Most efficient way to add individual digits of a number - algorithm

I am working on an algorithm to determine whether a given number is prime and came across this website. But then I though of trying my own logic. I can easily eliminate numbers ending in 2,4,5,6,8 (and 0 for numbers above 5), so I am left with 1,3,7 and 9 as the possible last digit. Now, if the last digit is 3, I can add up the individual digits to check if it is divisible by 3. I don't want to perform modulus(%) operation and add them. Is there a much more efficient way to sum the digits in a decimal number? Maybe using bitwise operations... ?

% or modulus operator would be faster than adding individul digits. But if you really want to do this, you can unroll your loop partly in such a way that multiples of 3 are escaped automatically.
For ex:
2 is prime
3 is prime
candidate = 5
while(candidate <= limit - 2 * 3) // Unrolling loop for next 2 * 3 number
{
if ( CheckPrime(candidate) ) candidate is prime;
candidate += 2;
if ( CheckPrime(candidate) ) candidate is prime;
candidate += 4; // candidate + 2 is multiple of 3 (9, 15, 21 etc)
}
if(candidate < limit) CheckPrime(candidate);
In above method we are eliminating multiples of 3 instead of checking the divisibility of 3 by adding the digits.
You had a good observation. Incidentally it is called wheel factorization to find prime. I have done for wheel size = 6 (2*3), but you can do the same for larger wheel size also, for ex: 30(2*3*5). The snippet above is also called as all prime number are of type 6N±1.
(because 6N+3 is multiple of 3)
p.s. Not all numbers ending at 2 and 5 are composite. Number 2 and 5 are exceptions.

You might consider the following but i think modulus is fastest way :-
1. 2^n mod 3 = 1 if n is even and = 2 if n is odd
2. odd bits and even bits cancel each out as their sum is zero modulo 3
4. so the absolute difference of odd and even bits is the remainder
5. As difference might be again greater than 3 you need to again calculate modulo 3
6. step 5 can be done recursively
Pseudo code :-
int modulo3(int num) {
if(num<3)
return num;
int odd_bits = cal_odd(num);
int even_bits = cal_even(num);
return module3(abs(even_bits-odd_bits));
}

Related

Advanced Algorithms Problems ("Nice Triangle"): Prime number Pyramid where every number depends on numbers above it

I'm currently studying for an advanced algorithms and datastructures exam, and I simply can't seem to solve one of the practice-problems which is the following:
1.14) "Nice Triangle"
A "nice" triangle is defined in the following way:
There are three different numbers which the triangle consists of, namely the first three prime numbers (2, 3 and 5).
Every number depends on the two numbers below it in the following way.
Numbers are the same, resulting number is also the same. (2, 2 => 2)
Numbers are different, resulting number is the remaining number. (2, 3 => 5)
Given an integer N with length L, corresponding to the base of the triangle, determine the last element at the top
For example:
Given N = 25555 (and thus L = 5), the triangle looks like this:
2
3 5
2 5 5
3 5 5 5
2 5 5 5 5
=> 2 is the result of this example
What does the fact that every number is prime have to do with the problem?
By using a naive approach (simply calculating every single row), one obtains a time-complexity of O(L^2).
However, the professor said, it's possible with O(L), but I simply can't find any pattern!!!
I'm not sure why this problem would be used in an advanced algorithms course, but yes, you can do this in O(l) = O(log n) time.
There are a couple ways you can do it, but they both rely on recognizing that:
For the problem statement, it doesn't matter what digits you use. Lets use 0, 1, and 2 instead of 2, 3, and 5. Then
If a and b are the input numbers and c is the output, then c = -(a+b) mod 3
You can build the whole triangle using c = a+b mod 3 instead, and then just negate every second row.
Now the two ways you can do this in O(log n) time are:
For each digit d in the input, calculate the number of times (call it k) that it gets added into the final sum, add up all the kd mod 3, and then negate the result if you started with an even number of digits. That takes constant time per digit. Alternatively:
recognize that you can do arithmetic on n-sized values in constant time. Make a value that is a bit mask of all the digits in n. That takes 2 bits each. Then by using bitwise operations you can calculate each row from the previous one in constant time, for O(log n) time altogether.
Here's an implementation of the 2nd way in python:
def niceTriangle(n):
# a vector of 3-bit integers mod 3
rowvec = 0
# a vector of 1 for each number in the row
onevec = 0
# number of rows remaining
rows = 0
# mapping for digits 0-9
digitmap = [0, 0, 0, 1, 1, 2, 2, 2, 2, 2]
# first convert n into the first row
while n > 0:
digit = digitmap[n % 10]
n = n//10
rows += 1
onevec = (onevec << 3) + 1
rowvec = (rowvec << 3) + digit
if rows%2 == 0:
# we have an even number of rows -- negate everything
rowvec = ((rowvec&onevec)<<1) | ((rowvec>>1)&onevec)
while rows > 1:
# add each number to its neighbor
rowvec += (rowvec >> 3)
# isolate the entries >= 3, by adding 1 to each number and
# getting the 2^2 bit
gt3 = ((rowvec + onevec) >> 2) & onevec
# subtract 3 from all the greater entries
rowvec -= gt3*3
rows -= 1
return [2,3,5][rowvec%4]

