priority generation in treap data structure - algorithm

I'm studying the treap data structure. When inserting node, treap radomly generate node's priority. But what if 69 node's generated priority is 13 in the picture above?
Parent's priority must higher than child's priority. Do treap's binary tree attribute collide with heap attribute?
I want to know. Thanks.

Assuming you have treap from your picture without 69 node and want to add (69, 13) node:
1. Split existing treap to 2 treaps L and R by key 69 (here all old treap will be L)
2. Create treap M with single node (69, 13)
3. Merge M with L, then result with R
For this case node (69, 13) becomes a new root, and old treap will be it's left child.

If node 69 had priority 13, then it would be the root of the tree and node 31 would be its left child. The descendants of node 31 would be as in your diagram, except of course for node 69.
It's always possible to arrange a treap so that it respects both the heap and the binary search properties. In fact, in the absence of equal values or equal priorities, there is only one possible arrangement.
The random assignment of priorities makes it likely that the treap will be reasonably balanced. It might not be perfectly balanced, but on the positive side building the treap is fast and uncomplicated.

Related

How would you keep an ordinary binary tree (not BST) balanced?

I'm aware of ways to keep binary search trees balanced/self-balancing using rotations.
I am not sure if my case needs to be that complicated. I don't need to maintain any sorted order property like with self-balancing BSTs. I just have an ordinary binary tree that I may need to delete nodes or insert nodes. I need try to maintain balance in the tree. For simplicity, my binary tree is similar to a segment tree, and every time a node is deleted, all the nodes along the path from the root to this node will be affected (in my case, it's just some subtraction of the nodal values). Similarly, every time a node is inserted, all the nodes from the root to the inserted node's final location will be affected (an addition to nodal values this time).
What would be the most straightforward way to keep a tree such as this balanced? It doesn't need to be strictly as height balanced as AVL trees, but something like RB trees or maybe slightly less balanced is acceptable as well.
If a new node does not have to be inserted at a particular spot -- possibly determined by its own value and the values in the tree -- but you are completely free to choose its location, then you could maintain the shape of the tree as a complete tree:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible.
An array is a very efficient data structure for a complete tree, as you can store the nodes in their order in a breadth-first traversal. Because the tree is given to be complete, the array has no gaps. This structure is commonly used for heaps:
Heaps are usually implemented with an array, as follows:
Each element in the array represents a node of the heap, and
The parent / child relationship is defined implicitly by the elements' indices in the array.
Example of a complete binary max-heap with node keys being integers from 1 to 100 and how it would be stored in an array.
In the array, the first index contains the root element. The next two indices of the array contain the root's children. The next four indices contain the four children of the root's two child nodes, and so on. Therefore, given a node at index i, its children are at indices 2i + 1 and 2i + 2, and its parent is at index floor((i-1)/2). This simple indexing scheme makes it efficient to move "up" or "down" the tree.
Operations
In your case, you would define the insert/delete operations as follows:
Insert: append the node to the end of the array. Then perform the mutation needed to its ancestors (as you described in your question)
Delete: replace the node to be deleted with the node that currently sits at the very end of the array, and shorten the array by 1. Make the updates needed that follow from the change at these two locations -- so two paths from root-to-node are impacted.
When balancing non-BSTs, the big question to ask is
Can your tree efficiently support rotations?
Some types of binary trees, like k-d trees, have a specific layer-by-layer structure that makes rotations infeasible. Others, like range trees, have auxiliary metadata in each node that's expensive to update after a rotation. But if you can handle rotations, then you can use just about any of the balancing strategies out there. The simplest option might be to model your tree on a treap: put a randomly-chosen weight field into each node, and then, during insertions, rotate your newly-added leaf up until its weight is less than its parent. To delete, repeatedly rotate the node with its lighter child until it's a leaf, then delete it.
If you cannot support rotations, you'll need a rebalancing strategy that does not require them. Perhaps the easiest option there is to model your tree after a scapegoat tree, which works by lazily detecting a node that's too deep for the tree to be balanced, then rebuilding the smallest imbalanced subtree possible into a perfectly-balanced tree to get everything back into order. Deletions are handled by rebuilding the whole tree once the number of nodes drops by some constant factor.

What will be the most optimized position of a node in a binary tree with given specifications?

Suppose I have a binary tree in which a node can have either 0,1 or 2 children. A cost value is associated with each node, and it can be {5,10,20,40}. The most optimal placement of a new node is under a node with same or lower cost value. For example- a new node with cost value 20 is best placed under a node with cost value 20, but can also be placed under nodes with cost values 5 and 10.
Primary requirement of this algorithm is to complete the left and right child of a node if it is required, i.e. if a node with cost value 10 has a left child with cost value 10, then a new node having cost value 10 will be made the right child of the above node . The secondary requirement is to maximize the overall depth of the tree.
The tree cannot be rearranged at any point of time. If an incoming node is of lesser value, then there is no penalty involved.
Given the above requirements, how can we decide the best position of an incoming new node in the tree ? Can we write a general algorithm for it ?
Initially, I thought to complete each level of the tree first, but I don't think it would be optimal.
The secondary requirement is to maximize the overall depth of the tree.
That's a bit unusual.
The quickest way:
sort your input values
fill all the minimal value nodes (5's) in respect with the first requirement (still unclear if both left-right nodes must be filled in before going down a level. If it must then the max depth will be log2(N5) If "going deep on left" is allowed without filling in the right, then the max depth tree will degenerate in list with all right nodes to null).Call this the master tree
make a tree from the next values (say 10-value nodes) and attach this tree to the deepest branch of the master tree
repeat step 3 as necessary
Note: this is the simplest concept, the implementation may take advantage from the fact the master tree is sorted at all time and get over with the initial sort.

