Need to understand answer of algorithm - algorithm

I am trying to solve above Longest Monotonically Increasing Subsequence problem using javascript. In order to do that, I need to know about Longest Monotonically Subsequence. Current I am following wikipedia article. The thing I am not understanding this example is that the longest increasing subsequence is given as 0, 2, 6, 9, 13, 15 from 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15, … list. The question is Why the answer does not have 3 in between 2 and 6, and 8 between 6 and 9 etc? How does that answer come from that list?

Ist of all , consider the name "Longest Monotonically Increasing Subsequence" . So , from the given array you need to figure out the largest sequence where the numbers should be appeared in a strictly increasing fashion. There can be many sequence, where the sub array can be strictly increasing but you need to find the largest sub-Array.
So. lets debug this array. a[] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}
In here the some monotonously increasing sub-arrays are :
{0,8,12,14,15} Length = 5
{0,4,12,14,15} Length = 5
{0,1,9,13,15} Length = 5 and so on.
But if you calculate like this , you can find the largest sub-array will be :
{0, 2, 6, 9, 13, 15} , Length = 6, so this is the answer.
Every single little time you pick any number , the next number should be large than the previous one and must be present in the array. say {0, 2, 6, 9, 13, 15} this list, when you pick 9 , then the next number should be larger than 9. the immediate sequence shows 13>9, so you can pick 13. You can also pick 11. But that will create another branch of sub-array. Like :
{0, 2, 6, 9, 11, 15} which is another solution.
Hope this explanation will help you to understand the LIS (Longest Increasing Subsequence).Thanks.

First of all, the title of your question says: Longest increasing CONTIGUOUS subsequence which is a slight variation of the original problem of LIS in which the result need not have contiguous values from original array as pointed out in above examples. Follow this link for a decent explanation on LIS algorithm which has O(n^2) solution and it can be optimized to have a O(nlogn) solution:
http://www.algorithmist.com/index.php/Longest_Increasing_Subsequence
for the contiguous variant of LIS, here is a decent solution:
http://worldofbrock.blogspot.com/2009/10/how-to-find-longest-continuous.html

Related

Return an index of the most common element in a list of integers with equal probability using O(1) space

I came across this coding problem and am having a hard time coming up with a solution.
Given an array of integers, find the most common element in a list of integers
and return any of its indexes randomly with equal probability. The solution must run in O(N) time and use O(1) space.
Example:
List contains: [-1, 4, 9, 7, 7, 2, 7, 3, 0, 9, 6, 5, 7, 8, 9]
7 is most common element so output should be one of: 3, 4, 6, 12
Now this problem would be fairly trivial if not for the constant space constraint. I know reservoir sampling can be used to solve the problem with these constraints if we know the the most common element ahead of time. But if we don't know the most common element, how could this problem be solved?

kth largest element in range interval

Given a list of overlapping intervals of integers. I need to find the kth largest element.
Example:
List { (3,4), (2,8), (4,8), (1,3), (7,9) }
This interval represents numbers as
[3, 4], [2, 3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [1, 2, 3], and [7, 8, 9].
If we merge and sort it in decreasing order, we get
9, 8, 8, 8, 7, 7, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1
Now the 4th largest number in the list is 8.
Can anyone please explain an efficient (we don't have to generate the list) algorithm to find the kth element given only a list of internals ?
Find out the largest number. You go through intervals and examine ends of intervals. In your case it is 9. Set k = 1, and L = 9.
Perhaps there are other 9s. Mark (7,9) interval as visited and check if any other intervals contains 9 a >= 9 && b <= '. In your case there is only one 9.
Decrement current largest number (L -= L) and clear history of visited intervals. And repeat checking intervals.
Every time you meet your current largest number within an interval you should increment k and mark the interval as visited. As soon as it becomes equal to kth the current greatest number L is your answer.

