I am trying to run Hbase in a pseudo-distributed mode. I followed this link.
I am using ubuntu version 12.04 Hbase version 0.94.8 Hadoop Version 2.4.0
In hbase/conf/hbase-env.sh, i added the following
export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_25
export HBASE_REGIONSERVERS=/usr/lib/hbase/hbase-0.94.8/conf/regionservers
export HBASE_MANAGES_ZK=true
Then I set the HBASE_HOME path in bashrc file
In hbase/conf/hbase-site.xml I added the following,
<configuration>
<property>
<name>hbase.rootdir</name>
<value>hdfs://localhost:9000/hbase</value>
</property>
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name>
<value>localhost</value>
</property>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>hbase.zookeeper.property.clientPort</name>
<value>2181</value>
</property>
<property>
<name>hbase.zookeeper.property.dataDir</name>
<value>/home/prashasti/Installed/hbase-0.94.8/HBASE/zookeeper</value>
</property>
</configuration>
To prevent version mismatch between hadoop and hbase, I added
hadoop-common-2.4.0.jar
and
hadoop-mapreduce-client-core-2.4.0.jar
in hbase/lib folder
When I start hbase using
$./bin/start-hbase.sh
No error turns up, but the Hmaster doesn't start.
can you pl try removing all the configuration parameters from hbase-site.xml except hbase.rootdir and then try starting the hbase.
Also comment out export HBASE_REGIONSERVERS export HBASE_MANAGES_ZK in hbase-env.xml
Related
I do put README.txt file and do jar command but hdfs don't proceed anymore This is last terminal screen
I think "SASL encryption trust check" or "Unable to find 'resource-types.xml'" are the problem so I tried to insert
export HADOOP_SECURE_DN_USER=
to HADOOP-env.sh and insert
<property>
<name>yarn.app.mapreduce.am.env</name>
<value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
</property>
<property>
<name>mapreduce.map.env</name>
<value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
</property>
<property>
<name>mapreduce.reduce.env</name>
<value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
</property>
to mapred-site.xml
but It didn't work again
Hadoop version is 3.1.3
Java version is oracle java 1.8.0_212
hdfs-site.xml
core-site.xml
mapred-site.xml
yarn-site.xml
please help me...
This is 8088 page Is it YARN UI?
I have two VMs setup with Ubuntu 12.04. I am trying to setup Hadoop multinode, but after executing hadoop/sbin/start-dfs.shI see following process on my master:
20612 DataNode
20404 NameNode
20889 SecondaryNameNode
21372 Jps
However, there is nothing in the slave. Also when I do hdfs dfsadmin -report, I only see:
Live datanodes (1):
Name: 10.222.208.221:9866 (master)
Hostname: master
I checked logs, my start-dfs.sh does not even try to start datanode on my slave.
I am using following configuration:
#/etc/hosts
127.0.0.1 localhost
10.222.208.221 master
10.222.208.68 slave-1
changed hostanme in /etc/hostname in respective systems
Also, I am able to ping slave-1 from master system and vice-versa using ping.
/hadoop/etc/hadoop/core-site.xml
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://master:9000</value>
</property>
</configuration>
#hadoop/etc/hdfs-site.xml
<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///hadoop/data/namenode</value>
<description>NameNode directory</description>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///hadoop/data/datanode</value>
<description>DataNode directory</description>
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
</configuration>
/hadoop/etc/hadoop/mapred-site.xml
<configuration>
<property>
<name>mapred.job.tracker</name>
<value>master:9001</value>
</property>
</configuration>
I have also added master and slave-1 in /hadoop/etc/master and /hadoop/etc/slaveson both my master and slave system.
I have also tried cleaning data/* and then hdfs namenode -format before start-dfs.sh, still the problem persists.
Also, I have Network adapter setting marked as Bridged adapter.
Any possible reason datanode not starting on slave?
Can't claim to have the answer, but I found this "start-all.sh" and "start-dfs.sh" from master node do not start the slave node services?
Changed my slaves file to workers file and everything clicked in.
