How do I set a dynamic struct field in Go? - go

I'm unmarshalling JSON in Go to a map[string]interface{} and using the interface's mixed string, float and slice values to populate field values of a PlaceNode struct.
I need something like "Default values" because not all JSON objects have all Struct fields. Coming from other language backgrounds, were Structs indexable I'd be used to doing something like this to set a value on the n Placenode variable (e.g. as if it were a self or this keyword in JavaScript).
n[key] = value;
Instead, I have a method on my PlaceNode struct to read the interface{}, use reflect and optionally assign a value if the field can be set. My interfaces{} don't implement all values and so I'm having trouble unmarshmaling directly into my struct.
Apparently none of the fields pass this s.CanSet() check. So I must be going about this wrong.
How do I set a dynamic struct field in Go?
func (n PlaceNode) New(data map[string]interface{}) PlaceNode {
for key, val := range data {
n.Id = key
for k, v := range val.(map[string]interface{}) {
f := reflect.ValueOf(v)
st := reflect.ValueOf(n)
if (st.Kind() == reflect.Struct) {
s := st.FieldByName(k)
if f.Kind() == reflect.String && true == s.CanSet() {
s.SetString(f.String());
} else if f.Kind() == reflect.Float64 && true == s.CanSet() {
s.SetFloat(f.Float());
} else if f.Kind() == reflect.Slice && true == s.CanSet() {
s.Set(f.Slice(0, f.Len()));
}
}
}
}
return n
}
The data argument map[string]interface{} has an interface that is also a map[string]interface{} and looks like this:
{
"XV.12A": {
"Area": 1189.132667,
"CensusBlock": 2032,
"CensusBlockGroup": 2,
"CensusCbsaFips": 40900,
"CensusCountyFips": 61,
"CensusMcdFips": 90160,
"CensusMsaFips": 6922,
"CensusPlaceFips": 3204,
"CensusStateFips": 6,
"CensusTract": 203,
"CensusYear": 2010,
"Radius": 19.455402434548,
"RegionSize": 1189.132667
}
}

When you make the following call:
st := reflect.ValueOf(n)
ValueOf is passed a copy of the PlaceNode struct. So any changes made to st would not be seen in n. For this reason, the package treats cases like this as non-addressable values. If you want a reflect.Value that represernts n, try using something like this:
st := reflect.ValueOf(&n).Elem()
Now st is working directly with n rather than a copy, and is addressable. You should now be able to use the various Set* methods on it and its fields.

Related

How to assign to struct fields from an array of values in order?

I know you can create a struct with a literal, listing the fields in order:
type Foo struct {
A string
B string
C string
}
foo := Foo{ "foo", "bar", "baz" }
Is there any way to do the same thing dynamically? I have an array of values (actually an array of arrays) and I want to assign them to an array of structs in field order, and there are rather more than three fields. Is there a way to say "assign this struct's fields from this array of values in order"? I really don't want to write a bunch of structArray[i].field1 = dataArray[i][0]; structArray[i].field2 = dataArray[i][1], etc.
My thoughts so far have been to use reflect, which seems overkillish, or maybe to create an array of field names and build json strings and unmarshal them. Any better ideas?
With reflection you can write a function like this:
func populate(dst any, src any) {
v := reflect.ValueOf(dst)
if v.Type().Kind() != reflect.Pointer {
panic("dst must be a pointer")
}
v = v.Elem()
if v.Type().Kind() != reflect.Struct {
panic("dst must be a pointer to struct")
}
w := reflect.ValueOf(src)
if w.Type().Kind() != reflect.Slice {
panic("src must be a slice")
}
for i := 0; i < v.NumField(); i++ {
// in case you need to support source slices of arbitrary types
value := w.Index(i)
if value.Type().Kind() == reflect.Interface {
value = value.Elem()
}
v.Field(i).Set(value)
}
}
You must make sure that dst is addressable, hence pass a pointer to Foo into populate; and that the i-th element in the source slice is actually assignable to the corresponding i-th field in the struct.
The code above is in a quite simplified form. You can add additional checks to it, e.g. with CanAddr or AssignableTo, if you think callers may misbehave.
Call it like:
func main() {
f := Foo{}
populate(&f, []string{"foo", "bar", "baz"})
fmt.Println(f) // {foo bar baz}
}
Here's a playground that also shows that you can pass a slice of []any as the source slice, in case the struct fields aren't all the same type: https://go.dev/play/p/G8qjDCt79C7

How can I compare two structs of not the same type?

