Random number generate issue in swift language - EXC_BAD_INSTRUCTION - xcode

I tried to generate an array with strings in random order, but always got the error "Thread1:EXC_BAD_INSTRUCTION (code=EXC_I386_INVOP, subcode=0x0)" at the end of function randomPile. Below is my code:
import UIKit
class RandomView: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()
var cardOrder = ["HeartSix","HeartNine", "ClubQueen", "SpadeKing" ]
// cannot randomlize due to the lanuage drawbacks.
cardOrder = randomPile(cardOrder)
}
override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
}
// random the order of the original card pile
func randomPile(arrayPile: String[]) -> String[] {
var arry = arrayPile
for( var i = arry.count-1; i > 0; --i){
var r = Int(arc4random())%(i+1)
var a = arry[r]
arry[r] = arry[i]
arry[i] = a
}
return arry
}
}

Not an answer, presented here for code formation:
This works for me both in a playground and in an app:
var cardOrder: String[] = ["HeartSix","HeartNine", "ClubQueen", "SpadeKing" ]
println(cardOrder)
cardOrder = randomPile(cardOrder)
println(cardOrder)
Perhaps the error is elsewhere.
Note: var r = Int(arc4random_uniform(UInt32(i+1))) is both simpler and avoids bias.

Also not an answer, because I can also run in playground and so I don't know where your problem is coming in. However, there's no need to create a new reference to the array and return it. I also implemented a Fisher-Yates shuffle variant which is geared towards an integer PRNG that excludes its upper bound, as arc4random_uniform does:
func randomPile(myArray: String[]) -> Void {
for i in 0..(myArray.count - 1) {
let j = Int(arc4random_uniform(UInt32(myArray.count - i))) + i
let tmp = myArray[i]
myArray[i] = myArray[j]
myArray[j] = tmp
}
}
let cardOrder: String[] = ["HeartSix","HeartNine", "ClubQueen", "SpadeKing" ]
println(cardOrder)
randomPile(cardOrder)
println(cardOrder)
After invoking this on your array, it's shuffled, no need for reassignment to cardOrder.
Addendum - I just checked, and since cardOrder doesn't appear again on the left of an assignment it can be declared with let.
You can also make the shuffle capability generic, so why not?
func shuffle<T>(myArray: T[]) -> Void {
for i in 0..(myArray.count - 1) {
let j = Int(arc4random_uniform(UInt32(myArray.count - i))) + i
let tmp:T = myArray[i]
myArray[i] = myArray[j]
myArray[j] = tmp
}
}
let cardOrder: String[] = ["HeartSix","HeartNine", "ClubQueen", "SpadeKing"]
println(cardOrder) // [HeartSix, HeartNine, ClubQueen, SpadeKing]
shuffle(cardOrder)
println(cardOrder) // sample result: [SpadeKing, HeartNine, HeartSix, ClubQueen]
let intValues = [1,2,3,4,5,6,7,8,9,10]
println(intValues) // [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
shuffle(intValues)
println(intValues) // sample result: [3, 10, 8, 4, 9, 7, 1, 2, 5, 6]

Related

Sort an unsorted array with Closures

let unsortedArray = [98,23,643,678,2,568,1,234,556,4] {
(first:Int , second:Int) -> Bool in
if first < second {
return true
} else{
return false
}
}
Above code is to sort an unsorted array with Swift 2 and Xcode 7.3.
I want to know how can i print the result?
The syntax is:
let unsortedArray = [98, 23, 643, 678, 2, 568, 1, 234, 556, 4]
let sortedArray = unsortedArray.sort() { (first: Int, second: Int) -> Bool in
if first < second {
return true
} else {
return false
}
}
print("\(sortedArray)")
Note, in Swift 2.3 that's sort, but in Swift 3, it is now called sorted.
By the way, this can be simplified:
let sortedArray = unsortedArray.sort { (first: Int, second: Int) -> Bool in
return first < second
}
Or, further simplified to use anonymous closure arguments:
let sortedArray = unsortedArray.sort {
return $0 < $1
}
Which because there is a single expression inside the closure, you can further simply to:
let sortedArray = unsortedArray.sort { $0 < $1 }
Or, further simplified to:
let sortedArray = unsortedArray.sort(<)
Or, because the elements of the array, Int types, conform to Comparable, you can omit the closure entirely and use a different sort method that takes no parameters at all:
let sortedArray = unsortedArray.sort()
Note, this requires that the elements of the array have:
The less-than operator (func <) defined in
the Comparable conformance is a
strict weak ordering
over the elements in self.

