Cut the Cake, or polygon decomposition - computational-geometry

I'm facing the following problem: I'm given a set of coordinates on an integer grid that define the vertices of a polygon. The polygon is guaranteed to be convex. It's proven that such a polygon can always be cut into 4 equal area parts by 2 orthogonal lines. Let's call the point of these lines' intersection P.
Given that set, I should calculate the coordinates of P within the polygon and the angle the lines need to be turned on so that the lines cut the polygon into 4 equal parts.
I realise that, put generally, the cake cutting problem has no "good" solution. But this particular case of it should.
I've searched for an algorithm to solve that problem, but found nothing useful.
Where should I look?
My approach would be to calculate the coordinates of the centre of the polygon (that can be done more or less easily), place Pthere and then "wiggle" the lines until the areas of the parts match. But that sounds too inelegant.
UPD: that's the problem I'm dealing with. Perhaps this question should be suspended until I come up with actual code questions.

Here is a partial sketch of the solution:
Choose an arbitrary direction and find the line parallel to that direction that splits the polygon in two. To achieve this, draw a line by every vertex to decompose the polygon in slabs. The respective areas of the slabs will tell you what slab the desired line intersects. Simple linear interpolation will give the exact location of the line.
Now your polygon is split in two convex polygons. For each halve, repeat the above procedure using the perpendicular direction. In general, you will get two distinct splitters, and what remains to be done is to find the direction such that they do coincide.
In the given direction, the splitters intersect four specific edges of the polygon. If you slightly rotate, they still intersect the same four edges. You can decompose a full turn in angular ranges such that the four intersected edges remain the same.
Knowing the four intersected edges, you can establish the relation that tells you the distance between the two perpendicular splitters as a function of the angle. Then you can compute the angle at which the two splitters coincide, and check if this angle belongs to the range defined for these edges.
By trying all ranges in turn, you will find the solution.
Note: the limits of the angular ranges correspond to directions parallel or perpendicular to the lines joining two vertexes.

Related

Find common tangents of two convex polygons

Given two convex polygons P, Q separated by a line, how can I find their common tangents?
There should be 4 total.
Geometry isn't my strong side so any help will be appreciated :)
Any tangent will be generated from (at least) one point on each polygon. The tangent forms a half-space for each polygon, containing that entire polygon; different tangents are generated by requiring that each polygon be above or below the tangent line.
Whenever you have a problem involving two convex polygons, the algorithm probably involves "pick a point on each one, then iterate." This algorithm is no different.
What you do, basically, is start with a random guess, and refine. Pick a vertex on each polygon and calculate the line through the two vertices. Look at polygon A and see whether either of the two neighboring vertices is on the wrong side of the line. If one is, replace the current vertex with that vertex. Then do the same check on polygon B. Then, if you updated either vertex, repeat. Eventually the lines will converge to tangents with each vertex the extremal one in the desired direction.

How to compute the set of polygons from a set of overlapping circles?

