Hy!
I am working with huge vertice objects, I am able to show lots of modells, because I have split them into smaller parts(Under 65K vertices). Also I am using three js cameras. I want to increase the performance by using a priority queue, and when the user moving the camera show only the top 10, then when the moving stop show the rest. This part is not that hard, but I dont want to put modells to render, when they are behind another object, maybe send out some Rays from the view of the camera(checking the bounding box hit) and according hit list i can build the prior queue.
What do you think?
Also how can I detect if I can load the next modell or not.(on the fly)
Option A: Occlusion culling, you will need to find a library for this.
Option B: Use a AABB Plane test with camera Frustum planes and object bounding box, this will tell you if an object is in cameras field of view. (not necessarily visible behind object, as such a operation is impossible, this mostly likely already done to a degree with webgl)
Implementation:
Google it, three js probably supports this
Option C: Use a max object render Limit, prioritized based on distance from camera and size of object. Eg Calculate which objects are visible(Option B), then prioritize the closest and biggest ones and disable the rest.
pseudo-code:
if(object is in frustum ){
var priority = (bounding.max - bounding.min) / distanceToCamera
}
Make sure your shaders are only doing one pass. As that will double the calculation time(roughly depending on situation)
Option D: raycast to eight corners of bounding box if they all fail don't render
the object. This is pretty accurate but by no means perfect.
Option A will be the best for sure, Using Option C is great if you don't care that small objects far away don't get rendered. Option D works well with objects that have a lot of verts, you may want to raycast more points of the object depending on the situation. Option B probably won't be useful for your scenario, but its a part of c, and other optimization methods. Over all there has never been an extremely reliable and optimal way to tell if something is behind something else.
Related
I'm trying to write my own CAD program, and it's pretty important that I give the user the ability to select vertices/edges/faces(triangles) of interest by drawing a box or polygon on a 2D screen, and then highlighting whatever is underneath in the 3D view (both ignoring the back faces and also not ignoring the back faces).
How is this done usually? Is there any open-source example I can look at? What's generally the process for this?
This is especially harder when you are trying to handle 1 million+ triangles.
there are many ways to do this here two most often used:
Ray picking
First see:
OpenGL 3D-raypicking with high poly meshes
The idea is to cast a ray(s) from camera focal point into mouse (or cursor) direction and what the ray hits is selected. The link above exploits OpenGL rendering where you can do this very easily and fast (almost for free) and the result is pixel perfect. In order to use selecting box/polygon you need to read all of its pixels on CPU side and convert them to list of entities selected. This is slightly slower but still can be done very fast (regardless of complexity of the rendered scene). This approach is O(1) however if you do the same on CPU it will be much much slower with complexity O(n) while n is number of entities total (unless BVH or is Octree used). This method however will select only what is visible (so no back faces or objects behind).
Geometry tests
Basicaly your 2D rectangle will slice the perspective 3D frustrum to smaller one and what is inside or intersecting should be selected. You can compute this with geometry on CPU side in form of tests (object inside cuboid or box) something like this:
Cone to box collision
The complexity is also O(n) unless BVH or Octree is used. This method will select all objects (even not visible ones).
Also I think this might be interesting reading for you:
simple Drag&Drop in C++
It shows a simple C++ app architecture able of placing and moving objects in 2D. Its a basic start point for CAD like app. For 3D you just add the matrix math and or editation controls...
Also a hint for selecting in CAD/CAM software (IIRC AUTOCAD started with) is that if your selection box was created from left to right and from top to bottom manner you select all objects that are fully inside or intersect and if the selection box was created in reverse direction you select only what is fully inside. This way allows for more comfortable editation.
I have a game that requires the player to roll two die. As this is a multiplayer game, the way I currently do this is have 6 animations (1 for each die's outcome). When the player clicks a button, it sends a request to my server code. My server code determines the die's outcome and sends the results to the client. The client then plays the corresponding animations.