It seems you are using hadoop-2.x.x or above, so, try this configuration. And by default masters file( hadoop-2.x.x/etc/hadoop/masters) won't available on hadoop-2.x.x onwards.
hadoop-2.x.x/etc/hadoop/core-site.xml:
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>
</property>
</configuration>
~/etc/hadoop/hdfs-site.xml:
<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///hadoop/data/namenode</value>
<description>NameNode directory</description>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///hadoop/data/datanode</value>
<description>DataNode directory</description>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
</configuration>
~/etc/hadoop/mapred-site.xml:
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
~/etc/hadoop/yarn-site.xml:
<property>
<name>yarn.resourcemanager.hostname</name>
<value>master</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
~/etc/hadoop/slaves
slave-1
copy all the above configured file from master and replace it on slave on this path hadoop-2.x.x/etc/hadoop/.
I have looked through this StackOverflow post but they haven't helped me much.
I am trying to get Yarn working on an existing cluster. So far we have been using spark standalone manger as our resource allocator and it has been working as expected.
This is a basic overview of our architecture. Everything in the white boxes run in docker containers.
From master-machine I can run the following command from within the yarn resource manager container and get a spark-shell running that uses yarn: ./pyspark --master yarn --driver-memory 1G --executor-memory 1G --executor-cores 1 --conf "spark.yarn.am.memory=1G"
However, if I try to run the same command from client-machine within the jupyter container I get the following error in the YARN-UI.
Application application_1512999329660_0001 failed 2 times due to AM
Container for appattempt_1512999329660_0001_000002 exited with exitCode: -1000
For more detailed output, check application tracking page:http://master-machine:5000/proxy/application_1512999329660_0001/Then, click on links to logs of each attempt.
Diagnostics: File file:/sparktmp/spark-58732bb2-f513-4aff-b1f0-27f0a8d79947/__spark_libs__5915104925224729874.zip does not exist
java.io.FileNotFoundException: File file:/sparktmp/spark-58732bb2-f513-4aff-b1f0-27f0a8d79947/__spark_libs__5915104925224729874.zip does not exist
I can find file:/sparktmp/spark-58732bb2-f513-4aff-b1f0-27f0a8d79947/ on the client-machine but I am unable to find spark-58732bb2-f513-4aff-b1f0-27f0a8d79947on the master machine
As a note, spark-shell works from the client-machine when it points to the standalone spark manager on the master machine.
No logs are printed to the yarn log directories on the worker-machines either.
If I run a spark-submit on spark/examples/src/main/python/pi.py I get the same error as above.
Here is the yarn-site.xml
<configuration>
<property>
<description>YARN hostname</description>
<name>yarn.resourcemanager.hostname</name>
<value>master-machine</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
<!-- <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fifo.FifoScheduler</value> -->
<!-- <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value> -->
</property>
<property>
<description>The address of the RM web application.</description>
<name>yarn.resourcemanager.webapp.address</name>
<value>${yarn.resourcemanager.hostname}:5000</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>${yarn.resourcemanager.hostname}:8031</value>
</property>
<property>
<description>The address of the scheduler interface.</description>
<name>yarn.resourcemanager.scheduler.address</name>
<value>${yarn.resourcemanager.hostname}:8030</value>
</property>
<property>
<description>The address of the applications manager interface in the RM.</description>
<name>yarn.resourcemanager.address</name>
<value>${yarn.resourcemanager.hostname}:8032</value>
</property>
<property>
<description>The address of the RM admin interface.</description>
<name>yarn.resourcemanager.admin.address</name>
<value>${yarn.resourcemanager.hostname}:8033</value>
</property>
<property>
<description>Set to false, to avoid ip check</description>
<name>hadoop.security.token.service.use_ip</name>
<value>false</value>
</property>
<property>
<name>yarn.scheduler.capacity.maximum-applications</name>
<value>1000</value>
<description>Maximum number of applications in the system which
can be concurrently active both running and pending</description>
</property>
<property>
<description>Whether to use preemption. Note that preemption is experimental
in the current version. Defaults to false.</description>
<name>yarn.scheduler.fair.preemption</name>
<value>true</value>
</property>
<property>
<description>Whether to allow multiple container assignments in one
heartbeat. Defaults to false.</description>
<name>yarn.scheduler.fair.assignmultiple</name>
<value>true</value>
</property>
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
</configuration>
And here is the spark.conf:
