Unique rows after column removal from matrix - algorithm

Binary matrix of n rows and m columns is given. n and m can be up to 2000.
We need to tell, is it possible to remove a column, such that rows of the remaining matrix will be unique.
Example for n = 3 and m = 4:
1010
0001
1001
Answer is yes. We can remove the second column and the remaining rows (110, 001, 101) will be unique.
Example for n = 4 and m = 2:
00
01
10
11
Answer is no. Whatever column we will choose, rows 0 and 0 will stay.
I have O(m*m*n) brute-force algorithm. I check the uniqueness of rows by removing each and every column.
Do you know faster algorithm?

!EDIT : My solution is unfortunatelly only halfway to solve this, sorry.
Well I am sure, I can do it in O(m*n) time.
You can create tree in n*m time. Just going one row by one and updating this structure:
Node{
int accessed;
Node nextZero;
Node nextOne;
}
If you do create this tree, you only have to check the last row, if it has "zeros" and "ones" equal or bigger than two or not.
There is a visual example of what it looks like after processing two numbers.
You just go row by row, always start from root.
For example, when you start processing the second row, you start in root. The number in second row is "101". You take first number, it is "1", so you go into nextOne node. Then you get "0", so you get into nextZero. Then you get "1", which does not exist, so you create it.
After all, you are only interested in the "accessed" number in the most depth nodes, if they all have "accessed" equal to 1, there are all distinct, otherwise, they are not.
pseudocode
Node{
int accessed;
Node nextZero;
Node nextOne;
}
bool isDistinct(){
Node root = new Node();
Node next;
for (int i=0;i<arr.length;i++){
Node actual = root;
for (int j=0;j<arr[i].length;j++){
if (arr[i][j] == 0){
next = actual.nextZero;
if (next == null){
next = new Node();
acutal.nextZero = next;
}
} else {
next = actual.nextOne;
if (next == null){
next = new Node();
acutal.nextOne = next;
}
}
actual = next;
actual.accessed++;
if ((j == arr[i].length - 1) && (actual >= 2)){
return false;
}
}
}
return true;
}
Sorry, this is really only "halfaway" to do it, I did not read properly what exactly I am supposed to do. But with some thinking, maybe you can remove a node from tree and rebalanced it effectively...

Each row represent some number in base 10.
We can calculate all this numbers in O(n*m).
We will get an array a of length n.
We can create an array b where in position b[i] will be number of times we have number i in array a in O(n)
If we have b[i]>1 for some i, the answer is No
No we will try to remove columns one by, which will change numbers accordingly. For example if we remove kth column, we need to make array c which will have the same meaning as array b but without kth column. To do this we initialize c[i]=b[i] if i<2^k and if b[i]=1 for i>=2^k then we will update c[i-2^k]++. If we get c[i]>1 for some i the answer is No, and continue with next column. Otherwise the answer is Yes. This can be done in O(n*m).
Edit:
The complexity for whole solution is then O(n*m).
Because the numbers will be big, you can represent array b as a sparse array using dictionary, and for numbers you can use some library for big numbers. The whole solution should be faster then brute force.

Related

Divide an odd size array into into two equal sets of same size and same sum after deleting any one element from the array

Given an array of odd size. You have to delete any one element from the array and then find whether it is possible to divide the remaining even size array into two sets of equal size and having same sum of their elements. It is mandatory to remove any one element from the array.
So Here I am assuming that it is necessary to remove 1 element from the array.
Please look at the code snippet below.
int solve(int idx, int s, int cntr, int val) {
if(idx == n)
if(cntr != 1)
return INT_MAX;
else
return abs((sum-val)-2*s);
int ans = INT_MAX;
if(cntr == 0)
ans = min(ans, solve(idx+1, s, cntr+1, arr[idx]));
else
ans = min(ans, min(solve(idx+1,s+arr[idx], cntr, val), solve(idx+1, s, cntr, val)));
return ans;
}
Here sum is the total sum of original array,
val is the
value of the element at any position which u want to delete, and cntr to keep track whether any value is removed from the array or not.
So the algo goes like this.
Forget that you need to delete any value, Then the problem becomes whether is it possible to divide the array into 2 equi-sum halves. Now we can think of this problem such as divide the array into 2 parts such that abs(sum-2*sum_of_any_half_part) is minimized. So With this idea Lets say I initially have a bucket s which can be the part of array which we are concerned about. So at each step we can either put any element into this part or leave it for the other part.
Now if we introduce the deletion part in to this problem, its just one small changes which is required. Now at each step instead of 2 you have 3 options.
To delete this particular element and then increase the cntr to 1 and the val to the value of the element at that index in the array.
don't do any thing with this element. This is equal to putting this element into other bucket/half
put this element into bucket s, i.e. increase value of s by arr[idx];
Now recursively check which gives the best result.
P.S. Look at the base case in the code snippet to have better idea.
In the end if the above solve function gives ans = 0 then that means yes we can divide the array into 2 equi-sum parts after deleting any element.
Hope this helps.