How can I check if two structs that are not of the same type are equal?
Meaning if we have struct of typeA and struct of typeB, if in both structs we have same amount of fields with the same types - they are equal.
type layoutA struct {
A int
}
type layoutB layoutA
reflect.TypeOf(layoutA{}) == reflect.TypeOf(layoutB{}) // false
cmp.Equal(layoutA{}, layoutB{}) // false
compareStructs(layoutA{}, layoutB{}) // true - need to find this function
cmp package -> "github.com/google/go-cmp/cmp"
If the order of the fields needs to match as well you can just check for "convertability" using the ConvertibleTo method of the reflect.Type type.
If the order doesn't matter then you'll have to compare each individual field, a bit more work, but still very basic. First check that both types have the same number of fields, then loop over the fields of one type and check that every field that's present in that type is also present in the other type by using the FieldByName method and then compare the types of those fields.
You can compare the field types by using reflection with something like this:
func compareStructs(s1 interface{}, s2 interface{}) bool {
type1 := reflect.TypeOf(s1)
type2 := reflect.TypeOf(s2)
numField1 := type1.NumField()
numField2 := type2.NumField()
if numField1 != numField2 {
return false
}
for i := 0; i < numField1; i++ {
field1 := type1.Field(i)
field2 := type2.Field(i)
if field1.Type != field2.Type {
return false
}
}
return true
}

Using default value in golang func

I'm trying to implement a default value according to the option 1 of the post Golang and default values. But when I try to do go install the following error pops up in the terminal:
not enough arguments in call to test.Concat1
have ()
want (string)
Code:
package test
func Concat1(a string) string {
if a == "" {
a = "default-a"
}
return fmt.Sprintf("%s", a)
}
// other package
package main
func main() {
test.Concat1()
}
Thanks in advance.
I don't think what you are trying to do will work that way. You may want to opt for option #4 from the page you cited, which uses variadic variables. In your case looks to me like you want just a string, so it'd be something like this:
func Concat1(a ...string) string {
if len(a) == 0 {
return "a-default"
}
return a[0]
}
Go does not have optional defaults for function arguments.
You may emulate them to some extent by having a special type
to contain the set of parameters for a function.
In your toy example that would be something like
type Concat1Args struct {
a string
}
func Concat1(args Concat1Args) string {
if args.a == "" {
args.a = "default-a"
}
return fmt.Sprintf("%s", args.a)
}
The "trick" here is that in Go each type has its respective
"zero value", and when producing a value of a composite type
using the so-called literal, it's possible to initialize only some of the type's fields, so in our example that would be
s := Concat1(Concat1Args{})
vs
s := Concat1(Concat1Args{"whatever"})
I know that looks clumsy, and I have showed this mostly for
demonstration purpose. In real production code, where a function
might have a dozen of parameters or more, having them packed
in a dedicate composite type is usually the only sensible way
to go but for a case like yours it's better to just explicitly
pass "" to the function.
Golang does not support default parameters. Accordingly, variadic arguments by themselves are not analogous. However, variadic functions with the use of error handling can 'resemble' the pattern. Try the following as a simple example:
package main
import (
"errors"
"log"
)
func createSeries(p ...int) ([]int, error) {
usage := "Usage: createSeries(<length>, <optional starting value>), length should be > 0"
if len(p) == 0 {
return nil, errors.New(usage)
}
n := p[0]
if n <= 0 {
return nil, errors.New(usage)
}
var base int
if len(p) == 2 {
base = p[1]
} else if len(p) > 2 {
return nil, errors.New(usage)
}
vals := make([]int, n)
for i := 0; i < n; i++ {
vals[i] = base + i
}
return vals, nil
}
func main() {
answer, err := createSeries(4, -9)
if err != nil {
log.Fatal(err)
}
log.Println(answer)
}
Default parameters work differently in Go than they do in other languages. In a function there can be one ellipsis, always at the end, which will keep a slice of values of the same type so in your case this would be:
func Concat1(a ...string) string {
but that means that the caller may pass in any number of arguments >= 0. Also you need to check that the arguments in the slice are not empty and then assign them yourself. This means they do not get assigned a default value through any kind of special syntax in Go. This is not possible but you can do
if a[0] == "" {
a[0] = "default value"
}
If you want to make sure that the user passes either zero or one strings, just create two functions in your API, e.g.
func Concat(a string) string { // ...
func ConcatDefault() string {
Concat("default value")
}