This works ok, but has some issues. For instance, if the server sends back two of the same values (two 6's, for example) then the animations don't work correctly. As both animations are the same, they overlay each other, and it looks like only one die was rolled.
Is there a better way to do this? Instead of animations, using "real" dice? If that's the case, I always need to be sure to "pre-determine" the outcome of the dice roll, on the server. I also need to make sure the dice don't fall off the table or jostle any of the other player pieces on the board.
thanks for any ideas.
The server only needs to care about the value result, not running physics calculations.
Set up 12 different rolling animations:
Six for the first die
Six for the second die
Each one should always end with the same modeled face pointing upwards (the starting position isn't relevant, only the ending position). For the latter steps you'll probably want to adjust the model's UV coordinates to use a very tall or very wide texture (or just a slice of a square one). So not like this but rather all in a line 1-2-3-4-5-6.
The next step is picking a random animation to play. You've already got code to run a given animation, just set it to pick randomly instead of based on the die-roll-value from the server:
int animNum = Mathf.Floor(Random.Next()*6);
Finally, the fun bit. Adjusting the texture so that the desired face shows when the animation is done. I'm going to assume that you arrange your faces along the top edge of your square texture. Material.SetTextureOffset().
int showFace = Mathf.Floor(Random.Next()*6); //this value should come from the server
die.renderer.material.SetTextureOffset(1f/6 * showFace,0);
This will set the texture offset such that the desired face will show on top. You'll even be able to see it changing in the inspector. Because of the UVs being arranged such that each face uses the next chunk over and because textures will wrap around when reaching the edge (unless the texture is set to Clamp in its import settings: you don't want this here).
Note that this will cause a new material instance to be instantiated (which is not very performant). If you want to avoid this, you'll have to use a material property block instead.
You could simulate the physics on the server, keep track of the positions and the orientations of the dice for the duration of the animation, and then send the data over to the client. I understand it's a lot of data for something so simple, but that's one way you can get the rolls to appear realistic and synced between all clients.
If only Unity's physics was deterministic that would be a whole lot easier.
Let's say I have a static object and a movable object which can be moved and rotated, what is the best way to very quickly calculate the difference of those two meshes?
Precision here is not so important, speed is though, since I have to use it in the update phase of the main loop.
Maybe, given the strict time limit, modifying the static object's vertices and triangles directly is to be preferred. Should voxels be preferred here instead?
EDIT: The use case is an interactive viewer of a wood panel (parallelepiped) and a milling tool (a revolved contour, some like these).
The milling tool can be rotated and can work oriented at varying degrees (5 axes).
EDIT 2: The milling tool may not pierce the wood.
EDIT 3: The panel can be as large as 6000x2000mm and the milling tool can be as little as 3x3mm.
If you need the best possible performance then the generic CSG approach may be too slow for you (but still depending on meshes and target hardware).
You may try to find some specialized algorithm, coded for your specific meshes. Let's say you have two cubes - one is a 'wall' and second is a 'window' - then it's much easier/faster to compute resulting mesh with your custom code, than full CSG. Unfortunately you don't say anything about your meshes.
You may also try to make it a 2D problem, use some simplified meshes to compute the result that will 'look like expected'.
If the movement of your meshes is somehow limited you may be able to precompute full or partial results for different mesh combinations to use at runtime.
You may use some space partitioning like BSP or Octrees to divide your meshes during precomputing stage. This way you could split one big problem into many smaller ones that may be faster to compute or at least to make the solution multi-threaded.
You've said about voxels - if you're fine with their look and limits you may voxelize both meshes and just read and mix two voxel values, instead of one. Then you would triangulate it using algorithm like Marching Cubes.
Those are all just some general ideas but we'll need better info to help you more.
EDIT:
With your description it looks like you're modeling some bas-relief, so you may use Relief Mapping to fake this effect. It's based on a height map stored as a texture, so you'd need to just update few pixels of the texture and render a plane. It should be quite fast compared to other approaches, the downside is that it's based on height map, so you can't get shapes that Tee Slot or Dovetail cutter would create.