Judgecode -- Sort with swap (2)

The problem I've seen is as bellow, anyone has some idea on it?
http://judgecode.com/problems/1011
Given a permutation of integers from 0 to n - 1, sorting them is easy. But what if you can only swap a pair of integers every time?
Please calculate the minimal number of swaps
One classic algorithm seems to be permutation cycles (https://en.wikipedia.org/wiki/Cycle_notation#Cycle_notation). The number of swaps needed equals the total number of elements subtracted by the number of cycles.
For example:
1 2 3 4 5
2 5 4 3 1
Start with 1 and follow the cycle:
1 down to 2, 2 down to 5, 5 down to 1.
1 -> 2 -> 5 -> 1
3 -> 4 -> 3
We would need to swap index 1 with 5, then index 5 with 2; as well as index 3 with index 4. Altogether 3 swaps or n - 2. We subtract n by the number of cycles since cycle elements together total n and each cycle represents a swap less than the number of elements in it.
Here is a simple implementation in C for the above problem. The algorithm is similar to User גלעד ברקן:
Store the position of every element of a[] in b[]. So, b[a[i]] = i
Iterate over the initial array a[] from left to right.
At position i, check if a[i] is equal to i. If yes, then keep iterating.
If no, then it's time to swap. Look at the logic in the code minutely to see how the swapping takes place. This is the most important step as both array a[] and b[] needs to be modified. Increase the count of swaps.
Here is the implementation:
long long sortWithSwap(int n, int *a) {
int *b = (int*)malloc(sizeof(int)*n); //create a temporary array keeping track of the position of every element
int i,tmp,t,valai,posi;
for(i=0;i<n;i++){
b[a[i]] = i;
}
long long ans = 0;
for(i=0;i<n;i++){
if(a[i]!=i){
valai = a[i];
posi = b[i];
a[b[i]] = a[i];
a[i] = i;
b[i] = i;
b[valai] = posi;
ans++;
}
}
return ans;
}
The essence of solving this problem lies in the following observation
1. The elements in the array do not repeat
2. The range of elements is from 0 to n-1, where n is the size of the array.
The way to approach
After you have understood the way to approach the problem ou can solve it in linear time.
Imagine How would the array look like after sorting all the entries ?
It will look like arr[i] == i, for all entries . Is that convincing ?
First create a bool array named FIX, where FIX[i] == true if ith location is fixed, initialize this array with false initially
Start checking the original array for the match arr[i] == i, till the time this condition holds true, eveything is okay. While going ahead with traversal of array also update the FIX[i] = true. The moment you find that arr[i] != i you need to do something, arr[i] must have some value x such that x > i, how do we guarantee that ? The guarantee comes from the fact that the elements in the array do not repeat, therefore if the array is sorted till index i then it means that the element at position i in the array cannot come from left but from right.
Now the value x is essentially saying about some index , why so because the array only has elements till n-1 starting from 0, and in the sorted arry every element i of the array must be at location i.
what does arr[i] == x means is that , not only element i is not at it's correct position but also the element x is missing from it's place.
Now to fix ith location you need to look at xth location, because maybe xth location holds i and then you will swap the elements at indices i and x, and get the job done. But wait, it's not necessary that the index x will hold i (and you finish fixing these locations in just 1 swap). Rather it may be possible that index x holds value y, which again will be greater than i, because array is only sorted till location i.
Now before you can fix position i , you need to fix x, why ? we will see later.
So now again you try to fix position x, and then similarly you will try fixing till the time you don't see element i at some location in the fashion told .
The fashion is to follow the link from arr[i], untill you hit element i at some index.
It is guaranteed that you will definitely hit i at some location while following in this way . Why ? try proving it, make some examples, and you will feel it
Now you will start fixing all the index you saw in the path following from index i till this index (say it j). Now what you see is that the path which you have followed is a circular one and for every index i, the arr[i] is tored at it's previous index (index from where you reached here), and Once you see that you can fix the indices, and mark all of them in FIX array to be true. Now go ahead with next index of array and do the same thing untill whole array is fixed..
This was the complete idea, but to only conunt no. of swaps, you se that once you have found a cycle of n elements you need n swaps, and after doing that you fix the array , and again continue. So that's how you will count the no. of swaps.
Please let me know if you have some doubts in the approach .
You may also ask for C/C++ code help. Happy to help :-)