Count nodes bigger then root in each subtree of a given binary tree in O(n log n)

We are given a tree with n nodes in form of a pointer to its root node, where each node contains a pointer to its parent, left child and right child, and also a key which is an integer. For each node v I want to add additional field v.bigger which should contain number of nodes with key bigger than v.key, that are in a subtree rooted at v. Adding such a field to all nodes of a tree should take O(n log n) time in total.
I'm looking for any hints that would allow me to solve this problem. I tried several heuristics - for example when thinking about doing this problem in bottom-up manner, for a fixed node v, v.left and v.right could provide v with some kind of set (balanced BST?) with operation bigger(x), which for a given x returns a number of elements bigger than x in that set in logarihmic time. The problem is, we would need to merge such sets in O(log n), so this seems as a no-go, as I don't know any ordered set like data structure which supports quick merging.
I also thought about top-down approach - a node v adds one to some u.bigger for some node u if and only if u lies on a simple path to the root and u<v. So v could update all such u's somehow, but I couldn't come up with any reasonable way of doing that...
So, what is the right way of thinking about this problem?
Perform depth-first search in given tree (starting from root node).
When any node is visited for the first time (coming from parent node), add its key to some order-statistics data structure (OSDS). At the same time query OSDS for number of keys larger than current key and initialize v.bigger with negated result of this query.
When any node is visited for the last time (coming from right child), query OSDS for number of keys larger than current key and add the result to v.bigger.
You could apply this algorithm to any rooted trees (not necessarily binary trees). And it does not necessarily need parent pointers (you could use DFS stack instead).
For OSDS you could use either augmented BST or Fenwick tree. In case of Fenwick tree you need to preprocess given tree so that values of the keys are compressed: just copy all the keys to an array, sort it, remove duplicates, then substitute keys by their indexes in this array.
Basic idea:
Using the bottom-up approach, each node will get two ordered lists of the values in the subtree from both sons and then find how many of them are bigger. When finished, pass the combined ordered list upwards.
Details:
Leaves:
Leaves obviously have v.bigger=0. The node above them creates a two item list of the values, updates itself and adds its own value to the list.
All other nodes:
Get both lists from sons and merge them in an ordered way. Since they are already sorted, this is O(number of nodes in subtree). During the merge you can also find how many nodes qualify the condition and get the value of v.bigger for the node.
Why is this O(n logn)?
Every node in the tree counts through the number of nodes in its subtree. This means the root counts all the nodes in the tree, the sons of the root each count (combined) the number of nodes in the tree (yes, yes, -1 for the root) and so on all nodes in the same height count together the number of nodes that are lower. This gives us that the number of nodes counted is number of nodes * height of the tree - which is O(n logn)
What if for each node we keep a separate binary search tree (BST) which consists of nodes of the subtree rooted at that node.
For a node v at level k, merging the two subtrees v.left and v.right which both have O(n/2^(k+1)) elements is O(n/2^k). After forming the BST for this node, we can find v.bigger in O(n/2^(k+1)) time by just counting the elements in the right (traditionally) subtree of the BST. Summing up, we have O(3*n/2^(k+1)) operations for a single node at level k. There are a total of 2^k many level k nodes, therefore we have O(2^k*3*n/2^(k+1)) which is simplified as O(n) (dropping the 3/2 constant). operations at level k. There are log(n) levels, hence we have O(n*log(n)) operations in total.

Find the maximum weight node in a tree if each node is the sum of the weights all the nodes under it.

For exa, this is the tree.
10
12 -1
5 1 1 -2
2 3 10 -9
How to find the node with maximum value?
Given the problem as stated, you need to traverse the entire tree. See proof below.
Traversing the entire tree should be a fairly trivial process.
Proof that we need to traverse the entire tree:
Assume we're able to identify which side of a tree the maximum is on without traversing the entire tree.
Given any tree with the maximum node on the left. Call this maximum x.
Pick one of the leaf nodes on the right. Add 2 children to it: x+1 and -x-1.
Since x+1-x-1 = 0, adding these won't change the sum at the leaf we added it to, thus nor the sums at any other nodes in the tree.
Since this can be added to any leaf in the tree, and it doesn't affect the sums, we'd need to traverse the entire tree to find out if this occurs anywhere.
Thus our assumption that we can identify which side of a tree the maximum is on without traversing the entire tree is incorrect.
Thus we need to traverse the entire tree.
In the general case, you need to traverse the entire tree. If the values in the tree are not constrained (e.g. all non-negative, but in your example there are negative values), then the value in a node tells you nothing about the individual values below it.