Better Random Number Ranges In Swift 3

Before I upgraded to Swift 3 (Xcode 8) my random position start looked like this:
func randomStartPosition(range: Range<Int> = 45...(Int(self.frame.size.height)-45)) -> Int {
let min = range.startIndex
let max = range.endIndex
return Int(arc4random_uniform(UInt32(max - min))) + min }
Which stopped working after the conversion because it was updated to this:
func randomSmallObjectsStartPosition(_ range: Range<Int> = 25...(Int(self.frame.size.height)-25)) -> Int {
let min = range.lowerBound
let max = range.upperBound
return Int(arc4random_uniform(UInt32(max - min))) + min }
Which was worked out because I ended up learning about GamePlayKit:
Start by:
import GameplayKit
Then you can easily make new random variables using GamePlayKit:
You can read up on the apple site but basically this gives you more "hits" in the middle:
lazy var randomStartPosition = GKGaussianDistribution(randomSource: GKARC4RandomSource(), lowestValue: 0, highestValue:100)
And this will cycle through the random values until they are all consumed, then start again.
lazy var randomShuffle = GKShuffledDistribution(randomSource: GKARC4RandomSource(), lowestValue: 0, highestValue:100)
And lastly the totally random value generator:
lazy var totallyRandom = GKRandomDistribution(lowestValue: 1, highestValue: 100)
An example of how to use:
MyObject.position = CGPoint(x: self.frame.size.width + 20, y: CGFloat(totallyRandom.nextInt()) )
This will put my object off the screen on the far right and put it at a completely random position on the Y axis.

One-liner to generate Powerball picks in Swift?