Code Complexity in 3 array case

You are given with three sorted arrays ( in ascending order), you are required to find a triplet ( one element from each array) such that distance is minimum.
Distance is defined like this :
If a[i], b[j] and c[k] are three elements then
distance = max{abs(a[i]-b[j]),abs(a[i]-c[k]),abs(b[j]-c[k])}
Please give a solution in O(n) time complexity
Linear time algorithm:
double MinimalDistance(double[] A, double[] B, double[] C)
{
int i,j,k = 0;
double min_value = infinity;
double current_val;
int opt_indexes[3] = {0, 0, 0);
while(i < A.size || j < B.size || k < C.size)
{
current_val = calculate_distance(A[i],B[j],C[k]);
if(current_val < min_value)
{
min_value = current_val;
opt_indexes[1] = i;
opt_indexes[2] = j;
opt_indexes[3] = k;
}
if(A[i] < B[j] && A[i] < C[k] && i < A.size)
i++;
else if (B[j] < C[k] && j < B.size)
j++;
else
k++;
}
return min_value;
}
In each step you check the current distance, then increment the index of the array currently pointing to the minimal value. each array is iterated through exactly once, which mean the running time is O(A.size + B.size + C.size).
if you want the optimal indexes instead of the minimal values, you can return opt_indexes instead of min_value.
Suppose we have just one sorted array, then 3 consecutive elements which have less possible distances are the desired solution. Now when we have three arrays, just merge them all and make a big sorted array ABC (this can be done in O(n) by merge operation in merge-sort), just keep a flag to determine which element belongs in which original array. Now you have to find three consecutive elements in array like this:
a1,a2,b1,b2,b3,c1,b4,c2,c3,c4,b5,b6,a3,a4,a5,....
and here consecutive means they belong to the 3 different group in consecutive order, e.g: a2,b3,c1 or c4,b6,a3.
Now finding this tree elements is not hard, sure smallest and greatest one should be last and first of a elements of first and last group in some triple, e.g in the group: [c2,c3,c4],[b5,b6],[a3,a4,a5], we don't need to check a4,a5,c2,c3 is clear that possible solution in this case is among c4,[b5,b6],a5, also we don't need to compare c4 with b5,b6, or a5 with b5,b6, sure distance is made by a5-c4 (in this group). So we can start from left and keep track of last element and update best possible solution in each iteration by just keeping the last visited value of each group.
Example (first I should say that I didn't wrote the code because I think this is OP's task not me):
Suppose we have this sequences after sorted array:
a1,a2,b1,b2,b3,c1,b4,c2,c3,c4,b5,b6,a3,a4,a5,....
let iterate step by step:
We need to just keep track of last item for each item from our arrays, a is for keeping track of current best a_i, b for b_i, and c for c_i. suppose at first a_i=b_i=c_i=-1,
in the first step a will be a1, in the next step
a=a2,b=-1,c=-1
a=a2,b=b1,c=-1
a=a2,b=b2,c=-1
a=a2,b=b3,c=-1,
a=a2,b=b3,c=c1,
At this point we save current pointers (a2,b3,c1) as a best value for difference,
In the next step:
a=a2,c=c1,b=b4
Now we compare the difference of b4-a2 with previously best option, if is better, we save this pointers as a solution upto now and we proceed:
a=a2,b=b4,c=c2 (again compare and if needed update the best solution),
a=a2,b=b4,c=c3 (again ....)
a=a2,b=b4,c=c4 (again ....)
a=a2, b=b5,c=c4, ....
Ok if is not clear from the text, after merge we have (I'll suppose all of array have at least one element):
solution = infinite;
a=b=c=-1,
bestA=bestB=bestC=1;
for (int i=0;i<ABC.Length;i++)
{
if(ABC[i].type == "a") // type is a flag determines
// who is the owner of this element
{
a=ABC[i].Value;
if (b!=-1&&c!=-1)
{
if (max(|a-b|,|b-c|,|a-c|) < solution)
{
solution = max(|a-b|,|b-c|,|a-c|);
bestA= a,bestB = b,bestC = c;
}
}
}
// and two more if for type "b" and "c"
}
Sure there is more elegant algorithm than this, but I see you had problem with your link, so I guess this trivial way of looking at problem makes it easier, afterward you can understand your own link.