Simple math task: 2 numbers given, we have to find the third. I just need a formula for it

I need a formula for counting the number of combinations within a given limit of numbers. There must only be 2 numbers given, we have to find the third.
For example, for 2(number of repetitions) and 3(limit number), the result would be 3, because there are 3 combinations for the digits: 1 and 2, 1 and 3, 2 and 3.
For 2 and 4 the result is 6,
For 3 and 5 the result is 10,
For 6 and 7 the result is 7, etc.
The first number has to be smaller than the second.
A formula is needed for figuring out the result, if the first number is A, the second is B, what would C is going to be?
You're describing combination. The formula is going to be C = B! / (A!*(B-A)!) (where ! is the factorial operation). It's also worth noting that the first number can be equal to the second -- there should only be one repetition in that case. By convention 0! == 1 and it is OK where both numbers are equal because C(n, n) = 1 and this means n!/(n! * 0!).
Unfortunately, since factorial grows very quickly (21! is too large for a 64-bit unsigned integer), you probably can't compute this directly. Wikipedia has a few algorithms you can use here.

How to find if the number is a multiple of 7 efficiently?

There are multiple ways to find out the same and I tried using bitwise operation as -
if(((n<<3) - n)%7 == 0 ) {
print "divide by 7";
}
Is there any other more efficient way?
As we can find if number is multiple of 3 using below algorithm -
If difference between count of odd set bits (Bits set at odd positions) and even set bits is multiple of 3 then so is the number.
Can we generalize the above algorithm for other numbers too?
So if your number is representable by a hardware-supported integer, and the hardware has a division or modulo operations, you should just use those. It is simpler, and probably faster than anything you will write. To even compete with the hardware, you must use an assembler and use other faster instructions better than the hardware manufacturers did, and without the advantage of undocumented tricks they could use but you can not.
Where this question becomes interesting is where arbitrarily large integers are involved. Modulo has some tricks for that. For instance, I can tell you that 100000000010000010000 is divisible by 3, even though my brain is a horribly slow math processor compared to a computer, because of these properties of the % modulo operator:
(a+b+c) % d = ( (a%d) + (b%d) + (c%d) ) %d
(n*a) % d = ( (a%d) + (a%d) + (a%d) +... (n times) ) %d = (n*(a%d)) %d
Now note that:
10 % 3 = 1
100 % 3 = (10 * (10%3)) % 3 = 10%3 = 1
1000 % 3 = (10 * (100%3)) %3 = 1
etc...
So that to tell if a base-10 number is divisible by 3, we simply sum the digits and see if the sum is divisible by 3
Now using the same trick with a large binary number expressed in octal or base-8 (also pointed out by #hropyatr above in comments), and using divisibility by 7, we have the special case:
8 % 7 = 1
and from that we can deduce that:
(8**N) % 7 = (8 * (8 * ( ... *( 8 * (8%7) % 7 ) % 7 ) ... %7 = 1