This question is an extension on some computation details of this question.
Suppose one has a set of (potentially overlapping) circles, and one wishes to compute the area this set of circles covers. (For simplicity, one can assume some precomputation steps have been made, such as getting rid of circles included entirely in other circles, as well as that the circles induce one connected component.)
One way to do this is mentioned in Ants Aasma's and Timothy's Shields' answers, being that the area of overlapping circles is just a collection of circle slices and polygons, both of which the area is easy to compute.
The trouble I'm encountering however is the computation of these polygons. The nodes of the polygons (consisting of circle centers and "outer" intersection points) are easy enough to compute:
And at first I thought a simple algorithm of picking a random node and visiting neighbors in clockwise order would be sufficient, but this can result in the following "outer" polygon to be constructed, which is not part of the correct polygons.
So I thought of different approaches. A Breadth First Search to compute minimal cycles, but I think the previous counterexample can easily be modified so that this approach results in the "inner" polygon containing the hole (and which is thus not a correct polygon).
I was thinking of maybe running a Las Vegas style algorithm, taking random points and if said point is in an intersection of circles, try to compute the corresponding polygon. If such a polygon exists, remove circle centers and intersection points composing said polygon. Repeat until no circle centers or intersection points remain.
This would avoid ending up computing the "outer" polygon or the "inner" polygon, but would introduce new problems (outside of the potentially high running time) e.g. more than 2 circles intersecting in a single intersection point could remove said intersection point when computing one polygon, but would be necessary still for the next.
Ultimately, my question is: How to compute such polygons?
PS: As a bonus question for after having computed the polygons, how to know which angle to consider when computing the area of some circle slice, between theta and 2PI - theta?
Once we have the points of the polygons in the right order, computing the area is a not too difficult.
The way to achieve that is by exploiting planar duality. See the Wikipedia article on the doubly connected edge list representation for diagrams, but the gist is, given an oriented edge whose right face is inside a polygon, the next oriented edge in that polygon is the reverse direction of the previous oriented edge with the same head in clockwise order.
Hence we've reduced the problem to finding the oriented edges of the polygonal union and determining the correct order with respect to each head. We actually solve the latter problem first. Each intersection of disks gives rise to a quadrilateral. Let's call the centers C and D and the intersections A and B. Assume without loss of generality that the disk centered at C is not smaller than the disk centered at D. The interior angle formed by A→C←B is less than 180 degrees, so the signed area of that triangle is negative if and only if A→C precedes B→C in clockwise order around C, in turn if and only if B→D precedes A→D in clockwise order around D.
Now we determine which edges are actually polygon boundaries. For a particular disk, we have a bunch of angle intervals around its center from before (each sweeping out the clockwise sector from the first endpoint to the second). What we need amounts to a more complicated version of the common interview question of computing the union of segments. The usual sweep line algorithm that increases the cover count whenever it scans an opening endpoint and decreases the cover count whenever it scans a closing endpoint can be made to work here, with the adjustment that we need to initialize the count not to 0 but to the proper cover count of the starting angle.
There's a way to do all of this with no trigonometry, just subtraction and determinants and comparisons.

Triangle enclosing the biggest number of points

Given set of 2D points find a triangle built from those points, that encloses the biggest number of points.
Brutal algorithm for this is just building triangles from every possible triad of points and checking how many points they enclose, but time complexity of this solution is O(n^4).
For the optimal solution I thought about first finding the convex hull of those points and arranging points inside this hull with some structure, but I can't figure it out.
Do you have any ideas about the optimal solution for this kind of problem?
In a set of n points, there are (n choose 3) triangles, and using brute force to check for each point whether it is contained in each triangle indeed has O(n4) complexity. To give a practical example of a few set sizes:
points: 100 1,000 10,000
triangles: 161,700 166,167,000 166,616,670,000
checks: 15,684,900 165,668,499,000 1,665,666,849,990,000
Below are a few geometrical ideas; they don't lead straight to a solution, but they can reduce the number of triangles that have to be checked.
Counter-example for convex hull
First of all, using only points on the convex hull is not guaranteed to give the optimal solution. Consider this counter-example:
The convex hull is the red rectangle. However, if we use two of its sides and a diagonal to form a triangle, the diagonal will cut through the central point cluster and leave out some of the points. And even if we only use 1 or 2 corners of the rectangle, combined with a point in the center, it will always cut through the blue triangle and leave out some points. The blue triangle, which has no points on the convex hull, is in fact the optimal solution.
Triangle contained in triangle
If you consider a triangle abc, and three points d, e and f contained within it, then the triangle def cannot be the triangle which contains the most points, because triangle abc contains at least three more points. Triangles made from a combination of points from abc and def, like abd, also contain fewer points than abc.
This means that finding a triangle and some points contained within it, allows you to discard a number of triangles. In the next paragraphs, we will use this idea to discard as many triangles as possible from having to be checked.
Expanding a triangle
If we consider a triangle made from three randomly chosen points a, b and c (named clock-wise), and then check whether all other points are on the left of right side of the lines |ab|, |bc| and |ca|, the points are partitioned into 7 zones:
If we replace a corner point of the triangle by a point in the adjacent coloured zone, e.g. zone LRL for point a, we get a larger triangle that contains triangle abc. If we randomly pick three points from zones LRL, LLR and RLL, we can expand the triangle like this:
We can then partition the points again using this new triangle a'b'c' (points already in zone RRR can be added to the new zone RRR without checking) and expand the triangle again as long as there is at least one point in the zones LRL, LLR or RLL.
If we have caught enough points inside the expanded triangle, we can now use the brute force algorithm, but skip any triangle which doesn't have a point outside of the expanded triangle a'b"c'.
If we haven't caught enough points to make that feasible, we can try again with another three random points. Note, however, that you should not use the union of the points contained within several triangles; three points which are each contained in another triangle, but not in the same triangle, can still be the triangle containing the most points.
Excluding triangles in multiple steps
We could repeatedly choose a random triangle, expand it maximally, and then mark the triangles made from three points on or inside the triangle, to then exclude these from the check. This would require storing a boolean for all possible triangles, e.g. in a 3D bit array, so it is only feasible for sets up to a few thousand points.
To simplify things, instead of expanding random triangles, we could do this with a number of randomly chosen triangles, or triangles made from points on the convex hull, or points far apart when sorted in the x or y-direction, or ... But any of these methods will only help us to find triangles which can be excluded, they will not give us optimal (or even good-enough) triangles by themselves.