Trouble with a stack based algorithm

I'm working on this programming assignment. It tests our understanding of stacks and their applications. I find it extremely difficult to come up with an algorithm that can work efficiently and accurately. Some of their test cases have 200,000+ "trees"! While my algorithm can work for simpler test cases with less than 10 trees, it failed in the accuracy and efficiency departments when the number of "trees" is exceedingly large (from 100+ onwards).
I would appreciate it very much, if you guys can kindly give me a hint or point me to the right direction. Thank you.
Task Statement
Monkeys like to swing from tree to tree. They can swing from one tree
to another directly as long as there is no tree in between that is
taller than or have the same height as either one of the two trees.
For example, if there are 5 trees with heights 19m, 17m, 20m, 20m and
20m lining up in that order, then the monkey will be able to swing
from one tree to the other as shown below:
1. from first tree to second tree
2. from first tree to third tree
3. from second tree to third tree
4. from third tree to fourth tree
5. from fourth tree to fifth tree
Tarzan, the king of jungle who is able to communicate with the
monkeys, wants to test the monkeys to see if they know how to count
the total number of pairs of trees that they can swing directly from
one to the other. But he himself is not very good in counting. So he
turns to you, the best Java programmer in the country, to write a
program for getting the correct count for the trees in different parts
of the jungle.
Input
The first line contains N, the number of trees in the path. The next
line contains N integers a1 a2 a3 ... aN, where ai represents the
height of the i-th tree in the path, 0 < ai ≤ 231 and 2 ≤ N ≤ 500,000.
Note that short symbol N is used above for convenience. In your
program, you are expected to give it a descriptive name.
Output
The total number of pairs of trees which the monkeys can swing
directly from one to the other with the given list of tree heights.
Sample Input 1
4
3 4 1 2
Sample Output 1
4
Sample Input 2
5
19 17 20 20 20
Sample Output 2
5
Sample Input 3
4 1
2 21 21 12
Sample Output 3
3
Here's my code. So this is a method that returns the number of pairs of trees a monkey can swing with. The parameter is an array of inputs.
My algorithm goes as follows:
we set the numPairs to be (array length - 1), since all trees can be swing from one to another.
now we find the extra numPairs (extra trees to swing with).
push the first input into the empty stack
we enter a for loop:
for the next input until the end of array:
case1:
if the top of the stack is smaller than the current input and the size of the stack is equal to 1, then we replace the top with the input.
case2:
if the top of the stack smaller than the current input and the size of the stack is bigger than 1, we pop the top, and enter a while loop to pop the previous elements which is smaller than the current top of the stack.
we then push the current input after we exit the while loop.
case3:
otherwise, if the above conditions are not satisfied, we simply push the current input into the stack.
we exit the for loop
return the numPairs
public int solve(int[] arr) {
int input, temp;
numPairs = arr.length-1;
for(int i=0; i<arr.length; i++)
{
input = arr[i];
if(stack.isEmpty())
stack.push(input);
else if(!stack.isEmpty())
{
if(input>stack.peek() && stack.size() == 1)
{
stack.pop();
stack.push(input);
}
else if(input>stack.peek() && stack.size() > 1)
{
temp = stack.pop();
while(!stack.isEmpty() && temp < stack.peek())
{
numPairs++;
temp = stack.pop();
}
stack.push(input);
//numPairs++;
}
else
stack.push(input);
}
}
return numPairs;
}
Here's my solution, it's an iterative one.
class Result {
// declare the member field
Stack<Integer> stack;
int numPairs = 0;
// declare the constructor
public Result()
{
stack = new Stack<Integer>();
}
/*
* solve : to compute the result, return the result
* Pre-condition : parameter must be of array of integer type
* Post-condition : return the number of tree pairs that can be swung with
*/
public int solve(int[] arr) {
// implementation
int input;
for(int i=0; i<arr.length; i++)
{
input = arr[i];
if(stack.isEmpty()) //if stack is empty, just push the input
stack.push(input);
else if(!stack.isEmpty())
{
//do a while loop to pop all possible top stack element until
//the top element is bigger than the input
//or the stack is empty
while(!stack.isEmpty() && input > stack.peek())
{
stack.pop();
numPairs++;
}
//if the stack is empty after exiting the while loop
//push the current element onto the stack
if(stack.isEmpty())
stack.push(input);
//this condition applies for two cases:
//1. the while loop is never entered because the input is smaller than the top element by default
//2. the while loop is exited and the input is pushed onto the non-empty stack with numPairs being incremented
else if(!stack.isEmpty() && input < stack.peek())
{
stack.push(input);
numPairs++;
}
//this is the last condition:
//the input is never pushed if the input is identical to the top element
//instead we increment the numPairs
else if(input == stack.peek())
numPairs++;
}
}
return numPairs;
}
}
If I understand the problem correctly, there are two kinds of trees accessible to each other:
Trees that are next to each (adjacent) other are always accessible to each other
Trees that are not adjacent are only accessible if all the trees in between are shorter than both of the trees.
One might come up with several types of solutions for this:
The brute force solution: compare every tree to every other tree checking the conditions above. Running time: O(n^2)
Find near accessible neighbors solution: look for near neighbors that are accessible. Running time: close to O(n). Here's how this would work:
Build an array of tree sizes in order that they are given. Then walk this array in order and for every tree at index i:
Going to the right from i
If tree at i+1 is taller then tree at i break out (no more accessible neighbors can be found)
Add 1 to the count of accessible trees if tree at i+1 is shorter than tree at i+2
Do the same for trees i+2, i+3.. etc. until you find a tree that is taller than tree at i.
This will get a count of non-adjacent accessible trees for every tree. Then just add N*2-2 to the count to account for all the adjacent trees, and you are done.