so that to "quickly" test divisibility by 7 of an arbitrarily large octal number, all we need to do is add up its octal base-8 digits and try dividing that by 7.
Finally, the bad news.
The code posted:
if ( (n<<3 - n) % 7 ==0 ) ... is not a good test for divisibility by 7.
because it is always yields true for any n (as pointed out by #Johnathan Leffler)
n<<3 is multiplication by 8, and will equal 8n
So for instance 6 is not divisible by 7,
but 6<<3 = 48 and 48 - 6 = 42, which is divisible by 7.
If you meant right shift if ( (n>>3 - n ) % 7 == 0 ) that doesn't work either. Test it with 49, 49//8 is 6, 6-49 is -43 and although 49 is divisible by 7, -43 is not.
The simplest test, if (n % 7 ) == 0 is your best shot until n overflows hardware, and at that point you can find a routine to represent n in octal, and sum the octal digits modulo 7.
I think if(n%7 == 0) is more efficient way to check divisibility by 7.
But if you are dealing with large numbers and can't directly do modulus operation then this might help:
A number of the form 10x + y is divisible by 7 if and only if x − 2y is divisible by 7. In other words, subtract twice the last digit from the number formed by the remaining digits. Continue to do this until a number known to be divisible by 7 is obtained. The original number is divisible by 7 if and only if the number obtained using this procedure is divisible by 7.
For example, the number 371: 37 − (2×1) = 37 − 2 = 35; 3 − (2 × 5) = 3 − 10 = −7; thus, since −7is divisible by 7, 371 is divisible by 7.
Another method is multiplication by 3. A number of the form 10x + y has the same remainder when divided by 7 as 3x + y. One must multiply the leftmost digit of the original number by 3, add the next digit, take the remainder when divided by 7, and continue from the beginning: multiply by 3, add the next digit, etc.
For example, the number 371: 3×3 + 7 = 16 remainder 2, and 2×3 + 1 = 7.
This method can be used to find the remainder of division by 7.
P.S: reference

Dividing a large number by 2

let's say I have the following implementation of a list:
list=^listelement
listelement=record
w:integer;
next:list;
end;
and a list represents a large number written decimally
(a list 1 -> 2 -> 3 represents the number 123).
What I want to do is to transform such a number into binary representation. So, the eastiest way to do this required dividing a number by 2
The problem is I'm having a hard time implementing the division by 2 algorithm. I understand the basic algorithms such as this one
https://www.mathsisfun.com/long_division.html, but I can't think of a way to translate that into code
I would appreciate some help
You will proceed from left to right, dividing the digits by two. Every time a digit is odd, you will propagate a carry (10) to the next digit.
Example: divide 123
1 divided by 2 is 0, carry = 10
2 + 10 divided by 2 is 6, no carry
3 divided by 2 is 1, carry = 10
The last carry can be ignored.
Result: 061.
carry= 0;
element= head;
WHILE element <> NIL DO
BEGIN
element^.w= element^.w + carry;
IF ODD(element^.w) THEN carry= 10 ELSE carry= 0;
element^.w= element^.w DIV 2;
element= element^.next
END.