Split set of numbers into as fewest subsets as possible of defined "interval length" algorithm

consider that I have some set of numbers. For example {1, 2, 3, 7, 8, 9, 11, 15, 16}. What I need is to split this set into as fewest subsets as possible and also difference between the lowest and highest number is less than 9.
From my example set it would be for example:
{1, 2, 3, 7, 8}, {9, 11, 15, 16}
I need this to optimize the number of "read multiple registers" requests through the Modbus.
I already tried to split set into subsets with consecutive numbers and than merged them, but it's not ideal, because it returns me this:
{1, 2, 3}, {7, 8, 9, 11}, {15, 16} or {1, 2, 3}, {7, 8, 9}, {11, 15, 16}
As you can see this approach gives me three subsets instead of two.
So is there any usable algorithm?
Thanks
What about the greedy approach, i.e. insert elements from the left into a set, when you go over the desired difference, create a new set.
So, for 1, 2, 3, 7, 8, 9, 11, 15, 16:
You'd start off with 1.
2-1 = 1 < 9, so add 2.
3-1 = 2 < 9, so add 3.
7-1 = 6 < 9, so add 7.
8-1 = 7 < 9, so add 8.
9-1 = 8 < 9, so add 9.
11-1 = 10 > 9, so create a new set.
15-11 = 4 < 9, so add 15.
16-11 = 5 < 9, so add 16.
Output: {1, 2, 3, 7, 8, 9}, {11, 15, 16}.
Note:
If the elements aren't necessarily ordered, we can simply sort them first.
If these subsets don't have to be continuous, it doesn't make a difference, as selecting continuous sets from the ordered input is always better than non-continuous sets.
If the elements aren't necessarily ordered and the subsets must be continuous, that will change the problem a bit.
Proof of optimality:
Let S be the set assignment produced by this algorithm for some arbitrary input.
Take any set assignment T.
Let Si be the i-th set of S.
Let Ti be the i-th set of T.
Let Si-size be the size of the i-th set of S.
Let Ti-size be the size of the i-th set of T.
Assume S and T are different, then for some Si and Ti, Si-size != Ti-size. Specifically choose the first set i where the two differ.
So either Si-size > Ti-size or Si-size < Ti-size.
j > i is impossible, since this algorithm takes as many elements as possible from the start.
If j < i, the first element of Si+1 will be greater than the first element of Ti+1, and since the algorithm is greedy, Si+1 will include at least all the elements of Ti+1 not already included by Si.
Now, because of the above, the first element of Si+2 will similarly be greater than the first element of Ti+2, thus Si+2 will include at least all the elements of Ti+2 not already included by previous sets of S. Similarly for the rest of the sets of S and T. Thus there are at least as many sets in T as there are in S.
Thus the set assignment produced by this algorithm can't be any worse than any other assignment. Thus it is optimal.

Riffling Cards in Mathematica

My friend posed this question to me; felt like sharing it here.
Given a deck of cards, we split it into 2 groups, and "interleave them"; let us call this operation a 'split-join'. And repeat the same operation on the resulting deck.
E.g., { 1, 2, 3, 4 } becomes { 1, 2 } & { 3, 4 } (split) and we get { 1, 3, 2, 4 } (join)
Also, if we have an odd number of cards i.e., { 1, 2, 3 } we can split it like { 1, 2 } & { 3 } (bigger-half first) leading to { 1, 3, 2 }
(i.e., n is split up as Ceil[n/2] & n-Ceil[n/2])
The question my friend asked me was:
HOW many such split-joins are needed to get the original deck back?
And that got me wondering:
If the deck has n cards, what is the number of split-joins needed if:
n is even ?
n is odd ?
n is a power of '2' ? [I found that we then need log (n) (base 2) number of split-joins...]
(Feel free to explore different scenarios like that.)
Is there a simple pattern/formula/concept correlating n and the number of split-joins required?
I believe, this is a good thing to explore in Mathematica, especially, since it provides the Riffle[] method.
To quote MathWorld:
The numbers of out-shuffles needed to return a deck of n=2, 4, ... to its original order are 1, 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, ... (Sloane's A002326), which is simply the multiplicative order of 2 (mod n-1). For example, a deck of 52 cards therefore is returned to its original state after eight out-shuffles, since 2**8=1 (mod 51) (Golomb 1961). The smallest numbers of cards 2n that require 1, 2, 3, ... out-shuffles to return to the deck's original state are 1, 2, 4, 3, 16, 5, 64, 9, 37, 6, ... (Sloane's A114894).
The case when n is odd isn't addressed.
Note that the article also includes a Mathematica notebook with functions to explore out-shuffles.
If we have an odd number of cards n==2m-1, and if we split the cards such that during each shuffle the first group contains m cards, the second group m-1 cards, and the groups are joined such that no two cards of the same group end up next to each other, then the number of shuffles needed is equal to MultiplicativeOrder[2, n].
To show this, we note that after one shuffle the card which was at position k has moved to position 2k for 0<=k<m and to 2k-2m+1 for m<=k<2m-1, where k is such that 0<=k<2m-1. Written modulo n==2m-1 this means that the new position is Mod[2k, n] for all 0<=k<n. Therefore, for each card to return to its original position we need N shuffles where N is such that Mod[2^N k, n]==Mod[k, n] for all 0<=k<n from which is follows that N is any multiple of MultiplicativeOrder[2, n].
Note that due to symmetry the result would have been exactly the same if we had split the deck the other way around, i.e. the first group always contains m-1 cards and the second group m cards. I don't know what would happen if you alternate, i.e. for odd shuffles the first group contains m cards, and for even shuffles m-1 cards.
There's old work by magician/mathematician Persi Diaconnis about restoring the order with perfect riffle shuffles. Ian Stewart wrote about that work in one of his 1998 Scientific American Mathematical Recreation columns -- see, e.g.: http://www.whydomath.org/Reading_Room_Material/ian_stewart/shuffle/shuffle.html
old question I know, but strange no one put up an actual mathematica solution..
countrifflecards[deck_] := Module[{n = Length#deck, ct, rifdeck},
ct = 0;
rifdeck =
Riffle ##
Partition[ # , Ceiling[ n/2], Ceiling[ n/2], {1, 1}, {} ] &;
NestWhile[(++ct; rifdeck[#]) &, deck, #2 != deck &,2 ]; ct]
This handles even and odd cases:
countrifflecards[RandomSample[ Range[#], #]] & /# Range[2, 52, 2]
{1, 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 28, 5, 10, 12, 36,
12, 20, 14, 12, 23, 21, 8}
countrifflecards[RandomSample[ Range[#], #]] & /# Range[3, 53, 2]
{2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 28, 5, 10, 12, 36, 12,
20, 14, 12, 23, 21, 8, 52}
You can readily show if you add a card to the odd-case the extra card will stay on the bottom and not change the sequence, hence the odd case result is just the n+1 even result..
ListPlot[{#, countrifflecards[RandomSample[ Range[#], #]]} & /#
Range[2, 1000]]