With the U.S.'s large $1.5 Billion lottery this week, I wrote a function in Ruby to make Powerball picks. In Powerball, you choose 5 numbers from the range 1..69 (with no duplicates) and 1 number from the range 1..26.
This is what I came up with:
def pball
Array(1..69).shuffle[0..4].sort + [rand(1..26)]
end
It works by creating an array of integers from 1 to 69, shuffling that array, choosing the first 5 numbers, sorting those, and finally adding on a number from 1 to 26.
To do this in Swift takes a bit more work since Swift doesn't have the built-in shuffle method on Array.
This was my attempt:
func pball() -> [Int] {
let arr = Array(1...69).map{($0, drand48())}.sort{$0.1 < $1.1}.map{$0.0}[0...4].sort()
return arr + [Int(arc4random_uniform(26) + 1)]
}
Since there is no shuffle method, it works by creating an [Int] with values in the range 1...69. It then uses map to create [(Int, Double)], an array of tuple pairs that contain the numbers and a random Double in the range 0.0 ..< 1.0. It then sorts this array using the Double values and uses a second map to return to [Int] and then uses the slice [0...4] to extract the first 5 numbers and sort() to sort them.
In the second line, it appends a number in the range 1...26. I tried adding this to the first line, but Swift gave the error:
Expression was too complex to be solved in reasonable time; consider
breaking up the expression into distinct sub-expressions.
Can anyone suggest how to turn this into a 1-line function? Perhaps there is a better way to choose the 5 numbers from 1...69.
Xcode 8.3 • Swift 3.1
import GameKit
var powerballNumbers: [Int] {
return (GKRandomSource.sharedRandom().arrayByShufflingObjects(in: Array(1...69)) as! [Int])[0..<5].sorted() + [Int(arc4random_uniform(26) + 1)]
}
powerballNumbers // [5, 9, 62, 65, 69, 2]
Swift 2.x
import GameKit
var powerballNumbers: [Int] {
return (GKRandomSource.sharedRandom().arrayByShufflingObjectsInArray(Array(1...69)) as! [Int])[0...4].sort() + [Int(arc4random_uniform(26).successor())]
}
powerballNumbers // [21, 37, 39, 42, 65, 23]
I don't find the "one-liner" concept very compelling. Some languages lend themselves to it; others don't. I would suggest giving Swift a shuffle method to start with:
extension Array {
mutating func shuffle () {
for var i = self.count - 1; i != 0; i-- {
let ix1 = i
let ix2 = Int(arc4random_uniform(UInt32(i+1)))
(self[ix1], self[ix2]) = (self[ix2], self[ix1])
}
}
}
But since I made this mutating, we still need more than one line to express the entire operation because we have to have a var reference to our starting array:
var arr = Array(1...69)
(1...4).forEach {_ in arr.shuffle()}
let result = Array(arr[0..<5]) + [Int(arc4random_uniform(26)) + 1]
If you really insist on the one-liner, and you don't count the code needed to implement shuffle, then you can do it, though less efficiently, by defining shuffle more like this:
extension Array {
func shuffle () -> [Element] {
var arr = self
for var i = arr.count - 1; i != 0; i-- {
let ix1 = i
let ix2 = Int(arc4random_uniform(UInt32(i+1)))
(arr[ix1], arr[ix2]) = (arr[ix2], arr[ix1])
}
return arr
}
}
And here's your one-liner:
let result = Array(1...69).shuffle().shuffle().shuffle().shuffle()[0..<5] + [Int(arc4random_uniform(26)) + 1]
But oops, I omitted your sort. I don't see how to do that without getting the "too complex" error; to work around that, I had to split it into two lines:
var result = Array(1...69).shuffle().shuffle().shuffle().shuffle()[0..<5].sort(<)
result.append(Int(arc4random_uniform(26)) + 1)
How about this:
let winningDraw = (1...69).sort{ _ in arc4random_uniform(2) > 0}[0...4].sort() + [Int(arc4random_uniform(26)+1)]
[edit] above formula wasn't random. but this one will be
(1...69).map({Int(rand()%1000*70+$0)}).sort().map({$0%70})[0...4].sort() + [Int(rand()%26+1)]
For the fun of it, a non-GameplayKit (long) one-liner for Swift 3, using the global sequence(state:next:) function to generate random elements from the mutable state array rather than shuffling the array (although mutating the value array 5 times, so some extra copy operations here...)
let powerballNumbers = Array(sequence(state: Array(1...69), next: {
(s: inout [Int]) -> Int? in s.remove(at: Int(arc4random_uniform(UInt32(s.count))))})
.prefix(5).sorted()) + [Int(arc4random_uniform(26) + 1)]
... broken down for readability.
(Possible in future Swift version)
If the type inference weren't broken inout closure parameters (as arguments to closures), we could reduce the above to:
let powerballNumbers = Array(sequence(state: Array(1...69), next: {
$0.remove(at: Int(arc4random_uniform(UInt32($0.count)))) })
.prefix(5).sorted()) + [Int(arc4random_uniform(26) + 1)]
If we'd also allow the following extension
extension Int {
var rand: Int { return Int(arc4random_uniform(UInt32(exactly: self) ?? 0)) }
}
Then, we could go on to reduce the one-line to:
let powerballNumbers = Array(sequence(state: Array(1...69), next: { $0.remove(at: $0.count.rand) }).prefix(5).sorted()) + [26.rand + 1]
Xcode 10 • Swift 4.2
Swift now has added shuffled() to ClosedRange and random(in:) to Int which now makes this easily accomplished in one line:
func pball() -> [Int] {
return (1...69).shuffled().prefix(5).sorted() + [Int.random(in: 1...26)]
}
Further trimmings:
Because of the return type of pball(), the Int can be inferred in the random method call. Also, .prefix(5) can be replaced with [...4]. Finally, return can be omitted from the one-line function:
func pball() -> [Int] {
(1...69).shuffled()[...4].sorted() + [.random(in: 1...26)]
}