# Default system properties included when running spark-submit.
# This is useful for setting default environmental settings.
# DRIVER PROPERTIES
spark.driver.port 7011
spark.fileserver.port 7021
spark.broadcast.port 7031
spark.replClassServer.port 7041
spark.akka.threads 6
spark.driver.cores 4
spark.driver.memory 32g
spark.master yarn
spark.deploy.mode client
# DRIVER AND EXECUTORS
spark.blockManager.port 7051
# EXECUTORS
spark.executor.port 7101
# GENERAL
spark.broadcast.factory=org.apache.spark.broadcast.HttpBroadcastFactory
spark.port.maxRetries 10
spark.local.dir /sparktmp
spark.scheduler.mode FAIR
# SPARK UI
spark.ui.port 4140
# DYNAMIC ALLOCATION AND SHUFFLE SERVICE
# http://spark.apache.org/docs/latest/configuration.html#dynamic-allocation
spark.dynamicAllocation.enabled false
spark.shuffle.service.enabled false
spark.shuffle.service.port 7061
spark.dynamicAllocation.initialExecutors 5
spark.dynamicAllocation.minExecutors 0
spark.dynamicAllocation.maxExecutors 8
spark.dynamicAllocation.executorIdleTimeout 60s
# LOGGING
spark.executor.logs.rolling.maxRetainedFiles 5
spark.executor.logs.rolling.strategy size
spark.executor.logs.rolling.maxSize 100000000
# JMX
# Testing
# spark.driver.extraJavaOptions -Dcom.sun.management.jmxremote.port=8897 -Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false
# Spark Yarn Configs
spark.hadoop.yarn.resourcemanager.address <master-machine IP>:8032
spark.hadoop.yarn.resourcemanager.hostname master-machine
And this shell script is run on all the mahcines:
# The main ones
export CONDA_DIR=/cluster/conda
export HADOOP_HOME=/usr/hadoop
export SPARK_HOME=/usr/spark
export JAVA_HOME=/usr/java/latest
export PATH=$PATH:$SPARK_HOME/bin:$HADOOP_HOME/bin:$JAVA_HOME/bin:$CONDA_DIR/bin:/cluster/libs-python:/cluster/batch
export PYTHONPATH=/cluster/libs-python:$SPARK_HOME/python:$PY4JPATH:$PYTHONPATH
export SPARK_CLASSPATH=/cluster/libs-java/*:/cluster/libs-python:$SPARK_CLASSPATH
# Core spark configuration
export PYSPARK_PYTHON="/cluster/conda/bin/python"
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_PORT=7078
export SPARK_MASTER_WEBUI_PORT=7080
export SPARK_WORKER_WEBUI_PORT=7081
export SPARK_WORKER_OPTS="-Dspark.worker.cleanup.enabled=true -Duser.timezone=UTC+02:00"
export SPARK_WORKER_DIR="/sparktmp"
export SPARK_WORKER_CORES=22
export SPARK_WORKER_MEMORY=43G
export SPARK_DAEMON_MEMORY=1G
export SPARK_WORKER_INSTANCEs=1
export SPARK_EXECUTOR_INSTANCES=2
export SPARK_EXECUTOR_MEMORY=4G
export SPARK_EXECUTOR_CORES=2
export SPARK_LOCAL_IP=$(hostname -I | cut -f1 -d " ")
export SPARK_PUBLIC_DNS=$(hostname -I | cut -f1 -d " ")
export SPARK_MASTER_OPTS="-Duser.timezone=UTC+02:00"
This is the hdfs-site.xml on the master-machine(namenodes):
<configuration>
<property>
<name>dfs.datanode.data.dir</name>
<value>/hdfs</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/hdfs/name</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.replication.max</name>
<value>3</value>
</property>
<property>
<name>dfs.replication.min</name>
<value>1</value>
</property>
<property>
<name>dfs.permissions.superusergroup</name>
<value>supergroup</value>
</property>
<property>
<name>dfs.blocksize</name>
<value>268435456</value>
</property>
<property>
<name>dfs.permissions.enabled</name>
<value>true</value>
</property>
<property>
<name>fs.permissions.umask-mode</name>
<value>002</value>
</property>
<property>
<name>dfs.namenode.datanode.registration.ip-hostname-check</name>
<value>false</value>
</property>
<property>
<!-- 1000Mbit/s -->
<name>dfs.balance.bandwidthPerSec</name>
<value>125000000</value>
</property>
<property>
<name>dfs.hosts.exclude</name>
<value>/cluster/config/hadoopconf/namenode/dfs.hosts.exclude</value>
<final>true</final>
</property>
<property>
<name>dfs.namenode.replication.work.multiplier.per.iteration</name>
<value>10</value>
</property>
<property>
<name>dfs.namenode.replication.max-streams</name>