Is this equivalent to insertion sort?

Say we have a 0-indexed sequence S, take S[0] and insert it in a place in S where the next value is higher than S[0] and the previous value is lower than S[0]. Formally, S[i] should be placed in such a place where S[i-1] < S[i] < S[i+1]. Continue in order on the list doing the same with every item. Remove the element from the list before putting it in the correct place. After one iteration over the list the list should be ordered. I recently had an exam and I forgot insertion sort (don't laugh) and I did it like this. However, my professor marked it wrong. The algorithm, as far as I know, does produce a sorted list.
Works like this on a list:
Sorting [2, 8, 5, 4, 7, 0, 6, 1, 10, 3, 9]
[2, 8, 5, 4, 7, 0, 6, 1, 10, 3, 9]
[2, 8, 5, 4, 7, 0, 6, 1, 10, 3, 9]
[2, 5, 4, 7, 0, 6, 1, 8, 10, 3, 9]
[2, 4, 5, 7, 0, 6, 1, 8, 10, 3, 9]
[2, 4, 5, 7, 0, 6, 1, 8, 10, 3, 9]
[2, 4, 5, 0, 6, 1, 7, 8, 10, 3, 9]
[0, 2, 4, 5, 6, 1, 7, 8, 10, 3, 9]
[0, 2, 4, 5, 1, 6, 7, 8, 10, 3, 9]
[0, 1, 2, 4, 5, 6, 7, 8, 10, 3, 9]
[0, 1, 2, 4, 5, 6, 7, 8, 3, 9, 10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Got [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Since every time an element is inserted into the list up to (n-1) numbers in the list may be moved and we must do this n times the algorithm should run in O(n^2) time.
I had a Python implementation but I misplaced it somehow. I'll try to write it again in a bit, but it's kinda tricky to implement. Any ideas?
The Python implementation is here: http://dpaste.com/hold/522232/. It was written by busy_beaver from reddit.com when it was discussed here http://www.reddit.com/r/compsci/comments/ejaaz/is_this_equivalent_to_insertion_sort/
It's a while since this was asked, but none of the other answers contains a proof that this bizarre algorithm does in fact sort the list. So here goes.
Suppose that the original list is v1, v2, ..., vn. Then after i steps of the algorithm, I claim that the list looks like this:
w1,1, w1,2, ..., w1,r(1), vσ(1), w2,1, ... w2,r(2), vσ(2), w3,1 ... ... wi,r(i), vσ(i), ...
Where σ is the sorted permutation of v1 to vi and the w are elements vj with j > i. In other words, v1 to vi are found in sorted order, possibly interleaved with other elements. And moreover, wj,k ≤ vj for every j and k. So each of the correctly sorted elements is preceded by a (possibly empty) block of elements less than or equal to it.
Here's a run of the algorithm, with the sorted elements in bold, and the preceding blocks of elements in italics (where non-empty). You can see that each block of italicised elements is less than the bold element that follows it.
[4, 8, 6, 1, 2, 7, 5, 0, 3, 9]
[4, 8, 6, 1, 2, 7, 5, 0, 3, 9]
[4, 6, 1, 2, 7, 5, 0, 3, 8, 9]
[4, 1, 2, 6, 7, 5, 0, 3, 8, 9]
[1, 4, 2, 6, 7, 5, 0, 3, 8, 9]
[1, 2, 4, 6, 7, 5, 0, 3, 8, 9]
[1, 2, 4, 6, 5, 0, 3, 7, 8, 9]
[1, 2, 4, 5, 6, 0, 3, 7, 8, 9]
[0, 1, 2, 4, 5, 6, 3, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
If my claim is true, then the algorithm sorts, because after n steps all the vi are in order, and there are no remaining elements to be interleaved. But is the claim really true?
Well, let's prove it by induction. It's certainly true when i = 0. Suppose it's true for i. Then when we run the (i + 1)st step, we pick vi+1 and move it into the first position where it fits. It certainly passes over all vj with j ≤ i and vj < vi+1 (since these are sorted by hypothesis, and each is preceded only by smaller-or-equal elements). It cannot pass over any vj with j ≤ i and vj ≥ vi+1, because there's some position in the block before vj where it will fit. So vi+1 ends up sorted with respect to all vj with j ≤ i. So it ends up somewhere in the block of elements before the next vj, and since it ends up in the first such position, the condition on the blocks is preserved. QED.
However, I don't blame your professor for marking it wrong. If you're going to invent an algorithm that no-one's seen before, it's up to you to prove it correct!
(The algorithm needs a name, so I propose fitsort, because we put each element in the first place where it fits.)
Your algorithm seems to me very different from insertion sort. In particular, it's very easy to prove that insertion sort works correctly (at each stage, the first however-many elements in the array are correctly sorted; proof by induction; done), whereas for your algorithm it seems much more difficult to prove this and it's not obvious exactly what partially-sorted-ness property it guarantees at any given point in its processing.
Similarly, it's very easy to prove that insertion sort always does at most n steps (where by a "step" I mean putting one element in the right place), whereas if I've understood your algorithm correctly it doesn't advance the which-element-to-process-next pointer if it's just moved an element to the right (or, to put it differently, it may sometimes have to process an element more than once) so it's not so clear that your algorithm really does take O(n^2) time in the worst case.
Insertion sort maintains the invariant that elements to the left of the current pointer are sorted. Progress is made by moving the element at the pointer to the left into its correct place and advancing the pointer.
Your algorithm does this, but sometimes it also does an additional step of moving the element at the pointer to the right without advancing the pointer. This makes the algorithm as a whole not an insertion sort, though you could call it a modified insertion sort due to the resemblance.
This algorithm runs in O(n²) on average like insertion sort (also like bubble sort). The best case for an insertion sort is O(n) on an already sorted list, for this algorithm it is O(n) but for a reverse-sorted list since you find the correct position for every element in a single comparison (but only if you leave the first, largest, element in place at the beginning when you can't find a good position for it).
A lot of professors are notorious for having the "that's not the answer I'm looking for" bug. Even if it's correct, they'll say it doesn't meet their criteria.
What you're doing seems like insertion sort, although using removes and inserts seems like it would only add unnecessary complexity.
What he might be saying is you're essentially "pulling out" the value and "dropping it back in" the correct spot. Your prof was probably looking for "swapping the value up (or down) until you found it's correct location."
They have the same result but they're different in implementation. Swapping would be faster, but not significantly so.
I have a hard time seeing that this is insert sort. Using insert sort, at each iteration, one more element would be placed correctly in the array. In your solution I do not see an element being "fully sorted" upon each iteration.
The insert sort algorithm begin:
let pos = 0
if pos == arraysize then return
find the smallest element in the remaining array from pos and swap it with the element at position pos
pos++
goto 2

Resources