Fineuploader Progress Bar FileSize calculation - fine-uploader

Quick query:
I've noticed that on the default progress bar, the filesize calculation for the file seems to be calculated as bytes / 1000 / 1000, rather than / 1024 / 1024.
Is this intentional, or a bug? Or possibly a setting I've missed?
For example, a 347mb file as reported by Windows shows in the progress bar as it's uploading as 364mb.

The IEEE is pretty clear that 1 MB = 1000000 bytes. While some OSes don't follow this definition, such as Windows, others do, such as OS X. Here is one such reference: http://physics.nist.gov/cuu/Units/binary.html. It is clear that there are those in both camps (powers of 2 and powers of 10) that are willing to argue their side. That said, I'm for not changing the code as it follows a standard/codified definition.

Related

Can I make GhostScript use more than 2 GB of RAM?

I'm running a 64-bit version of GhostScript (9.50) on 64-bit processor with 16gb of RAM under Windows 7.
GhostScript returns a random-ish error message (it will tell me that I have type error in the array command) when I try to allocate one too many arrays totaling more than 2 GBs of RAM.
To be clear, I am seeing how growth of the memory usage in Windows Task Monitor, not from within GhostScript
I'd like to know why this is so.
More importantly, I'd like to know if I can override this behavior.
Edit: This code produces the error --
/TL 25000 def
/TL- TL 1 sub def
/G TL array def
0 1 TL- { dup == flush G exch TL array put }for
The error looks like this: Here's the last bit of the messages I get
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
Unrecoverable error: typecheck in array
Operand stack: --nostringval-- ---
Begin offending input ---
/TL 25000 def /TL- TL 1 sub def /G TL array def 0 1 TL- { dup == flush G exch TL array put }for --- End offending input --- file offset = 0 gsapi_run_string_continue returns -20
The amount of RAM is almost certainly not the limiting factor, but it would help if you were to post the actual error message. It may be 'random-ish' to you, but it's meaningful to people who program in PostScript.
More than likely you've tripped over some other internal limit, for example the operand stack size but without seeing the PostScript program or the error message I cannot say any more than that. I can say that (64-bit) Ghostscript will happily address more than 2GB of RAM, I was running a file last week which had Ghostscript using 8.1GB.
Note that PostScript itself is basically a 32-bit language; while Ghostscript has extended many of the architectural limitations documented in the PostScript Language Reference Manual (such as 64K elements in arrays and strings) moving beyond 32-bit limits is essentially unspecified.
As to whether you can change the behaviour, that depends on exactly what the problem is, and I can't tell from what's here.
Edit
Here's a screenshot of Ghostscript running the test file to completion, along with the Task Manager display showing the amount of memory the process is using. Not shown is the vmstatus which I ran from the PostScript environment afterwards. This showed that Ghostscript thinks it's using 10,010,729,850 bytes form a maximum of 10,012,037,312. My calculator says that 9,562.8MB comes out at 10,027,322,572.4 bytes, so a pretty close match.
To answer the points in the comments this is (as you can probably tell) on a 64-bit Windows 10 installation with quite a lot of memory.
The difference is, almost certainly, something which has been fixed since the release of 9.52. The 9.52 64-bit binary does exit with a VMerror after (for me) 5360 iterations. Obviously trying to use vast amounts of PostScript memory (as opposed to, say, canvas memory) is not a common occurrence, not least because many PostScript interpreters simply won't allow it, so this doesn't get exercised much.
The Ghostscript Git repository is here if you want to go through the commits and try to figure out which one caused the change. You only have to go back to March this year, anything before about the 19th March would have been in 9.52.
Beyond simple curiosity, is there a reason to try and use up loads of memory in PostScript ?

Memory not being released back to OS

I've created an image resizing server that creates a few different thumbnails of and image that you upload to it. I'm using the package https://github.com/h2non/bimg for resizing, which is using libvips with c-bindings.
Before going to production I've started to stress test my app with jmeter and upload 100 images to it concurrently for a few times after each other and noticed that the memory is not being released back to the OS.
To illustrate the problem I've written a few lines of code that reads 100 images and resize them (without saving them anywhere) and then waits for 10 minutes. It repeats like this for 5 times
My code and memory/CPU graph can be found here:
https://github.com/hamochi/bimg-memory-issue
It's clear that the memory is being reused for ever cycle, otherwise it should have doubled (I think). But it's never released back to the OS.
Is this a general behaviour for cgo? Or bimg that is doing something weird. Or is it just my code that is faulty?
Thank you very much for any help you can give!
There's a libvips thing to track and debug reference counts -- you could try enabling that and see if you have any leaks.
https://libvips.github.io/libvips/API/current/libvips-vips.html#vips-leak-set
Though from your comment above about bimg memory stats, it sounds like it's probably all OK.
It's easy to test libvips memory from Python. I made this small program:
#!/usr/bin/python3
import pyvips
import sys
# disable libvips operation caching ... without this, it'll cache all the
# thumbnail operations and we'll just be testing the jpg write
pyvips.cache_set_max(0)
for i in range(0, 10000):
print("loop {} ...".format(i))
for filename in sys.argv[1:]:
# thumbnail to fit 128x128 box
image = pyvips.Image.thumbnail(filename, 128)
thumb = image.write_to_buffer(".jpg")
ie. repeatedly thumbnail a set of source images. I ran it like this:
$ for i in {1..100}; do cp ~/pics/k2.jpg $i.jpg; done
$ ../fing.py *
And watched RES in top. I saw:
loop | RES (kb)
-- | --
100 | 39220
250 | 39324
300 | 39276
400 | 39316
500 | 39396
600 | 39464
700 | 39404
1000 | 39420
As long as you have no refcount leaks, I think what you are seeing is expected behaviour. Linux processes can only release pages at the end of the heap back to the OS (have a look at the brk and sbrk sys calls):
https://en.wikipedia.org/wiki/Sbrk
Now imagine if 1) libvips allocates 6GB, 2) the Go runtime allocates 100kb, 3) libvips releases 6GB. Your libc (the thing in your process that will call sbrk and brk on your behalf) can't hand the 6GB back to the OS because of the 100kb alloc at the end of the heap. Some malloc implementations have better memory fragmentation behaviour than others, but the default linux one is pretty good.
In practice, it doesn't matter. malloc will reuse holes in your memory space, and even if it doesn't, they will get paged out anyway under memory pressure and won't end up eating RAM. Try running your process for a few hours, and watch RES. You should see it creep up, but then stabilize.
(I'm not at all a kernel person, the above is just my understanding, corrections very welcome of course)
The problem is in the resize code:
_, err = bimg.NewImage(buffer).Resize(width, height)
The image is gobject and need unref explicitly to release the memory, try:
image, err = bimg.NewImage(buffer).Resize(width, height)
defer C.g_object_unref(C.gpointer(image))