Map/Fold the multiple .OBJ-index-buffers to OpenGL's 1 index buffer

I am trying to load in a .obj-File and draw it with the help of glDrawElements.
Now, with glDrawArrays everything works perfectly, but it is - of course - inefficient.
The problem I have right now is, that an .obj-file uses multiple index-buffers (for each attribute) while OpenGL may only use one. So I need to map them accordingly.
There are a lot of pseudo-algorithms out there and I even found a C++ implementation. I do know quite a bit of C++ but strangely neither helped me with my implementation in Scala.
Let's see:
private def parseObj(path: String): Model =
{
val objSource: List[String] = Source.fromFile(path).getLines.toList
val positions: List[Vector3] = objSource.filter(_.startsWith("v ")).map(_.split(" ")).map(v => new Vector3(v(1).toFloat,v(2).toFloat,v(3).toFloat))//, 1.0f))
val normals: List[Vector4] = objSource.filter(_.startsWith("vn ")).map(_.split(" ")).map(v => new Vector4(v(1)toFloat,v(2).toFloat, v(3).toFloat, 0.0f))
val textureCoordinates: List[Vector2] = objSource.filter(_.startsWith("vt ")).map(_.split(" ")).map(v => new Vector2(v(1).toFloat, 1-v(2).toFloat)) // TODO 1-y because of blender
val faces: List[(Int, Int, Int)] = objSource.filter(_.startsWith("f ")).map(_.split(" ")).flatten.filterNot(_ == "f").map(_.split("/")).map(a => ((a(0).toInt, a(1).toInt, a(2).toInt)))
val vertices: List[Vertex] = for(face <- faces) yield(new Vertex(positions(face._1-1), textureCoordinates(face._2-1)))
val f: List[(Vector3, Vector2, Vector4)] = for(face <- faces) yield((positions(face._1-1), textureCoordinates(face._2-1), normals(face._3-1)))
println(f.mkString("\n"))
val indices: List[Int] = faces.map(f => f._1-1) // Wrong!
new Model(vertices.toArray, indices.toArray)
}
The val indices: List[Int] was my first naive approach and of course is wrong. But let's start at the top:
I load in the file and go through it. (I assume you know how an .obj-file is made up)
I read in the vertices, texture-coordinates and normals. Then I come to the faces.
Now, each face in my example has 3 values v_x, t_y, n_z defining the vertexAtIndexX, textureCoordAtIndexY, normalAtIndexZ. So each of these define one Vertex while a triple of these (or one line in the file) defines a Face/Polygon/Triangle.
in val vertices: List[Vertex] = for(face <- faces) yield(new Vertex(positions(face._1-1), textureCoordinates(face._2-1))) I actually try to create Vertices (a case-class that currently only holds positions and texture-coordinates and neglects normals for now)
The real problem is this line:
val indices: List[Int] = faces.map(f => f._1-1) // Wrong!
To get the real indices I basically need to do this instead of
val vertices: List[Vertex] = for(face <- faces) yield(new Vertex(positions(face._1-1), textureCoordinates(face._2-1)))
and
val indices: List[Int] = faces.map(f => f._1-1) // Wrong!
Pseudo-Code:
Iterate over all faces
Iterate over all vertices in a face
Check if we already have that combination of(position, texturecoordinate, normal) in our newVertices
if(true)
indices.put(indexOfCurrentVertex)
else
create a new Vertex from the face
store the new vertex in the vertex list
indices.put(indexOfNewVertex)
Yet I'm totally stuck. I've tried different things, but can't come up with a nice and clean solution that actually works.
Things like:
val f: List[(Vector3, Vector2, Vector4)] = for(face <- faces) yield((positions(face._1-1), textureCoordinates(face._2-1), normals(face._3-1)))
and trying to f.distinct are not working, because there is nothing to distinct, all the entries there are unique, which totally makes sense if I look at the file and yet that's what the pseudo-code tells me to check.
