Hierholzer algorithm to find eulerian path [closed] - algorithm

Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 8 years ago.
Improve this question
I have implemented hierholzer algorithm to find eulerian path in a graph using two stacks. Below is my implementation. There is some runtime error, will be glad if somebody could help
#include<bits/stdc++.h>
using namespace std;
stack<int> result;
stack<int> temp;
class graph
{
int v;
list<int> *adj;
public:
graph(int v)
{
this->v=v;
adj=new list<int> [v];
}
~graph()
{
delete []adj;
}
void add_edge(int u,int v)
{
adj[u].push_back(v);
adj[v].push_back(u);
}
void remove_edge(int u, int v);
int start_vertex();
void print_euler_path(int u);
bool allvisited();
};
int graph::start_vertex()
{
int u=0;
for(int u=0;u<v;u++)
{
if(adj[u].size() & 1)
break;
}
return u;
}
bool graph::allvisited()
{
for(int i=0;i<v;i++)
{
if(adj[i].size()>0)
{
list<int>::iterator it;
for(it=adj[i].begin();it!=adj[i].end();it++)
{
if(*it!=-1)
return false;
}
}
}
return true;
}
void graph::remove_edge(int u,int v)
{
list<int>::iterator i;
i=find(adj[u].begin(),adj[u].end(),v);
*i=-1;
i=find(adj[v].begin(),adj[v].end(),u);
*i=-1;
}
void graph::print_euler_path(int u)
{
temp.push(u);
list<int>::iterator i;
int flag=0;
if(allvisited())
return;
for(i=adj[u].begin();i!=adj[u].end();i++)
{
if(*i!=-1)
{
cout<<"S";
remove_edge(u,*i);
print_euler_path(*i);
}
}
if(!temp.empty())
{
int k=temp.top();
temp.pop();
result.push(k);
if(!temp.empty())
print_euler_path(temp.top());
}
}
int main()
{
graph g(6);
g.add_edge(0,1);
g.add_edge(1,2);
g.add_edge(2,3);
g.add_edge(3,0);
g.add_edge(5,1);
g.add_edge(5,2);
g.add_edge(4,1);
g.add_edge(4,2);
int u=g.start_vertex();
g.print_euler_path(u);
while(!result.empty())
{
cout<<result.top()<<" ";
result.pop();
}
return 0;
}
For exact logic you can refer http://iampandiyan.blogspot.in/2013/10/c-program-to-find-euler-path-or-euler.html

I don't think that these lines do what you want:
remove_edge(u,*i);
print_euler_path(*i);

Related

Whats wrong with my top down knapsack dp approach?

I am not able to figure out what is wrong with my top down knapsack dp approach, its failing testcases on below link, need help.
Question link: https://www.interviewbit.com/problems/0-1-knapsack/
Here is my code:
int fin(int i,int wt,int curprofit,vector<int>&A,vector<int>&B,int C,int n,vector<vector<int>>&dp)
{
if(i==n)
return curprofit;
if(dp[i][wt]!=-1)
return dp[i][wt];
int ret=0;
ret=max(ret,fin(i+1,wt,curprofit,A,B,C,n,dp));
if(wt+B[i]<=C)
{
ret=max(ret,fin(i+1,wt+B[i],curprofit+A[i],A,B,C,n,dp));
}
return dp[i][wt]= ret;
}
int Solution::solve(vector<int> &A, vector<int> &B, int C) {
int n=A.size();
vector<vector<int>>dp(n+1,vector<int>(C+1,-1));
return fin(0,0,0,A,B,C,n,dp);
}
Here's the fix, but I'd suggest you brush up on your recursion knowledge.
Calculate the max profit on the fly, not passing as the parameter. Otherwise, you'll need to put curprofit also in the dp state which will be costly. You may also see the output by removing the dp[][] caching. Just put up a correct recursive solution & memoize it.
int fin(int i,int wt,vector<int>&A,vector<int>&B,int C,int n,vector<vector<int>>&dp)
{
if(i==n)
return 0;
if(dp[i][wt]!=-1)
return dp[i][wt];
int ret=0;
ret=max(ret,fin(i+1,wt,A,B,C,n,dp));
if(wt+B[i]<=C)
{
ret=max(ret,fin(i+1,wt+B[i],A,B,C,n,dp) + A[i]);
}
return dp[i][wt]= ret;
}
int Solution::solve(vector<int> &A, vector<int> &B, int C) {
int n=A.size();
vector<vector<int>>dp(n+1,vector<int>(C+1,-1));
return fin(0,0,A,B,C,n,dp);
}