Is it always possible to turn one BST into another using tree rotations?

Given a set of values, it's possible for there to be many different possible binary search trees that can be formed from those values. For example, for the values 1, 2, and 3, there are five BSTs we can make from those values:
1 1 2 3 3
\ \ / \ / /
2 3 1 3 1 2
\ / \ /
3 2 2 1
Many data structures that are based on balanced binary search trees use tree rotations as a primitive for reshaping a BST without breaking the required binary search tree invariants. Tree rotations can be used to pull a node up above its parent, as shown here:
rotate
u right v
/ \ -----> / \
v C A u
/ \ <----- / \
A B rotate B C
left
Given a BST containing a set of values, is it always possible to convert that BST into any arbitrary other BST for the same set of values? For example, could we convert between any of the five BSTs above into any of the other BSTs just by using tree rotations?
The answer to your question depends on whether you are allowed to have equal values in the BST that can appear different from one another. For example, if your BST stores key/value pairs, then it is not always possible to turn one BST for those key/value pairs into a different BST for the same key/value pairs.
The reason for this is that the inorder traversal of the nodes in a BST remains the same regardless of how many tree rotations are performed. As a result, it's not possible to convert from one BST to another if the inorder traversal of the nodes would come out differently. As a very simple case, suppose you have a BST holding two copies of the number 1, each of which is annotated with a different value (say, A or B). In that case, there is no way to turn these two trees into one another using tree rotations:
1:a 1:b
\ \
1:b 1:a
You can check this by brute-forcing the (very small!) set of possible trees you can make with the rotations. However, it suffices to note that an inorder traversal of the first tree gives 1:a, 1:b and an inorder traversal of the second tree gives 1:b, 1:a. Consequently, no number of rotations will suffice to convert between the trees.
On the other hand, if all the values are different, then it is always possible to convert between two BSTs by applying the right number of tree rotations. I'll prove this using an inductive argument on the number of nodes.
As a simple base case, if there are no nodes in the tree, there is only one possible BST holding those nodes: the empty tree. Therefore, it's always possible to convert between two trees with zero nodes in them, since the start and end tree must always be the same.
For the inductive step, let's assume that for any two BSTs of 0, 1, 2, .., n nodes with the same values, that it's always possible to convert from one BST to another using rotations. We'll prove that given any two BSTs made from the same n + 1 values, it's always possible to convert the first tree to the second.
To do this, we'll start off by making a key observation. Given any node in a BST, it is always possible to apply tree rotations to pull that node up to the root of the tree. To do this, we can apply this algorithm:
while (target node is not the root) {
if (node is a left child) {
apply a right rotation to the node and its parent;
} else {
apply a left rotation to the node and its parent;
}
}
The reason that this works is that every time a node is rotated with its parent, its height increases by one. As a result, after applying sufficiently many rotations of the above forms, we can get the root up to the top of the tree.
This now gives us a very straightforward recursive algorithm we can use to reshape any one BST into another BST using rotations. The idea is as follows. First, look at the root node of the second tree. Find that node in the first tree (this is pretty easy, since it's a BST!), then use the above algorithm to pull it up to the root of the tree. At this point, we have turned the first tree into a tree with the following properties:
The first tree's root node is the root node of the second tree.
The first tree's right subtree contains the same nodes as the second tree's right subtree, but possibly with a different shape.
The first tree's left subtree contains the same nodes as the second tree's left subtree, but possibly with a different shape.
Consequently, we could then recursively apply this same algorithm to make the left subtree have the same shape as the left subtree of the second tree and to make the right subtree have the same shape as the right subtree of the second tree. Since these left and right subtrees must have strictly no more than n nodes each, by our inductive hypothesis we know that it's always possible to do this, and so the algorithm will work as intended.
To summarize, the algorithm works as follows:
If the two trees are empty, we are done.
Find the root node of the second tree in the first tree.
Apply rotations to bring that node up to the root.
Recursively reshape the left subtree of the first tree to have the same shape as the left subtree of the second tree.
Recursively reshape the right subtree of the first tree to have the same shape as the right subtree of the second tree.
To analyze the runtime of this algorithm, note that applying steps 1 - 3 requires at most O(h) steps, where h is the height of the first tree. Every node will be brought up to the root of some subtree exactly once, so we do this a total of O(n) times. Since the height of an n-node tree is never greater than O(n), this means that the algorithm takes at most O(n2) time to complete. It's possible that it will do a lot better (for example, if the two trees already have the same shape, then this runs in time O(n)), but this gives a nice worst-case bound.
Hope this helps!
For binary search trees this can actually be done in O(n).
Any tree can be "straightened out", ie put into a form in which all nodes are either the root or a left child.
This form is unique (reading down from root gives the ordering of the elements)
A tree is straightened out as follows:
For any right child, perform a left rotation about itself. This decreases the number of right children by 1, so the tree is straightened out in O(n) rotations.
If A can be straightened out into S in O(n) rotations, and B into S in O(n) rotations, then since rotations are reversible one can turn A -> S -> B in O(n) rotations.

Resources