Of course then I would need to fill the indices accordingly (preferably in a one-liner and with a lot of functional beauty)
But I should try to find duplicates, so... I'm kind of baffled. I guess I mix up the different "vertices" and "positions" too much, with all the referencing.
So, am I thinking wrong, or is the algorithm/thinking right and I just need to implement this in nice, clean (and actually working) Scala code?
Please, enlighten me!
As per comments, I made a little update:
var index: Int = 0
val map: mutable.HashMap[(Int, Int, Int), Int] = new mutable.HashMap[(Int, Int, Int), Int].empty
val combinedIndices: ListBuffer[Int] = new ListBuffer[Int]
for(face <- faces)
{
val vID: Int = face._1-1
val nID: Int = face._2-1
val tID: Int = face._3-1
var combinedIndex: Int = -1
if(map.contains((vID, nID, tID)))
{
println("We have a duplicate, wow!")
combinedIndex = map.get((vID, nID, tID)).get
}
else
{
combinedIndex = index
map.put((vID, nID, tID), combinedIndex)
index += 1
}
combinedIndices += combinedIndex
}
where faces still is:
val faces: List[(Int, Int, Int)] = objSource.filter(_.startsWith("f ")).map(_.split(" ")).flatten.filterNot(_ == "f").map(_.split("/")).map(a => ((a(0).toInt, a(1).toInt, a(2).toInt)))
Fun fact I'm still not understanding it obviously, because that way I never ever get a duplicate!
Meaning that combinedIndices at the end just holds the natural numbers like:
ListBuffer(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...)
This is javascript (sorry not scala) but it's commented and shoul be fairly easy to convert.
// bow-tie
var objString = "v 0 0 0\nv 1 1 0\nv 1 -1 0\nv -1 1 0\nv -1 -1 0\n" +
"vt 0 .5\nvt 1 1\nvt 1 0\n" +
"vn 0 0 1\n" +
"f 1/1/1 2/2/1 3/3/1\nf 1/1/1 4/2/1 5/3/1";
// output indices should be [0, 1, 2, 0, 3, 4]
// parse the file
var lines = objString.split("\n");
var data = lines.map(function(line) { return line.split(" "); });
var v = [];
var t = [];
var n = [];
var f = [];
var indexMap = new Map(); // HashMap<face:string, index:integer>
var nextIndex = 0;
var vertices = [];
var indices = [];
// fill vertex, texture and normal arrays
data.filter(function(d) { return d[0] == "v"; }).forEach(function(d) { v.push([parseFloat(d[1]), parseFloat(d[2]), parseFloat(d[3])]); });
data.filter(function(d) { return d[0] == "vt"; }).forEach(function(d) { t.push([parseFloat(d[1]), parseFloat(d[2])]); });
data.filter(function(d) { return d[0] == "vn"; }).forEach(function(d) { n.push([parseFloat(d[1]), parseFloat(d[2]), parseFloat(d[3])]); });
//
console.log("V", v.toString());
console.log("T", t.toString());
console.log("N", n.toString());
// create vertices and indices arrays by parsing faces
data.filter(function(d) { return d[0] == "f"; }).forEach(function(d) {
var f1 = d[1].split("/").map(function(d) { return parseInt(d)-1; });
var f2 = d[2].split("/").map(function(d) { return parseInt(d)-1; });
var f3 = d[3].split("/").map(function(d) { return parseInt(d)-1; });
// 1
if(indexMap.has(d[1].toString())) {
indices.push(indexMap.get(d[1].toString()));
} else {
vertices = vertices.concat(v[f1[0]]).concat(t[f1[1]]).concat(n[f1[2]]);
indexMap.set(d[1].toString(), nextIndex);
indices.push(nextIndex++);
}
// 2
if(indexMap.has(d[2].toString())) {
indices.push(indexMap.get(d[2].toString()));
} else {
vertices = vertices.concat(v[f2[0]]).concat(t[f2[1]]).concat(n[f2[2]]);
indexMap.set(d[2].toString(), nextIndex);
indices.push(nextIndex++);
}
// 3
if(indexMap.has(d[3].toString())) {
indices.push(indexMap.get(d[3].toString()));
} else {
vertices = vertices.concat(v[f3[0]]).concat(t[f3[1]]).concat(n[f3[2]]);
indexMap.set(d[3].toString(), nextIndex);
indices.push(nextIndex++);
}
});
//
console.log("Vertices", vertices.toString());
console.log("Indices", indices.toString());
The output
V 0,0,0,1,1,0,1,-1,0,-1,1,0,-1,-1,0
T 0,0.5,1,1,1,0