deriving time-complexity of nqueens problem

Can anyone prove/derive the time complexity of my nqueens solution approach?
I am going through each and every position on the grid and if it is possible to place a queen there, then, I am calculating solution by first placing the queen and then unplacing the queen, else I move on.
Code:
bool notinrow(int row,int col,vector<string> tra)
{
for(int i=0;i<tra.size();i++)
{
if(tra[row][i]=='Q' & i!=col)
return false;
}
return true;
}
bool notincol(int row,int col,vector<string> tra)
{
for(int j=0;j<tra.size();j++)
{
if(tra[j][col]=='Q' & j!=row)
return false;
}
return true;
}
bool notindiag1(int r,int c, vector<string> tra)
{
int i=r-1;
int j=c-1;
while(i>=0 & j>=0)
{
if(tra[i][j]=='Q')
return false;
i--;j--;
}
return true;
}
bool notindiag2(int r, int c,vector<string> tra)
{ int i=r-1;
int j=c+1;
while(i>=0 & j<totqueens)
{
if(tra[i][j]=='Q')
return false;
i--;j++;
}
return true;
}
void nqueens(int number,vector<string> tra,int currqueens)
{
if(currqueens==totqueens)
{
bhej.push_back(tra);
return ;
}
if(number==totiter)
return;
int x=number/totqueens;
int y=number%totqueens;
if(ispossible(x,y,tra))
{
tra[x][y]='Q';
nqueens(number+1,tra,currqueens+1);
tra[x][y]='.';
nqueens(number+1,tra,currqueens) ;
}
else
nqueens(number+1,tra,currqueens);
}```

Why Numbers are getting printed in the form like "12-256" , "13-256" rather than 12,13 etc.?

I'm solving one of the algorithms problem from university to implemet queue using stacks.
I've got my logic right i guess but the numbers are getting printed in the form of 12-256, 13-256, 14-256 instead of 12,13,14.
Here's my C++ Code,
#include <iostream>
using namespace std;
class Stack{
private:
int arr[200];
int tos = -1;
public:
bool empty(){
return (tos == -1)?true:false;
}
void push(int element){
arr[++tos] = element;
}
int pop(){
return arr[tos--];
}
void show(){
if(tos == -1){
cout<<"stack empty";
}else{
for(int i=tos;i>0;i--)
cout<<arr[i]<<"\t";
}
}
};
class Queue{
private:
Stack s1,s2;
public:
void enQueue(int x){
//just using s1 to add new elements
s1.push(x);
}
int deQueue(){
if(s1.empty())
throw 'e';
else{
int e;
while(!s1.empty()){
e = s1.pop();
s2.push(e);
}
cout<<"\nelement to be removed:"<<s2.pop();
if(s2.empty())
throw 'f';
else{
int e;
while(!s2.empty()){
e = s2.pop();
s1.push(e);
}
}
}
}
};
int main()
{
try{
Queue q1;
q1.enQueue(12);
q1.enQueue(13);
q1.enQueue(14);
q1.enQueue(15);
cout<<q1.deQueue();
cout<<q1.deQueue();
cout<<q1.deQueue();
cout<<q1.deQueue();
}catch(char c){
cout<<"\nstack empty!";
}
return 0;
}
I'm basically a Python Guy so i'm not able to figure out what's wrong with this code.
I'm new to C++, so please guide me through this.
Thanks in advance!
deQueue suffers from the following problems.
It doesn't return anything.
It's OK for s2 to be empty after its top has been popped.
Here's an updated version that should work.
int deQueue(){
if(s1.empty())
throw 'e';
int e;
while(!s1.empty()){
e = s1.pop();
s2.push(e);
}
int ret = s2.pop();
cout<<"\nelement dequeued:"<< ret;
// This is not correct.
// It's OK for s2 to be empty after its top has been popped.
// if(s2.empty())
// throw 'f';
while(!s2.empty()){
e = s2.pop();
s1.push(e);
}
return ret;
}
Suggestion for further improvement
Queue does not need two Stack objects as member variables. s2 can be a function local variable in deQueue.
class Queue
{
private:
Stack s;
...
};
If you decide to make that change, you'll have to update enQueue and deQueue accordingly.

Stack is Full Logical Error?