How to find the units digit of a certain power in a simplest way

How to find out the units digit of a certain number (e.g. 3 power 2011). What logic should I use to find the answer to this problem?
For base 3:
3^1 = 3
3^2 = 9
3^3 = 27
3^4 = 81
3^5 = 243
3^6 = 729
3^7 = 2187
...
That is the units digit has only 4 possibilities and then it repeats in ever the same cycle.
With the help of Euler's theorem we can show that this holds for any integer n, meaning their units digit will repeat after at most 4 consecutive exponents. Looking only at the units digit of an arbitrary product is equivalent to taking the remainder of the multiplication modulo 10, for example:
2^7 % 10 = 128 % 10 = 8
It can also be shown (and is quite intuitive) that for an arbitrary base, the units digit of any power will only depend on the units digit of the base itself - that is 2013^2013 has the same units digit as 3^2013.
We can exploit both facts to come up with an extremely fast algorithm (thanks for the help - with kind permission I may present a much faster version).
The idea is this: As we know that for any number 0-9 there will be at most 4 different outcomes, we can as well store them in a lookup table:
{ 0,0,0,0, 1,1,1,1, 6,2,4,8, 1,3,9,7, 6,4,6,4,
5,5,5,5, 6,6,6,6, 1,7,9,3, 6,8,4,2, 1,9,1,9 }
That's the possible outcomes for 0-9 in that order, grouped in fours. The idea is now for an exponentiation n^a to
first take the base mod 10 => := i
go to index 4*i in our table (it's the starting offset of that particular digit)
take the exponent mod 4 => := off (as stated by Euler's theorem we only have four possible outcomes!)
add off to 4*i to get the result
Now to make this as efficient as possible, some tweaks are applied to the basic arithmetic operations:
Multiplying by 4 is equivalent to shifting two to the left ('<< 2')
Taking a number a % 4 is equivalent to saying a&3 (masking the 1 and 2 bit, which form the remainder % 4)
The algorithm in C:
static int table[] = {
0, 0, 0, 0, 1, 1, 1, 1, 6, 2, 4, 8, 1, 3, 9, 7, 6, 4, 6, 4,
5, 5, 5, 5, 6, 6, 6, 6, 1, 7, 9, 3, 6, 8, 4, 2, 1, 9, 1, 9
};
int /* assume n>=0, a>0 */
unit_digit(int n, int a)
{
return table[((n%10)<<2)+(a&3)];
}
Proof for the initial claims
From observing we noticed that the units digit for 3^x repeats every fourth power. The claim was that this holds for any integer. But how is this actually proven? As it turns out that it's quite easy using modular arithmetic. If we are only interested in the units digit, we can perform our calculations modulo 10. It's equivalent to say the units digit cycles after 4 exponents or to say
a^4 congruent 1 mod 10
If this holds, then for example
a^5 mod 10 = a^4 * a^1 mod 10 = a^4 mod 10 * a^1 mod 10 = a^1 mod 10
that is, a^5 yields the same units digit as a^1 and so on.
From Euler's theorem we know that
a^phi(10) mod 10 = 1 mod 10
where phi(10) is the numbers between 1 and 10 that are co-prime to 10 (i.e. their gcd is equal to 1). The numbers < 10 co-prime to 10 are 1,3,7 and 9. So phi(10) = 4 and this proves that really a^4 mod 10 = 1 mod 10.
The last claim to prove is that for exponentiations where the base is >= 10 it suffices to just look at the base's units digit. Lets say our base is x >= 10, so we can say that x = x_0 + 10*x_1 + 100*x_2 + ... (base 10 representation)
Using modular representation it's easy to see that indeed
x ^ y mod 10
= (x_0 + 10*x_1 + 100*x_2 + ...) ^ y mod 10
= x_0^y + a_1 * (10*x_1)^y-1 + a_2 * (100*x_2)^y-2 + ... + a_n * (10^n) mod 10
= x_0^y mod 10
where a_i are coefficients that include powers of x_0 but finally not relevant since the whole product a_i * (10 * x_i)^y-i will be divisible by 10.
You should look at Modular exponentiation. What you want is the same of calculating n^e (mod m) with m = 10. That is the same thing as calculating the remainder of the division by ten of n^e.