Check if struct field is empty

I would like to iterate over the fields of a struct after unmarshalling a JSON object into it and check for the fields whose value was not set (i.e. are empty).
I can get the value of each field and compare that to the reflect.Zero value for the corresponding type
json.Unmarshal([]byte(str), &res)
s := reflect.ValueOf(&res).Elem()
typeOfT := s.Type()
for i := 0; i < s.NumField(); i++ {
f := s.Field(i)
v := reflect.ValueOf(f.Interface())
if (reflect.DeepEqual(v.Interface(), reflect.Zero(v.Type()).Interface())) {
....
But the problem, of course, is that this will not work well for bool or int values.
If a bool field is set to false in the JSON or an int field is set to 0, they will be equal to the zero value of their type. The aforementioned check will consider the fields to be uninitialized, even though they actually have a value set.
I know one way around this is to use pointers, but I just don't see how that would be possible in this case as I'm working with reflect.Value types, not the actual struct.
As you've mentioned, you could use pointers.
The json package can handle unmarshalling values into pointers for you. You've not included the json payload you are trying to unmarshal, or the struct you are unmarshalling into, so I've made up an example.
// json
{
"foo": true,
"number_of_foos": 14
}
// go struct
type Foo struct {
Present bool `json:"foo"`
Num int `json:"number_of_foos"`
}
Here if the keys foo or number_of_foos is missing, then as you've correctly observed, the zero value (false/ 0) will be used. In general the best advice is to make use of the zero value. Create structures so that zero values of false are useful, rather than a pain.
This is not always possible, so changing the types of the fields in the Foo struct to be pointers will allow you to check the 3 cases you are after.
Present
Present and zero
Missing
here is the same struct with pointers:
// go struct
type Foo struct {
Present *bool `json:"foo"`
Num *int `json:"number_of_foos"`
}
Now you can check for presence of the value with fooStruct.Present != nil and if that condition holds, you can assume that the value in the field is the one you wanted.
There is no need to use the reflect package.
Another way of doing the same is by implementing json.Unmarshaler.
type MaybeInt struct {
Present bool
Value int
}
func (i *MaybeInt) UnmarshalJSON(bs []byte) error {
if e := json.Unmarshal(bs, &i.Value); e != nil {
return e
}
i.Present = true
return nil
}
You can then use MaybeInt in your top-level structure:
type Top struct {
N MaybeInt `json:"n"`
M MaybeInt `json:"m"`
}
func main() {
t := Top{}
if e := json.Unmarshal([]byte(` { "n": 4930 } `), &t); e != nil {
panic(e)
}
fmt.Println(t.N, t.M)
}
See it working on the playground
Try using the golang validator package. The validator package offers a required attribute that might do the required job for your need. The official documentation for required attribute states:
This validates that the value is not the data types default zero value. For numbers ensures value is not zero. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil.
The example illustrating the same can be seen at: https://github.com/go-playground/validator/blob/v9/_examples/struct-level/main.go.
Hope this solves your requirement.