<value>50</value>
</property>
<property>
<name>dfs.namenode.replication.max-streams-hard-limit</name>
<value>100</value>
</property>
</configuration>
And this is the hdfs-site.xml on the worker-machines (data-node):
<configuration>
<property>
<name>dfs.datanode.data.dir</name>
<value>/hdfs,/hdfs2,/hdfs3</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/hdfs/name</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.replication.max</name>
<value>3</value>
</property>
<property>
<name>dfs.replication.min</name>
<value>1</value>
</property>
<property>
<name>dfs.permissions.superusergroup</name>
<value>supergroup</value>
</property>
<property>
<name>dfs.blocksize</name>
<value>268435456</value>
</property>
<property>
<name>dfs.permissions.enabled</name>
<value>true</value>
</property>
<property>
<name>fs.permissions.umask-mode</name>
<value>002</value>
</property>
<property>
<!-- 1000Mbit/s -->
<name>dfs.balance.bandwidthPerSec</name>
<value>125000000</value>
</property>
</configuration>
This is the core-site.xml on the worker-machines (datanodes)
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://master-machine:54310/</value>
</property>
</configuration>
This is the core-site.xml on the master-machine (name node):
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://master-machine:54310/</value>
</property>
</configuration>
After a lot of debugging I was able to identify that for some reason the jupyter container was not looking in the correct hadoop conf directory even though the HADOOP_HOME environment variable was pointing to the correct location. All I had to do to resolve the above problem was to point HADOOP_CONF_DIR to the correct directory and everything started working again.
everyone
I want to use GridGain in Hadoop 2.4.0
my hadoop config under that
core-site.xml
<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>/usr/hadoop-data</value>
</property>
<property>
<name>fs.trash.interval</name>
<value>1440</value>
</property>
<property>
<name>io.file.buffer.size</name>
<value>131072</value>
</property>
<property>
<name>fs.defaultFS</name>
<value>ggfs://ggfs#R</value>
</property>
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/usr/hadoop-data/journal</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name>
<value>r,host002,host004</value>
</property>
<property>
<name>fs.AbstractFileSystem.ggfs.impl</name>
<value>org.gridgain.grid.ggfs.hadoop.v2.GridGgfsHadoopFileSystem</value>
</property>
<property>
<name>dfs.client.block.write.replace-datanode-on-failure.policy</name>
<value>NEVER</value>
</property>
</configuration>
finish setting and start hdfs
I use
hadoop fs -ls /
ls: No FileSystem for scheme: ggfs
How should I do
Thanks
Add the followings to the core-site.xml:
<property>
<name>fs.ggfs.impl</name>
<value>org.gridgain.grid.ggfs.hadoop.v1.GridGgfsHadoopFileSystem</value>
</property>
The second version of Hadoop File System API is used rarely. The most of parts of Hadoop ecosystem works through first version of API.
And if you want to use GGFS only you don't need to start HDFS services.
I'm so newby in hbase cluster , I cluster hbase in Distributed mode and starting fine but when i run hbase shell I can't create table this error is shown:
my base-site.xml configuration is
<property>
<name>hbase.master</name>
<value>matser:60000</value>
</property>
<property>
<name>hbase.rootdir</name>
<value>hdfs://hadoop-namnode:54310/hbase</value>
</property>
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name>
<value>master</value>
</property>
<property>
<name>hbase.zookeeper.property.clientport</name>
<value>2222</value>
</property>
<property>
<name>hbase.zookeeper.property.dataDir</name>
<value>usr/local/hbase/temp</value>
</property>
could you please help me ?Thanks in advance
The version of Hbase should compatible to Hadoop version.Downgrade the Hbase it'll work fine.