N 0,0,1
Vertices 0,0,0,0,0.5,0,0,1,1,1,0,1,1,0,0,1,1,-1,0,1,0,0,0,1,-1,1,0,1,1,0,0,1,-1,-1,0,1,0,0,0,1
Indices 0,1,2,0,3,4
The JSFiddle http://jsfiddle.net/8q7jLvsq/2
The only thing I'm doing ~differently is using the string hat represents one of the parts of a face as the key into my indexMap (ex: "25/32/5").
EDIT JSFiddle http://jsfiddle.net/8q7jLvsq/2/ this version combines repeated values for vertex, texture and normal. This optimizes OBJ files that repeat the same values values making every face unique.
// bow-tie
var objString = "v 0 0 0\nv 1 1 0\nv 1 -1 0\nv 0 0 0\nv -1 1 0\nv -1 -1 0\n" +
"vt 0 .5\nvt 1 1\nvt 1 0\nvt 0 .5\nvt 1 1\nvt 1 0\n" +
"vn 0 0 1\nvn 0 0 1\nvn 0 0 1\nvn 0 0 1\nvn 0 0 1\nvn 0 0 1\n" +
"f 1/1/1 2/2/2 3/3/3\nf 4/4/4 5/5/5 6/6/6";
// output indices should be [0, 1, 2, 0, 3, 4]
// parse the file
var lines = objString.split("\n");
var data = lines.map(function(line) { return line.split(" "); });
var v = [];
var t = [];
var n = [];
var f = [];
var vIndexMap = new Map(); // map to earliest index in the list
var vtIndexMap = new Map();
var vnIndexMap = new Map();
var indexMap = new Map(); // HashMap<face:string, index:integer>
var nextIndex = 0;
var vertices = [];
var indices = [];
// fill vertex, texture and normal arrays
data.filter(function(d) { return d[0] == "v"; }).forEach(function(d, i) {
v[i] = [parseFloat(d[1]), parseFloat(d[2]), parseFloat(d[3])];
var key = [d[1], d[2], d[3]].toString();
if(!vIndexMap.has(key)) {
vIndexMap.set(key, i);
}
});
data.filter(function(d) { return d[0] == "vt"; }).forEach(function(d, i) {
t[i] = [parseFloat(d[1]), parseFloat(d[2])];
var key = [d[1], d[2]].toString();
if(!vtIndexMap.has(key)) {
vtIndexMap.set(key, i);
}
});
data.filter(function(d) { return d[0] == "vn"; }).forEach(function(d, i) {
n[i] = [parseFloat(d[1]), parseFloat(d[2]), parseFloat(d[3])];
var key = [d[1], d[2], d[3]].toString();
if(!vnIndexMap.has(key)) {
vnIndexMap.set(key, i);
}
});
//
console.log("V", v.toString());
console.log("T", t.toString());
console.log("N", n.toString());
// create vertices and indices arrays by parsing faces
data.filter(function(d) { return d[0] == "f"; }).forEach(function(d) {
var f1 = d[1].split("/").map(function(d, i) {
var index = parseInt(d)-1;
if(i == 0) index = vIndexMap.get(v[index].toString());
else if(i == 1) index = vtIndexMap.get(t[index].toString());
else if(i == 2) index = vnIndexMap.get(n[index].toString());
return index;
});
var f2 = d[2].split("/").map(function(d, i) {
var index = parseInt(d)-1;
if(i == 0) index = vIndexMap.get(v[index].toString());
else if(i == 1) index = vtIndexMap.get(t[index].toString());
else if(i == 2) index = vnIndexMap.get(n[index].toString());
return index;
});
var f3 = d[3].split("/").map(function(d, i) {
var index = parseInt(d)-1;
if(i == 0) index = vIndexMap.get(v[index].toString());
else if(i == 1) index = vtIndexMap.get(t[index].toString());
else if(i == 2) index = vnIndexMap.get(n[index].toString());
return index;
});
// 1
if(indexMap.has(f1.toString())) {
indices.push(indexMap.get(f1.toString()));
} else {
vertices = vertices.concat(v[f1[0]]).concat(t[f1[1]]).concat(n[f1[2]]);
indexMap.set(f1.toString(), nextIndex);
indices.push(nextIndex++);
}
// 2
if(indexMap.has(f2.toString())) {
indices.push(indexMap.get(f2.toString()));
} else {
vertices = vertices.concat(v[f2[0]]).concat(t[f2[1]]).concat(n[f2[2]]);
indexMap.set(f2.toString(), nextIndex);
indices.push(nextIndex++);
}
// 3
if(indexMap.has(f3.toString())) {
indices.push(indexMap.get(f3.toString()));
} else {
vertices = vertices.concat(v[f3[0]]).concat(t[f3[1]]).concat(n[f3[2]]);
indexMap.set(f3.toString(), nextIndex);
indices.push(nextIndex++);
}
});
//
console.log("Vertices", vertices.toString());
console.log("Indices", indices.toString());