Allowing for a variable number of return values in method declaration

I have a function that solves the problem of Go not allowing for the setting of default values in method declarations. I want to make it just a little bit better by allowing for a variable number of return variables. I understand that I can allow for an array of interfaces as a return type and then create an interface array with all the variables to return, like this:
func SetParams(params []interface{}, args ...interface{}) (...[]interface{}) {
var values []interface{}
for i := range params {
var value interface{}
paramType := reflect.TypeOf(params[i])
if len(args) < (i + 1) {
value = params[i]
} else {
argType := reflect.TypeOf(args[i])
if paramType != argType {
value = params[i]
}
value = args[i]
}
values = append(values, value)
}
return values
}
This is an example of a method you want to define default values for. You build it as a variadic function (allowing a variable number of parameters) and then define the default values of the specific params you are looking for inside the function instead of in the declaration line.
func DoSomething(args ...interface{}) {
//setup default values
str := "default string 1"
num := 1
str2 := "default string 2"
//this is fine
values := SetParams([]interface{str, num, str2}, args)
str = values[0].(string)
num = values[1].(int)
str = values[2].(string)
//I'd rather support this
str, num, str2 = SetParams(params, args)
}
I understand that
[]interface{str, num, str2}
in the above example is not syntactically correct. I did it that way to simplify my post. But, it represents another function that builds the array of interfaces.
I would like to support this:
str, num, str2 = SetParams(params, args)
instead of having to do this:
values := SetParams([]interface{str, num, str2}, args)
str = values[0].(string)
num = values[1].(int)
str = values[2].(string)
Any advice? Help?
Please don't write horrible (and ineffective due to reflect) code to solve nonexistent problem.
As was indicated in comments, turning a language into
one of your previous languages is indeed compelling
after a switch, but this is counterproductive.
Instead, it's better to work with the idioms and approaches
and best practices the language provides --
even if you don't like them (yet, maybe).
For this particular case you can roll like this:
Make the function which wants to accept
a list of parameters with default values
accept a single value of a custom struct type.
For a start, any variable of such type, when allocated,
has all its fields initialized with the so-called "zero values"
appropriate to their respective types.
If that's enough, you can stop there: you will be able
to pass values of your struct type to your functions
by producing them via literals right at the call site --
initializing only the fields you need.
Otherwise have pre-/post- processing code which
would provide your own "zero values" for the fields
you need.
Update on 2016-08-29:
Using a struct type to simulate optional parameters
using its fields being assigned default values which happen
to be Go's native zero values for their respective data types:
package main
import (
"fmt"
)
type params struct {
foo string
bar int
baz float32
}
func myfun(params params) {
fmt.Printf("%#v\n", params)
}
func main() {
myfun(params{})
myfun(params{bar: 42})
myfun(params{foo: "xyzzy", baz: 0.3e-2})
}
outputs:
main.params{foo:"", bar:0, baz:0}
main.params{foo:"", bar:42, baz:0}
main.params{foo:"xyzzy", bar:0, baz:0.003}
As you can see, Go initializes the fields of our params type
with the zero values appropriate to their respective types
unless we specify our own values when we define our literals.
Playground link.
Providing default values which are not Go-native zero values for
the fields of our custom type can be done by either pre-
or post-processing the user-submitted value of a compound type.
Post-processing:
package main
import (
"fmt"
)
type params struct {
foo string
bar int
baz float32
}
func (pp *params) setDefaults() {
if pp.foo == "" {
pp.foo = "ahem"
}
if pp.bar == 0 {
pp.bar = -3
}
if pp.baz == 0 { // Can't really do this to FP numbers; for demonstration purposes only
pp.baz = 0.5
}
}
func myfun(params params) {
params.setDefaults()
fmt.Printf("%#v\n", params)
}
func main() {
myfun(params{})
myfun(params{bar: 42})
myfun(params{foo: "xyzzy", baz: 0.3e-2})
}
outputs:
main.params{foo:"ahem", bar:-3, baz:0.5}
main.params{foo:"ahem", bar:42, baz:0.5}
main.params{foo:"xyzzy", bar:-3, baz:0.003}
Playground link.
Pre-processing amounts to creating a "constructor" function
which would return a value of the required type pre-filled
with the default values your choice for its fields—something
like this:
func newParams() params {
return params{
foo: "ahem",
bar: -3,
baz: 0.5,
}
}
so that the callers of your function could call newParams(),
tweak its fields if they need and then pass the resulting value
to your function:
myfunc(newParams())
ps := newParams()
ps.foo = "xyzzy"
myfunc(ps)
This approach is maybe a bit more robust than post-processing but
it precludes using of literals to construct the values to pass to
your function right at the call site which is less "neat".
Recently I was playing with anonymous functions in Go and implemented an example which accepts and returns undefined parameters:
func functions() (funcArray []func(args ... interface{}) (interface{}, error)) {
type ret struct{
first int
second string
third bool
}
f1 := func(args ... interface{}) (interface{}, error){
a := args[0].(int)
b := args[1].(int)
return (a < b), nil
}
funcArray = append(funcArray , f1)
f2 := func(args ... interface{}) (interface{}, error){
return (args[0].(string) + args[1].(string)), nil
}
funcArray = append(funcArray , f2)
f3 := func(args ... interface{}) (interface{}, error){
return []int{1,2,3}, nil
}
funcArray = append(funcArray , f3)
f4 := func(args ... interface{}) (interface{}, error){
return ret{first: 1, second: "2", third: true} , nil
}
funcArray = append(funcArray , f4)
return funcArray
}
func main() {
myFirst_Function := functions()[0]
mySecond_Function := functions()[1]
myThird_Function := functions()[2]
myFourth_Function := functions()[3]
fmt.Println(myFirst_Function(1,2))
fmt.Println(mySecond_Function("1","2"))
fmt.Println(myThird_Function())
fmt.Println(myFourth_Function ())
}
I hope it helps you.
https://play.golang.org/p/d6dSYLwbUB9

Resources