Check if two linked lists merge. If so, where?

This question may be old, but I couldn't think of an answer.
Say, there are two lists of different lengths, merging at a point; how do we know where the merging point is?
Conditions:
We don't know the length
We should parse each list only once.
The following is by far the greatest of all I have seen - O(N), no counters. I got it during an interview to a candidate S.N. at VisionMap.
Make an interating pointer like this: it goes forward every time till the end, and then jumps to the beginning of the opposite list, and so on.
Create two of these, pointing to two heads.
Advance each of the pointers by 1 every time, until they meet. This will happen after either one or two passes.
I still use this question in the interviews - but to see how long it takes someone to understand why this solution works.
Pavel's answer requires modification of the lists as well as iterating each list twice.
Here's a solution that only requires iterating each list twice (the first time to calculate their length; if the length is given you only need to iterate once).
The idea is to ignore the starting entries of the longer list (merge point can't be there), so that the two pointers are an equal distance from the end of the list. Then move them forwards until they merge.
lenA = count(listA) //iterates list A
lenB = count(listB) //iterates list B
ptrA = listA
ptrB = listB
//now we adjust either ptrA or ptrB so that they are equally far from the end
while(lenA > lenB):
ptrA = ptrA->next
lenA--
while(lenB > lenA):
prtB = ptrB->next
lenB--
while(ptrA != NULL):
if (ptrA == ptrB):
return ptrA //found merge point
ptrA = ptrA->next
ptrB = ptrB->next
This is asymptotically the same (linear time) as my other answer but probably has smaller constants, so is probably faster. But I think my other answer is cooler.
If
by "modification is not allowed" it was meant "you may change but in the end they should be restored", and
we could iterate the lists exactly twice
the following algorithm would be the solution.
First, the numbers. Assume the first list is of length a+c and the second one is of length b+c, where c is the length of their common "tail" (after the mergepoint). Let's denote them as follows:
x = a+c
y = b+c
Since we don't know the length, we will calculate x and y without additional iterations; you'll see how.
Then, we iterate each list and reverse them while iterating! If both iterators reach the merge point at the same time, then we find it out by mere comparing. Otherwise, one pointer will reach the merge point before the other one.
After that, when the other iterator reaches the merge point, it won't proceed to the common tail. Instead will go back to the former beginning of the list that had reached merge-point before! So, before it reaches the end of the changed list (i.e. the former beginning of the other list), he will make a+b+1 iterations total. Let's call it z+1.
The pointer that reached the merge-point first, will keep iterating, until reaches the end of the list. The number of iterations it made should be calculated and is equal to x.
Then, this pointer iterates back and reverses the lists again. But now it won't go back to the beginning of the list it originally started from! Instead, it will go to the beginning of the other list! The number of iterations it made should be calculated and equal to y.
So we know the following numbers:
x = a+c
y = b+c
z = a+b
From which we determine that
a = (+x-y+z)/2
b = (-x+y+z)/2
c = (+x+y-z)/2
Which solves the problem.
Well, if you know that they will merge:
Say you start with:
A-->B-->C
|
V
1-->2-->3-->4-->5
1) Go through the first list setting each next pointer to NULL.
Now you have:
A B C
1-->2-->3 4 5
2) Now go through the second list and wait until you see a NULL, that is your merge point.
If you can't be sure that they merge you can use a sentinel value for the pointer value, but that isn't as elegant.
If we could iterate lists exactly twice, than I can provide method for determining merge point:
iterate both lists and calculate lengths A and B
calculate difference of lengths C = |A-B|;
start iterating both list simultaneously, but make additional C steps on list which was greater
this two pointers will meet each other in the merging point
Here's a solution, computationally quick (iterates each list once) but uses a lot of memory:
for each item in list a
push pointer to item onto stack_a
for each item in list b
push pointer to item onto stack_b
while (stack_a top == stack_b top) // where top is the item to be popped next
pop stack_a
pop stack_b
// values at the top of each stack are the items prior to the merged item
You can use a set of Nodes. Iterate through one list and add each Node to the set. Then iterate through the second list and for every iteration, check if the Node exists in the set. If it does, you've found your merge point :)
This arguably violates the "parse each list only once" condition, but implement the tortoise and hare algorithm (used to find the merge point and cycle length of a cyclic list) so you start at List A, and when you reach the NULL at the end you pretend it's a pointer to the beginning of list B, thus creating the appearance of a cyclic list. The algorithm will then tell you exactly how far down List A the merge is (the variable 'mu' according to the Wikipedia description).
Also, the "lambda" value tells you the length of list B, and if you want, you can work out the length of list A during the algorithm (when you redirect the NULL link).
Maybe I am over simplifying this, but simply iterate the smallest list and use the last nodes Link as the merging point?
So, where Data->Link->Link == NULL is the end point, giving Data->Link as the merging point (at the end of the list).
EDIT:
Okay, from the picture you posted, you parse the two lists, the smallest first. With the smallest list you can maintain the references to the following node. Now, when you parse the second list you do a comparison on the reference to find where Reference [i] is the reference at LinkedList[i]->Link. This will give the merge point. Time to explain with pictures (superimpose the values on the picture the OP).
You have a linked list (references shown below):
A->B->C->D->E
You have a second linked list:
1->2->
With the merged list, the references would then go as follows:
1->2->D->E->
Therefore, you map the first "smaller" list (as the merged list, which is what we are counting has a length of 4 and the main list 5)
Loop through the first list, maintain a reference of references.
The list will contain the following references Pointers { 1, 2, D, E }.
We now go through the second list:
-> A - Contains reference in Pointers? No, move on
-> B - Contains reference in Pointers? No, move on
-> C - Contains reference in Pointers? No, move on
-> D - Contains reference in Pointers? Yes, merge point found, break.
Sure, you maintain a new list of pointers, but thats not outside the specification. However the first list is parsed exactly once, and the second list will only be fully parsed if there is no merge point. Otherwise, it will end sooner (at the merge point).
I have tested a merge case on my FC9 x86_64, and print every node address as shown below:
Head A 0x7fffb2f3c4b0
0x214f010
0x214f030
0x214f050
0x214f070
0x214f090
0x214f0f0
0x214f110
0x214f130
0x214f150
0x214f170
Head B 0x7fffb2f3c4a0
0x214f0b0
0x214f0d0
0x214f0f0
0x214f110
0x214f130
0x214f150
0x214f170
Note becase I had aligned the node structure, so when malloc() a node, the address is aligned w/ 16 bytes, see the least 4 bits.
The least bits are 0s, i.e., 0x0 or 000b.
So if your are in the same special case (aligned node address) too, you can use these least 4 bits.
For example when travel both lists from head to tail, set 1 or 2 of the 4 bits of the visiting node address, that is, set a flag;
next_node = node->next;
node = (struct node*)((unsigned long)node | 0x1UL);
Note above flags won't affect the real node address but only your SAVED node pointer value.
Once found somebody had set the flag bit(s), then the first found node should be the merge point.
after done, you'd restore the node address by clear the flag bits you had set. while an important thing is that you should be careful when iterate (e.g. node = node->next) to do clean. remember you had set flag bits, so do this way
real_node = (struct node*)((unsigned long)node) & ~0x1UL);
real_node = real_node->next;
node = real_node;
Because this proposal will restore the modified node addresses, it could be considered as "no modification".