You are probably interested in the Right-to-left binary method to calculate it, since it's the most time-efficient one and the easiest not too hard to implement. Here is the pseudocode, from Wikipedia:
function modular_pow(base, exponent, modulus)
result := 1
while exponent > 0
if (exponent & 1) equals 1:
result = (result * base) mod modulus
exponent := exponent >> 1
base = (base * base) mod modulus
return result
After that, just call it with modulus = 10 for you desired base and exponent and there's your answer.
EDIT: for an even simpler method, less efficient CPU-wise but more memory-wise, check out the Memory-efficient section of the article on Wikipedia. The logic is straightforward enough:
function modular_pow(base, exponent, modulus)
c := 1
for e_prime = 1 to exponent
c := (c * base) mod modulus
return c
I'm sure there's a proper mathematical way to solve this, but I would suggest that since you only care about the last digit and since in theory every number multiplied by itself repeatedly should generate a repeating pattern eventually (when looking only at the last digit), you could simply perform the multiplications until you detect the first repetition and then map your exponent into the appropriate position in the pattern that you built.
Note that because you only care about the last digit, you can further simplify things by truncating your input number down to its ones-digit before you start building your pattern mapping. This will let you to determine the last digit even for arbitrarily large inputs that would otherwise cause an overflow on the first or second multiplication.
Here's a basic example in JavaScript: http://jsfiddle.net/dtyuA/2/
function lastDigit(base, exponent) {
if (exponent < 0) {
alert("stupid user, negative values are not supported");
return 0;
}
if (exponent == 0) {
return 1;
}
var baseString = base + '';
var lastBaseDigit = baseString.substring(baseString.length - 1);
var lastDigit = lastBaseDigit;
var pattern = [];
do {
pattern.push(lastDigit);
var nextProduct = (lastDigit * lastBaseDigit) + '';
lastDigit = nextProduct.substring(nextProduct.length - 1);
} while (lastDigit != lastBaseDigit);
return pattern[(exponent - 1) % pattern.length];
};
function doMath() {
var base = parseInt(document.getElementById("base").value, 10);
var exp = parseInt(document.getElementById("exp").value, 10);
console.log(lastDigit(base, exp));
};
console.log(lastDigit(3003, 5));
Base: <input id="base" type="text" value="3" /> <br>
Exponent: <input id="exp" type="text" value="2011"><br>
<input type="button" value="Submit" onclick="doMath();" />
And the last digit in 3^2011 is 7, by the way.
We can start by inspecting the last digit of each result obtained by raising the base 10 digits to successive powers:
d d^2 d^3 d^4 d^5 d^6 d^7 d^8 d^9 (mod 10)
--- --- --- --- --- --- --- --- ---
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
2 4 8 6 2 4 8 6 2
3 9 7 1 3 9 7 1 3
4 6 4 6 4 6 4 6 4
5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6
7 9 3 1 7 9 3 1 7
8 4 2 6 8 4 2 6 8
9 1 9 1 9 1 9 1 9
We can see that in all cases the last digit cycles through no more than four distinct values. Using this fact, and assuming that n is a non-negative integer and p is a positive integer, we can compute the result fairly directly (e.g. in Javascript):
function lastDigit(n, p) {
var d = n % 10;
return [d, (d*d)%10, (d*d*d)%10, (d*d*d*d)%10][(p-1) % 4];
}
... or even more simply:
function lastDigit(n, p) {
return Math.pow(n % 10, (p-1) % 4 + 1) % 10;
}
lastDigit(3, 2011)
/* 7 */
The second function is equivalent to the first. Note that even though it uses exponentiation, it never works with a number larger than nine to the fourth power (6561).
The key to solving this type of question lies in Euler's theorem.