I am Learning Stack Data Structure and Unfortunately in my first code I am getting Stack is Full Run time error due to my less knowledge of Stack I am unable to Trace error in my written code please have a look.
Thanks
#include
using namespace std;
struct Stack
{
int data[15];
int top;
};
void init(Stack &s)
{
s.top=-1;
}
bool isEmpty(Stack s)
{
if(s.top == -1)
return true;
else
return false;
}
bool isFull(Stack s)
{
if(s.top > 14)
{
return true;
}
else
{
return false ;
}
}
void push ( Stack &s,int value)
{
if(isFull(s) == true)
{
cout<<"Oooops Stack is Full :(\n";
}
else
{
s.top++;
s.data[s.top]=value;
}
}
int pop (Stack &s)
{
int removedValue = s.data[s.top];
s.data[s.top]=0;
if(isEmpty(s)== true)
{
cout<<"Ohhh Stack is Empty\n";
}
else
{
s.top--;
return removedValue;
}
}
int top(Stack s)
{
return s.top;
}
int main()
{
Stack items;
cout << "Hello Welcome to Stack!" << endl;
push(items,1);
cout<<pop(items)<<endl;
return 0;
}
ok folks here is the error..
i declared a new stack named Stack in main but didnot initialize it using
void init(Stack &s)
{
s.top=-1;
}
so here is the answer by initializing stack in main()
Stack items;
init(items);

Looking at Sorts - Quicksort Iterative?