Opencv_traincascade - After 5 stages - Train dataset for temp stage can not be filled. Branch training terminated

I've looked at this answer, that states that this problem might happen when the description files for the negative images is created with tools different from Opencv_createSamples, but this is not the case here.
The break occurs somewhere between the fourth and the seventh stage. In another post, someone suggested that this message means the classifier cannot be improved, but with only 5 stages, it is at least odd.
For training, I´m using numPos=800 while the vec file (60x60 px) contains 1200 positive samples. Moreover, I´m using 1491 negative samples(30x30 px). I´ve made all kinds of changes in the parameters, and none of them worked.
For the last attempt I used the parameters as follows:
cascadeDirName: 15stages
vecFileName: pos.vec
bgFileName: neg_dir.txt
numPos: 800
numNeg: 1491
numStages: 15
precalcValBufSize[Mb] : 1024
precalcIdxBufSize[Mb] : 1024
acceptanceRatioBreakValue : -1
stageType: BOOST
featureType: HAAR
sampleWidth: 60
sampleHeight: 60
boostType: GAB
minHitRate: 0.9999
maxFalseAlarmRate: 0.3
weightTrimRate: 0.9
maxDepth: 1
maxWeakCount: 100
mode: ALL
I had the same problem, after making a big research, I've got the best parameters that should be supplied to the opencv_traincascade.
If you are using a rectangular image, specify -w 24 -h 24, In addition make sure you have more positives than negatives and set -maxFalseAlarmRate 0.5.
That worked for me very well, hope it is useful for you too.
i also have this problem before. but after i reduce the param [maxFalseAlarmRate] ,like set small than 0.1 , it works ok. hope this have some help.

How to slow down Framer animations

I'm looking for a solution to slow down FramerJS animations by a certain amplitude.
In the Velocity Animation framework it's posible to do Velocity.mock = 10, to slow down everything by a factor of 10.
Either the docs are lacking in the respect, or this feature doesn't currently exist and should really be implemented.
You can use
Framer.Loop.delta = 1 / 120
to slow down all the animations by a factor of 2. The default value is 1 / 60.
While Javier's answer works for most animations, it doesn't apply to delays. While not ideal, the method I've adopted is to set up a debugging variable and function, and pass every time-related value through it:
slowdown = 5
s = (ms) ->
return ms * slowdown
Then use it like so:
Framer.Defaults.Animation =
time: s 0.3
…and:
Utils.delay s(0.3), ->
myLayer.sendToBack()
Setting the slowdown variable to 1 will use your standard timing (anything times 1 is itself).

what is the size of windows semaphore object?

How to find size of a semaphore object in windows?
I tried using sizeof() but we cannot give name of the sempahore object as an argument to sizeof. It has to be the handle. sizeof(HANDLE) gives us the size of handle and not semaphore.
This what is known as an "opaque handle.". There is no way to know how big it really is, what it contains or how any of the functions work internally. This gives Microsoft the ability to completely rewrite the implementation with each new version of Windows if they want to without worrying about breaking existing code. It's a similar concept to having a public and private interface to a class. Since we are not working on the Windows kernel, we only get to see the public interface.
Update:
It might be possible to get a rough idea of how big they are by creating a bunch and monitoring what happens to your memory usage in Process Explorer. However, since there is a good chance that they live in the kernel and not in user space, it might not show up at all. In any case, there are no guarantees about any other version of Windows, past or future, including patches/service packs.
It's something "hidden" from you. You can't say how big it is. And it's a kernel object, so it probably doesn't even live in your address space. It's like asking "how big is the Process Table?", or "how many MB is Windows wasting?".
I'll add that I have made a small test on my Windows 7 32 bits machine: 100000 kernel semaphores (with name X{number} with 0 <= number < 100000)) : 4 mb of kernel memory and 8 mb of user space (both measured with Task Manager). It's about 40 bytes/semaphore in kernel space and 80 bytes/semaphore in user space! (this in Win32... In 64 bits it'll probably double)

Resources