Area of Intersection of Two Rotated Rectangles

I have two 2D rectangles, defined as an origin (x,y) a size (height, width) and an angle of rotation (0-360°). I can guarantee that both rectangles are the same size.
I need to calculate the approximate area of intersection of these two rectangles.
The calculation does not need to be exact, although it can be. I will be comparing the result with other areas of intersection to determine the largest area of intersection in a set of rectangles, so it only needs to be accurate relative to other computations of the same algorithm.
I thought about using the area of the bounding box of the intersected region, but I'm having trouble getting the vertices of the intersected region because of all of the different possible cases:
I'm writing this program in Objective-C in the Cocoa framework, for what it's worth, so if anyone knows any shortcuts using NSBezierPath or something you're welcome to suggest that too.
To supplement the other answers, your problem is an instance of line clipping, a topic heavily studied in computer graphics, and for which there are many algorithms available.
If you rotate your coordinate system so that one rectangle has a horizontal edge, then the problem is exactly line clipping from there on.
You could start at the Wikipedia article on the topic, and investigate from there.
A simple algorithm that will give an approximate answer is sampling.
Divide one of your rectangles up into grids of small squares. For each intersection point, check if that point is inside the other rectangle. The number of points that lie inside the other rectangle will be a fairly good approximation to the area of the overlapping region. Increasing the density of points will increase the accuracy of the calculation, at the cost of performance.
In any case, computing the exact intersection polygon of two convex polygons is an easy task, since any convex polygon can be seen as an intersection of half-planes. "Sequential cutting" does the job.
Choose one rectangle (any) as the cutting rectangle. Iterate through the sides of the cutting rectangle, one by one. Cut the second rectangle by the line that contains the current side of the cutting rectangle and discard everything that lies in the "outer" half-plane.
Once you finish iterating through all cutting sides, what remains of the other rectangle is the result.
You can actually compute the exact area.
Make one polygon out of the two rectangles. See this question (especially this answer), or use the gpc library.
Find the area of this polygon. See here.
The shared area is
area of rectangle 1 + area of rectangle 2 - area of aggregated polygon
Take each line segment of each rectangle and see if they intersect. There will be several possibilities:
If none intersect - shared area is zero - unless all points of one are inside the other. In that case the shared area is the area of the smaller one.
a If two consecutive edges of one rectactangle intersect with a single edge of another rectangle, this forms a triangle. Compute its area.
b. If the edges are not consequtive, this forms a quadrilateral. Compute a line from two opposite corners of the quadrilateral, this makes two triangles. Compute the area of each and sum.
If two edges of one intersect with two edges of another, then you will have a quadrilateral. Compute as in 2b.
If each edge of one intersects with each edge of the other, you will have an octagon. Break it up into triangles ( e.g. draw a ray from one vertex to each other vertex to make 4 triangles )
#edit: I have a more general solution.
Check the special case in 1.
Then start with any intersecting vertex, and follow the edges from there to any other intersection point until you are back to the first intersecting vertex. This forms a convex polygon. draw a ray from the first vertex to each opposite vetex ( e.g. skip the vertex to the left and right. ) This will divide it into a bunch of triangles. compute the area for each and sum.
A brute-force-ish way:
take all points from the set of [corners of
rectangles] + [points of intersection of edges]
remove the points that are not inside or on the edge of both rectangles.
Now You have corners of intersection. Note that the intersection is convex.
sort the remaining points by angle between arbitrary point from the set, arbitrary other point, and the given point.
Now You have the points of intersection in order.
calculate area the usual way (by cross product)
.

