else
tmp.pop();
}
return false;
}
the stack-object(which is need to perform object in h-container):
template <typename T>
class Object {
public:
using Condition = bool (*)(T const&);
virtual bool insert(T const&) = 0;
virtual bool remove(T&) = 0;
virtual bool member(T const&) = 0;
virtual int l_size() = 0;
virtual void sort() = 0;
virtual bool special_condition(Condition);
virtual void print(ostream& os) const = 0;
virtual ~Object() {}
};
template <typename T>
class StackObject : public Object<T>, private LinkedStack<T> {
public:
using Condition = bool (*)(T const&);
// включване
bool insert(T const& x) {
LinkedStack<T>::push(x);
return true;
}
// изключване
bool remove(T& x) {
if (LinkedStack<T>::empty())
return false;
x = LinkedStack<T>::pop();
return true;
}
// проверка
bool member(T const& x){
return LinkedStack<T>::member(x);
}
int l_size() {
return my_size(*this);
}
// извеждане
void print(ostream& os) const {
os << *this;
}
void sort(){
s_sort(*this);
}
bool special_condition(Condition c){
return q_filter(c,*this);
}
};
and main-function:
int main(){
QueueStackList qsl;
qsl.read_from_file();
(*(qsl.begin()))->special_condition([](int x) -> bool { return x%2 != 0; });
return 0;
}
QueueStackList is implemented like a linked-list and qsl.begin() returns
an iterator for the first element in the heterogeneous list;
when i compile it returns this kind of errors:
invalid user-defined conversion from 'main()::<lambda(int)>' to 'Object<int>::Condition {aka bool (*)(const int&)}' [-fpermissive]|
candidate is: main()::<lambda(int)>::operator bool (*)(int)() const <near match>|
no known conversion for implicit 'this' parameter from 'bool (*)(int)' to 'Object<int>::Condition {aka bool (*)(const int&)}'|
which i really don't know what mean ?

Using find method that require only key in boost splay_set

The find method of boost::splay_set that require only the key accepts an argument of type KeyValueCompare to compare objects with the key. To be able to use this, we need to supply two methods of the form:
struct KeyValCompare {
inline bool operator() (const std::int64_t key, const MyType& val) const {
//TODO:
}
inline bool operator() (const MyType& val, const std::int64_t key) const {
//TODO:
}
};
However there is no mention in the documentation about how to implement these. Any pointers?
Found a solution here:
http://boost.cowic.de/rc/pdf/intrusive.pdf
they should return true if key (or key from the value) of lhs is less than the key (or key from the value) of rhs.
I don't see why the comparator would be so complicated. The set just stores elements of MyType, so you need to define a strict weak total ordering on them:
struct Comparator {
bool operator()(MyType const& a, MyType const& b) const;
};
Indeed, the default comparer is std::less<MyType>
E.g. to sort
class MyType : public splay_set_base_hook<>
{
int int_;
public:
MyType(int i) : int_(i) {}
int getValue() const { return int_; }
};
By the value, after reversing the digits (e.g. "431" before "322" because 134<223):
struct CompareReversed {
bool operator()(MyType const& a, MyType const& b) const {
return reversed(a.getValue()) < reversed(b.getValue());
}
private:
static int reversed(int i)
{
auto s = std::to_string(i);
std::reverse(s.begin(), s.end());
return boost::lexical_cast<int>(s);
}
};
See it Live On Coliru:
#include <boost/intrusive/splay_set.hpp>
#include <boost/lexical_cast.hpp>
#include <vector>
#include <algorithm>
using namespace boost::intrusive;
class MyType : public splay_set_base_hook<>
{
int int_;
public:
MyType(int i) : int_(i)
{}
// default ordering
friend bool operator< (const MyType &a, const MyType &b) { return a.int_ < b.int_; }
friend bool operator> (const MyType &a, const MyType &b) { return a.int_ > b.int_; }
friend bool operator== (const MyType &a, const MyType &b) { return a.int_ == b.int_; }
int getValue() const { return int_; }
};
struct CompareReversed {
bool operator()(MyType const& a, MyType const& b) const {
return reversed(a.getValue()) < reversed(b.getValue());
}
private:
static int reversed(int i)
{
auto s = std::to_string(i);
std::reverse(s.begin(), s.end());
return boost::lexical_cast<int>(s);
}
};
#include <iostream>
int main()
{
//typedef splay_set<MyType, compare<std::less<MyType> > > Set;
typedef splay_set<MyType, compare<CompareReversed> > Set;
std::vector<MyType> v { 24, 42, 123, 321 };
Set set;
set.insert(v[0]);
set.insert(v[1]);
set.insert(v[2]);
set.insert(v[3]);
for (auto& el : set)
{
std::cout << el.getValue() << "\n";
}
std::cout << set.count(24) << "\n"; // 1
std::cout << set.count(25) << "\n"; // 0
std::cout << set.count(42) << "\n"; // 1
}
If you want to suppor mixed type comparisons, just supply the overloads, obviously:
struct CompareReversed {
bool operator()(MyType const& a, MyType const& b) const {
return reversed(a.getValue()) < reversed(b.getValue());
}
bool operator()(MyType const& a, int b) const {
return reversed(a.getValue()) < reversed(b);
}
bool operator()(int a, MyType const& b) const {
return reversed(a) < reversed(b.getValue());
}
// ...
};
Thanks sehe for the support.
That is exactly what I am doing there. But please have a look at following sample code which fails.
#include <boost/intrusive/splay_set.hpp>
#include <algorithm>
using namespace boost::intrusive;
class MyClass {
public:
MyClass(const std::int64_t& k)
: key(k) {
}
std::int64_t key;
splay_set_member_hook<> member_hook_;
friend bool operator <(const MyClass& lhs, const MyClass& rhs) {
return lhs.key < rhs.key;
}
friend bool operator >(const MyClass& lhs, const MyClass& rhs) {
return lhs.key > rhs.key;
}
friend bool operator ==(const MyClass& lhs, const MyClass& rhs) {
return lhs.key == rhs.key;
}
};
struct KeyValCompare {
inline bool operator()(const std::int64_t key, const MyClass& val) const {
return key < val.key;
}
inline bool operator()(const MyClass& val, const std::int64_t key) const {
return val.key < key;
}
};
typedef member_hook<MyClass, splay_set_member_hook<>, &MyClass::member_hook_> MemberOption;
typedef splay_set<MyClass, MemberOption, compare<std::greater<MyClass> > > MyClassObjectsType;
TEST(MyClass, test) {
MyClassObjectsType set;
set.insert(*new MyClass(10));
set.insert(*new MyClass(20));
set.insert(*new MyClass(100));
auto ite = set.find(100, KeyValCompare());
ASSERT_TRUE(ite != set.end()); // Fails here
}
If I use std::less instead of std::greater, it passes.
Figured it out:
The greater than operator must be change from:
friend bool operator >(const MyClass& lhs, const MyClass& rhs) {
return lhs.key > rhs.key;
}
to this:
friend bool operator >(const MyClass& lhs, const MyClass& rhs) {
return lhs.key < rhs.key;
}

Resources