ColdFusion VIN number validation code

I am trying to convert this PHP validation code to ColdFusion. However, I cannot get my CF version to correctly validate a VIN. I am hoping someone can shed some light on what I'm missing.
<cfscript>
function isVIN(v) {
var i = "";
var d = "";
var checkdigit = "";
var sum = 0;
var weights = [8, 7, 6, 5, 4, 3, 2, 10, 0, 9, 8, 7, 6, 5, 4, 3, 2];
var transliterations = {
a = 1,
b = 2,
c = 3,
d = 4,
e = 5,
f = 6,
g = 7,
h = 8,
j = 1,
k = 2,
l = 3,
m = 4,
n = 5,
p = 7,
r = 9,
s = 2,
t = 3,
u = 4,
v = 5,
w = 6,
x = 7,
y = 8,
z = 9
};
if (! REFindNoCase("^([\w]{3})[A-Z]{2}\d{2}([A-Z]{1}|\d{1})([\d{1}|X{1})([A-Z]+\d+|\d+[A-Z]+)\d{5}$", ARGUMENTS.v)) {
return false;
}
if (Len(ARGUMENTS.v) != 17) {
return false;
}
for (i = 1; i <= Len(ARGUMENTS.v); i++) {
d = Mid(ARGUMENTS.v, i, 1);
if (! isNumeric(d)) {
sum += transliterations[d] * weights[i];
} else {
sum += d * weights[i];
}
}
checkdigit = sum % 11;
if (checkdigit == 10) {
checkdigit = "x";
}
if (checkdigit == Mid(ARGUMENTS.v,8,1)) {
return true;
}
return false;
}
</cfscript>
(There is a VIN validation function at CFLib.org, but it doesn't work either).
Your function has two issues.
First, the regex is incorrect. Here's a simplified working version:
^[A-Z\d]{3}[A-Z]{2}\d{2}[A-Z\d][\dX](?:[A-Z]+\d+|\d+[A-Z]+)\d{5}$
Note: As per Adam's answer there's a simpler pattern than this.
Second, in your checkdigit comparison the Mid is one out - it seems the 8 should be a 9.
(Presumably this is a language conversion issue due to PHP being 0-indexed whilst CFML is 1-indexed.)
With both of these fixed, the modified function returns true for the VIN WAUBA24B3XN104537 (which is the only sample VIN I could find in a quick search).
Actually the regex is slightly wrong still. I think #PeterBoughton fixed the syntax, but it wasn't actually valid for the task at hand.
Here's the revised section of code, with suitable comments:
var vinRegex = "(?x) ## allow comments
^ ## from the start of the string
## see http://en.wikipedia.org/wiki/Vehicle_Identification_Number for VIN spec
[A-Z\d]{3} ## World Manufacturer Identifier (WMI)
[A-Z\d]{5} ## Vehicle decription section (VDS)
[\dX] ## Check digit
[A-Z\d] ## Model year
[A-Z\d] ## Plant
\d{6} ## Sequence
$ ## to the end of the string
";
if (! REFindNoCase(vinRegex, arguments.v)) {
return false;
}
This could be dramatically simplified to just this:
^[A-Z\d]{8}[\dX][A-Z\d]{2}\d{6}$
Using either of these also removes the requirement for the length check, as the regex will enforce that too.
Test code for this modification:
for (vin in [
"1GNDM19ZXRB170064",
"1FAFP40634F172825"
]){
writeOutput("#vin#: #isVin(vin)#<br />");
}
I'm gonna update CFLib with the verbose version, as it's easier to understand what's going on, and marry-up to the spec.

Resources