I'm looking at all different sorts. Note that this is not homework (I'm in the midst of finals) I'm just looking to be prepared if that sort of thing would pop up.
I was unable to find a reliable method of doing a quicksort iteratively. Is it possible and, if so, how?
I'll try to give a more general answer in addition to the actual implementations given in the other posts.
Is it possible and, if so, how?
Let us first of all take a look at what can be meant by making a recursive algorithm iterative.
For example, we want to have some function sum(n) that sums up the numbers from 0 to n.
Surely, this is
sum(n) =
if n = 0
then return 0
else return n + sum(n - 1)
As we try to compute something like sum(100000), we'll soon see this recursive algorithm has it's limits - a stack overflow will occur.
So, as a solution, we use an iterative algorithm to solve the same problem.
sum(n) =
s <- 0
for i in 0..n do
s <- s + i
return s
However, it's important to note that this implementation is an entirely different algorithm than the recursive sum above. We didn't in some way modify the original one to obtain the iterative version, we basically just found a non-recursive algorithm - with different and arguably better performance characteristics - that solves the same problem.
This is the first aspect of making an algorithm iterative: Finding a different, iterative algorithm that solves the same problem.
In some cases, there simply might not be such an iterative version.
The second one however is applicable to every recursive algorithm. You can turn any recursion into iteration by explicitly introducing the stack the recursion uses implicitly. Now this algorithm will have the exact same characteristics as the original one - and the stack will grow with O(n) like in the recursive version. It won't that easily overflow since it uses conventional memory instead of the call stack, and its iterative, but it's still the same algorithm.
As to quick sort: There is no different formulation what works without storing the data needed for recursion. But of course you can use an explicit stack for them like Ehsan showed. Thus you can - as always - produce an iterative version.
#include <stdio.h>
#include <conio.h>
#define MAXELT 100
#define INFINITY 32760 // numbers in list should not exceed
// this. change the value to suit your
// needs
#define SMALLSIZE 10 // not less than 3
#define STACKSIZE 100 // should be ceiling(lg(MAXSIZE)+1)
int list[MAXELT+1]; // one extra, to hold INFINITY
struct { // stack element.
int a,b;
} stack[STACKSIZE];
int top=-1; // initialise stack
int main() // overhead!
{
int i=-1,j,n;
char t[10];
void quicksort(int);
do {
if (i!=-1)
list[i++]=n;
else
i++;
printf("Enter the numbers <End by #>: ");
fflush(stdin);
scanf("%[^\n]",t);
if (sscanf(t,"%d",&n)<1)
break;
} while (1);
quicksort(i-1);
printf("\nThe list obtained is ");
for (j=0;j<i;j++)
printf("\n %d",list[j]);
printf("\n\nProgram over.");
getch();
return 0; // successful termination.
}
void interchange(int *x,int *y) // swap
{
int temp;
temp=*x;
*x=*y;
*y=temp;
}
void split(int first,int last,int *splitpoint)
{
int x,i,j,s,g;
// here, atleast three elements are needed
if (list[first]<list[(first+last)/2]) { // find median
s=first;
g=(first+last)/2;
}
else {
g=first;
s=(first+last)/2;
}
if (list[last]<=list[s])
x=s;
else if (list[last]<=list[g])
x=last;
else
x=g;
interchange(&list[x],&list[first]); // swap the split-point element
// with the first
x=list[first];
i=first+1; // initialise
j=last+1;
while (i<j) {
do { // find j
j--;
} while (list[j]>x);
do {
i++; // find i
} while (list[i]<x);
interchange(&list[i],&list[j]); // swap
}
interchange(&list[i],&list[j]); // undo the extra swap
interchange(&list[first],&list[j]); // bring the split-point
// element to the first
*splitpoint=j;
}
void push(int a,int b) // push
{
top++;
stack[top].a=a;
stack[top].b=b;
}
void pop(int *a,int *b) // pop
{
*a=stack[top].a;
*b=stack[top].b;
top--;
}
void insertion_sort(int first,int last)
{
int i,j,c;
for (i=first;i<=last;i++) {
j=list[i];
c=i;
while ((list[c-1]>j)&&(c>first)) {
list[c]=list[c-1];
c--;
}
list[c]=j;
}
}
void quicksort(int n)
{
int first,last,splitpoint;
push(0,n);
while (top!=-1) {
pop(&first,&last);
for (;;) {
if (last-first>SMALLSIZE) {
// find the larger sub-list
split(first,last,&splitpoint);
// push the smaller list
if (last-splitpoint<splitpoint-first) {
push(first,splitpoint-1);
first=splitpoint+1;
}
else {
push(splitpoint+1,last);
last=splitpoint-1;
}
}
else { // sort the smaller sub-lists
// through insertion sort
insertion_sort(first,last);
break;
}
}
} // iterate for larger list
}
// End of code.
taken from here
I was unable to find a reliable method of doing a quicksort iteratively
Have you tried google ?
It is just common quicksort, when recursion is realized with array.
This is my effort. Tell me if there is any improvement possible.
This code is done from the book "Data Structures, Seymour Lipschutz(Page-173), Mc GrawHill, Schaum's Outline Series."
#include <stdio.h>
#include <conio.h>
#include <math.h>
#define SIZE 12
struct StackItem
{
int StartIndex;
int EndIndex;
};
struct StackItem myStack[SIZE * SIZE];
int stackPointer = 0;
int myArray[SIZE] = {44,33,11,55,77,90,40,60,99,22,88,66};
void Push(struct StackItem item)
{
myStack[stackPointer] = item;
stackPointer++;
}
struct StackItem Pop()
{
stackPointer--;
return myStack[stackPointer];
}
int StackHasItem()
{
if(stackPointer>0)
{
return 1;
}
else
{
return 0;
}
}
void ShowStack()
{
int i =0;
printf("\n");
for(i=0; i<stackPointer ; i++)
{
printf("(%d, %d), ", myStack[i].StartIndex, myStack[i].EndIndex);
}
printf("\n");
}
void ShowArray()
{
int i=0;
printf("\n");
for(i=0 ; i<SIZE ; i++)
{
printf("%d, ", myArray[i]);
}
printf("\n");
}
void Swap(int * a, int *b)
{
int temp = *a;
*a = *b;
*b = temp;
}
int Scan(int *startIndex, int *endIndex)
{
int partition = 0;
int i = 0;
if(*startIndex > *endIndex)
{
for(i=*startIndex ; i>=*endIndex ; i--)
{
//printf("%d->", myArray[i]);
if(myArray[i]<myArray[*endIndex])
{
//printf("\nSwapping %d, %d", myArray[i], myArray[*endIndex]);
Swap(&myArray[i], &myArray[*endIndex]);
*startIndex = *endIndex;
*endIndex = i;
partition = i;
break;
}
if(i==*endIndex)
{
*startIndex = *endIndex;
*endIndex = i;
partition = i;
}
}
}
else if(*startIndex < *endIndex)
{
for(i=*startIndex ; i<=*endIndex ; i++)
{
//printf("%d->", myArray[i]);
if(myArray[i]>myArray[*endIndex])
{
//printf("\nSwapping %d, %d", myArray[i], myArray[*endIndex]);
Swap(&myArray[i], &myArray[*endIndex]);
*startIndex = *endIndex;
*endIndex = i;
partition = i;
break;
}
if(i==*endIndex)
{
*startIndex = *endIndex;
*endIndex = i;
partition = i;
}
}
}
return partition;
}
int GetFinalPosition(struct StackItem item1)
{
struct StackItem item = {0};
int StartIndex = item1.StartIndex ;
int EndIndex = item1.EndIndex;
int PivotIndex = -99;
while(StartIndex != EndIndex)
{
PivotIndex = Scan(&EndIndex, &StartIndex);
printf("\n");
}
return PivotIndex;
}
void QuickSort()
{
int median = 0;
struct StackItem item;
struct StackItem item1={0};
struct StackItem item2={0};
item.StartIndex = 0;
item.EndIndex = SIZE-1;
Push(item);
while(StackHasItem())
{
item = Pop();
median = GetFinalPosition(item);
if(median>=0 && median<=(SIZE-1))
{
if(item.StartIndex<=(median-1))
{
item1.StartIndex = item.StartIndex;
item1.EndIndex = median-1;
Push(item1);
}
if(median+1<=(item.EndIndex))
{
item2.StartIndex = median+1;
item2.EndIndex = item.EndIndex;
Push(item2);
}
}
ShowStack();
}
}
main()
{
ShowArray();
QuickSort();
ShowArray();
}

Resources