This theorem allows us to say that a^phi(m) mod m = 1 mod m, if and only if a and m are coprime. That is, a and m do not divide evenly. If this is the case, (and for your example it is), we can solve the problem on paper, without any programming what so ever.
Let's solve for the unit digit of 3^2011, as in your example. This is equivalent to 3^2011 mod 10.
The first step is to check is 3 and 10 are co-prime. They do not divide evenly, so we can use Euler's theorem.
We also need to compute what the totient, or phi value, is for 10. For 10, it is 4. For 100 phi is 40, 1000 is 4000, etc.
Using Euler's theorem, we can see that 3^4 mod 10 = 1. We can then re-write the original example as:
3^2011 mod 10 = 3^(4*502 + 3) mod 10 = 3^(4*502) mod 10 + 3^3 mod 10 = 1^502 * 3^3 mod 10 = 27 mod 10 = 7
Thus, the last digit of 3^2011 is 7.
As you saw, this required no programming whatsoever and I solved this example on a piece of scratch paper.
You ppl are making simple thing complicated.
Suppose u want to find out the unit digit of abc ^ xyz .
divide the power xyz by 4,if remainder is 1 ans is c^1=c.
if xyz%4=2 ans is unit digit of c^2.
else if xyz%4=3 ans is unit digit of c^3.
if xyz%4=0
then we need to check whether c is 5,then ans is 5
if c is even ans is 6
if c is odd (other than 5 ) ans is 1.
Bellow is a table with the power and the unit digit of 3 to that power.
0 1
1 3
2 9
3 7
4 1
5 3
6 9
7 7
Using this table you can see that the unit digit can be 1, 3, 9, 7 and the sequence repeats in this order for higher powers of 3. Using this logic you can find that the unit digit of (3 power 2011) is 7. You can use the same algorithm for the general case.
Here's a trick that works for numbers that aren't a multiple of a factor of the base (for base 10, it can't be a multiple of 2 or 5.) Let's use base 3. What you're trying to find is 3^2011 mod 10. Find powers of 3, starting with 3^1, until you find one with the last digit 1. For 3, you get 3^4=81. Write the original power as (3^4)^502*3^3. Using modular arithmetic, (3^4)^502*3^3 is congruent to (has the same last digit as) 1^502*3^3. So 3^2011 and 3^3 have the same last digit, which is 7.
Here's some pseudocode to explain it in general. This finds the last digit of b^n in base B.
// Find the smallest power of b ending in 1.
i=1
while ((b^i % B) != 1) {
i++
}
// b^i has the last digit 1
a=n % i
// For some value of j, b^n == (b^i)^j * b^a, which is congruent to b^a
return b^a % B
You'd need to be careful to prevent an infinite loop, if no power of b ends in 1 (in base 10, multiples of 2 or 5 don't work.)
Find out the repeating set in this case, it is 3,9,7,1 and it repeats in the same order for ever....so divide 2011 by 4 which will give you a reminder 3. That is the 3rd element in the repeating set. This is the easiest way to find for any given no. say if asked for 3^31, then the reminder of 31/4 is 3 and so 7 is the unit digit. for 3^9, 9/4 is 1 and so the unit will be 3. 3^100, the unit will be 1.
If you have the number and exponent separate it's easy.
Let n1 is the number and n2 is the power. And ** represents power.
assume n1>0.
% means modulo division.
pseudo code will look like this
def last_digit(n1, n2)
if n2==0 then return 1 end
last = n1%10
mod = (n2%4).zero? ? 4 : (n2%4)
last_digit = (last**mod)%10
end
Explanation:
We need to consider only the last digit of the number because that determines the last digit of the power.
it's the maths property that count of possibility of each digits(0-9) power's last digit is at most 4.
1) Now if the exponent is zero we know the last digit would be 1.
2) Get the last digit by %10 on the number(n1)
3) %4 on the exponent(n2)- if the output is zero we have to consider that as 4 because n2 can't be zero. if %4 is non zero we have to consider %4 value.
4) now we have at most 9**4. This is easy for the computer to calculate.
take the %10 on that number. You have the last digit.

Resources