There can be a simple solution but will require an auxilary space. The idea is to traverse a list and store each address in a hash map, now traverse the other list and match if the address lies in the hash map or not. Each list is traversed only once. There's no modification to any list. Length is still unknown. Auxiliary space used: O(n) where 'n' is the length of first list traversed.
this solution iterates each list only once...no modification of list required too..though you may complain about space..
1) Basically you iterate in list1 and store the address of each node in an array(which stores unsigned int value)
2) Then you iterate list2, and for each node's address ---> you search through the array that you find a match or not...if you do then this is the merging node
//pseudocode
//for the first list
p1=list1;
unsigned int addr[];//to store addresses
i=0;
while(p1!=null){
addr[i]=&p1;
p1=p1->next;
}
int len=sizeof(addr)/sizeof(int);//calculates length of array addr
//for the second list
p2=list2;
while(p2!=null){
if(search(addr[],len,&p2)==1)//match found
{
//this is the merging node
return (p2);
}
p2=p2->next;
}
int search(addr,len,p2){
i=0;
while(i<len){
if(addr[i]==p2)
return 1;
i++;
}
return 0;
}
Hope it is a valid solution...
There is no need to modify any list. There is a solution in which we only have to traverse each list once.
Create two stacks, lets say stck1 and stck2.
Traverse 1st list and push a copy of each node you traverse in stck1.
Same as step two but this time traverse 2nd list and push the copy of nodes in stck2.
Now, pop from both stacks and check whether the two nodes are equal, if yes then keep a reference to them. If no, then previous nodes which were equal are actually the merge point we were looking for.
int FindMergeNode(Node headA, Node headB) {
Node currentA = headA;
Node currentB = headB;
// Do till the two nodes are the same
while (currentA != currentB) {
// If you reached the end of one list start at the beginning of the other
// one currentA
if (currentA.next == null) {
currentA = headA;
} else {
currentA = currentA.next;
}
// currentB
if (currentB.next == null) {
currentB = headB;
} else {
currentB = currentB.next;
}
}
return currentB.data;
}
We can use two pointers and move in a fashion such that if one of the pointers is null we point it to the head of the other list and same for the other, this way if the list lengths are different they will meet in the second pass.
If length of list1 is n and list2 is m, their difference is d=abs(n-m). They will cover this distance and meet at the merge point.
Code:
int findMergeNode(SinglyLinkedListNode* head1, SinglyLinkedListNode* head2) {
SinglyLinkedListNode* start1=head1;
SinglyLinkedListNode* start2=head2;
while (start1!=start2){
start1=start1->next;
start2=start2->next;
if (!start1)
start1=head2;
if (!start2)
start2=head1;
}
return start1->data;
}
Here is naive solution , No neeed to traverse whole lists.
if your structured node has three fields like
struct node {
int data;
int flag; //initially set the flag to zero for all nodes
struct node *next;
};
say you have two heads (head1 and head2) pointing to head of two lists.
Traverse both the list at same pace and put the flag =1(visited flag) for that node ,
if (node->next->field==1)//possibly longer list will have this opportunity
//this will be your required node.
How about this:
If you are only allowed to traverse each list only once, you can create a new node, traverse the first list to have every node point to this new node, and traverse the second list to see if any node is pointing to your new node (that's your merge point). If the second traversal doesn't lead to your new node then the original lists don't have a merge point.
If you are allowed to traverse the lists more than once, then you can traverse each list to find our their lengths and if they are different, omit the "extra" nodes at the beginning of the longer list. Then just traverse both lists one step at a time and find the first merging node.
Steps in Java:
Create a map.
Start traversing in the both branches of list and Put all traversed nodes of list into the Map using some unique thing related to Nodes(say node Id) as Key and put Values as 1 in the starting for all.
When ever first duplicate key comes, increment the value for that Key (let say now its value became 2 which is > 1.
Get the Key where the value is greater than 1 and that should be the node where two lists are merging.