area of intersection of two triangles, or a set of halfplanes, or area of a convex point set

I need to compute the area of the region of overlap between two triangles in the 2D plane. Oddly, I have written up code for the triangle-circle problem, and that works quite well and robustly, but I have trouble with the triangle-triangle problem.
I already first check to see if one entirely contains the other, or if the other contains the first, as well as obtain all the edge-wise intersection points. These intersection points (up to 6, as in the star of David), combined with the triangle vertices that are contained within the other triangle, are the vertices of the intersection region. These points must form a convex polygon.
The solution I seek is the answer to either of these questions:
Given a set of points known to all lie on the convex hull of the point set, compute the area of the convex hull. Note that they are in random order.
Given a set of half-planes, determine the intersecting area. This is equivalent to describing both triangles as the intersection of three half-planes, and computing the solution as the direct intersection of this description.
I have considered for question 1 simply adding up all areas of all possible triangles, and then dividing by the multiplicity in counting, but that seems dumb, and I'm not sure if it is correct. I feel like there is some kind of sweep-line algorithm that would do the trick. However, the solution must also be relatively numerically robust.
I simply have no idea how to solve question 2, but a general answer would be very useful, and providing code would make my day. This would allow for direct computation of intersection areas of convex polygons instead of having to perform a triangle decomposition on them.
Edit: I am aware of this article which describes the general case for finding the intersection polygon of two convex polygons. It seems rather involved for just triangles, and furthermore, I don't really need the resulting polygon itself. So maybe this question is just asked in laziness at this point.
Question 1: why are the points in a random order? If they are, you have to order them so that connecting consecutive points with straight lines yields a convex polygon. How to order them -- for example, by running a convex hull algorithm (though there are probably also simpler methods). Once you have ordered them, compute the area as described here.
--
Question 2 is simpler. Half-plane is defined by a single line having an implicit equation a*x+b*y+c=0 ; all points (x, y) for which a*x+b*y+c <= 0 (note the inequality) are "behind" the half-plane. Now, you need at least three planes so that the intersection of their negative half-spaces is closed (this is necessary, but not sufficient condition). If the intersection is closed, it will be a convex polygon.
I suggest that you maintain a linked list of vertices. The algorithm is initialized with THREE lines. Compute the three points (in general case) where the lines intersect; these are the starting vertices of your region (triangle). You must also check that each vertex is "behind" the half-plane defined by the line going through the other two vertices; this guarantees that the intersection actually IS a closed region.
These three vertices define also the the three edges of a triangle. When you intersect by a new half-plane, simply check for the intersection between the line defining the half-plane and each of the edges of the current region; in general you will get two intersection points, but you must watch out for degenerate cases where the line goes through a vertex of the region. (You can also end up with an empty set!)
The new intersection vertices define a line that splits the current region in TWO regions. Again, use orientation of the new half-plane to decide which of the two new regions to assign to the new "current region", and which one to discard.
The points in the list defining the edges of the current region will be correctly ordered so you can apply the formula in the above link to compute its area.
If this description is not detailed/understandable, the next-best advice I can give you is that you invest in a book on computational geometry and linear algebra.

Resources