We can efficiently solve it by introducing "isVisited" field. Traverse first list and set "isVisited" value to "true" for all nodes till end. Now start from second and find first node where flag is true and Boom ,its your merging point.
Step 1: find lenght of both the list
Step 2 : Find the diff and move the biggest list with the difference
Step 3 : Now both list will be in similar position.
Step 4 : Iterate through list to find the merge point
//Psuedocode
def findmergepoint(list1, list2):
lendiff = list1.length() > list2.length() : list1.length() - list2.length() ? list2.lenght()-list1.lenght()
biggerlist = list1.length() > list2.length() : list1 ? list2 # list with biggest length
smallerlist = list1.length() < list2.length() : list2 ? list1 # list with smallest length
# move the biggest length to the diff position to level both the list at the same position
for i in range(0,lendiff-1):
biggerlist = biggerlist.next
#Looped only once.
while ( biggerlist is not None and smallerlist is not None ):
if biggerlist == smallerlist :
return biggerlist #point of intersection
return None // No intersection found
int FindMergeNode(Node *headA, Node *headB)
{
Node *tempB=new Node;
tempB=headB;
while(headA->next!=NULL)
{
while(tempB->next!=NULL)
{
if(tempB==headA)
return tempB->data;
tempB=tempB->next;
}
headA=headA->next;
tempB=headB;
}
return headA->data;
}
Use Map or Dictionary to store the addressess vs value of node. if the address alread exists in the Map/Dictionary then the value of the key is the answer.
I did this:
int FindMergeNode(Node headA, Node headB) {
Map<Object, Integer> map = new HashMap<Object, Integer>();
while(headA != null || headB != null)
{
if(headA != null && map.containsKey(headA.next))
{
return map.get(headA.next);
}
if(headA != null && headA.next != null)
{
map.put(headA.next, headA.next.data);
headA = headA.next;
}
if(headB != null && map.containsKey(headB.next))
{
return map.get(headB.next);
}
if(headB != null && headB.next != null)
{
map.put(headB.next, headB.next.data);
headB = headB.next;
}
}
return 0;
}
A O(n) complexity solution. But based on an assumption.
assumption is: both nodes are having only positive integers.
logic : make all the integer of list1 to negative. Then walk through the list2, till you get a negative integer. Once found => take it, change the sign back to positive and return.
static int findMergeNode(SinglyLinkedListNode head1, SinglyLinkedListNode head2) {
SinglyLinkedListNode current = head1; //head1 is give to be not null.
//mark all head1 nodes as negative
while(true){
current.data = -current.data;
current = current.next;
if(current==null) break;
}
current=head2; //given as not null
while(true){
if(current.data<0) return -current.data;
current = current.next;
}
}
You can add the nodes of list1 to a hashset and the loop through the second and if any node of list2 is already present in the set .If yes, then thats the merge node
static int findMergeNode(SinglyLinkedListNode head1, SinglyLinkedListNode head2) {
HashSet<SinglyLinkedListNode> set=new HashSet<SinglyLinkedListNode>();
while(head1!=null)
{
set.add(head1);
head1=head1.next;
}
while(head2!=null){
if(set.contains(head2){
return head2.data;
}
}
return -1;
}
Solution using javascript
var getIntersectionNode = function(headA, headB) {
if(headA == null || headB == null) return null;
let countA = listCount(headA);
let countB = listCount(headB);
let diff = 0;
if(countA > countB) {
diff = countA - countB;
for(let i = 0; i < diff; i++) {
headA = headA.next;
}
} else if(countA < countB) {
diff = countB - countA;
for(let i = 0; i < diff; i++) {
headB = headB.next;
}
}
return getIntersectValue(headA, headB);
};
function listCount(head) {
let count = 0;
while(head) {
count++;
head = head.next;
}
return count;
}
function getIntersectValue(headA, headB) {
while(headA && headB) {
if(headA === headB) {
return headA;
}
headA = headA.next;
headB = headB.next;
}
return null;
}
If editing the linked list is allowed,
Then just make the next node pointers of all the nodes of list 2 as null.
Find the data value of the last node of the list 1.
This will give you the intersecting node in single traversal of both the lists, with "no hi fi logic".
Follow the simple logic to solve this problem:
Since both pointer A and B are traveling with same speed. To meet both at the same point they must be cover the same distance. and we can achieve this by adding the length of a list to another.

Resources