If you want the real geometry then I'd start from a simple plane as your panel (don't need full 3D yet, just a front surface) and divide it with a 2D grid. The grid element should be slightly bigger than the drill size and every element is a separate mesh. In the frame update you'd cut one, or at most 4 elements that are touched with a drill. Thanks to this grid all your cutting operations will be run with very simple mesh so they may work with your intended speed. You can also cut all current elements in separate threads. After the cutting is done you'll upload to the GPU only currently modified elements so you may end up with quite complex mesh but small modifications per frame.
I was looking at the http://threejs.org/examples/webgl_nearestneighbour.html and had a few questions come up. I see that they use the kdtree to stick all the particles positions and then have a function to determine the nearest particle and color it. Let's say that you have a canvas with around 100 buffered geometries with around 72000 vertices / geometry. The only way I know to do this is that you get the positions of the buffered geometries and then put them into the kdtree to determine the nearest vertice and go from there. This sounds very expensive.
What other way is there to return the objects that are near the camera. Something like how THREE.LOD does it? http://threejs.org/examples/#webgl_lod It has the ability to see how far an object is and render the different levels depending on the setting you inputted.
Define "expensive". The point of the kdtree is to find nearest neighbour elements quickly, its primary focus is not on saving memory (Although it does everything inplace on a typed array, it's quit cheap in terms of memory already). If you need to save memory you maybe have to find another way.
Yet a typed array with length 21'600'000 is indeed a bit long. I highly doubt you have to have every single vertex in there. Why not have a position reference point for every geometry part? And, if you need to get the vertices associated to that point, a dictionary. Then you can call myGeometryVertices[ geometryReferencePoint ].
Three.LOD works with raycasts. If you have a (few) hundred objects that might work well. If you have hundred thousands or even millions of positions you'll get some troubles. Also if you're not using meshes; you can't raytrace e.g. a particle.
Really just build your own logic with them. None of those two provide a prebuilt perfect-for-all-cases solution.
In my opengl app, I am drawing the same polygon approximately 50k times but at different points on the screen. In my current approach, I do the following:
Draw the polygon once into a display list
for each instance of the polygon, push the matrix, translate to that point, scale and rotate appropriate (the scaling of each point will be the same, the translation and rotation will not).
However, with 50k polygons, this is 50k push and pops and computations of the correct matrix translations to move to the correct point.
A coworker of mine also suggested drawing the entire scene into a buffer and then just drawing the whole buffer with a single translation. The tradeoff here is that we need to keep all of the polygon vertices in memory rather than just the display list, but we wouldn't need to do a push/translate/scale/rotate/pop for each vertex.
The first approach is the one we currently have implemented, and I would prefer to see if we can improve that since it would require major changes to do it the second way (however, if the second way is much faster, we can always do the rewrite).
Are all of these push/pops necessary? Is there a faster way to do this? And should I be concerned that this many push/pops will degrade performance?
It depends on your ultimate goal. More recent OpenGL specs enable features for "geometry instancing". You can load all the matrices into a buffer and then draw all 50k with a single "draw instances" call (OpenGL 3+). If you are looking for a temporary fix, at the very least, load the polygon into a Vertex Buffer Object. Display Lists are very old and deprecated.
Are these 50k polygons going to move independently? You'll have to put up with some form of "pushing/popping" (even though modern scene graphs do not necessarily use an explicit matrix stack). If the 50k polygons are static, you could pre-compile the entire scene into one VBO. That would make it render very fast.
If you can assume a recent version of OpenGL (>=3.1, IIRC) you might want to look at glDrawArraysInstanced and/or glDrawElementsInstanced. For older versions, you can probably use glDrawArraysInstancedEXT/`glDrawElementsInstancedEXT, but they're extensions, so you'll have to access them as such.
Either way, the general idea is fairly simple: you have one mesh, and multiple transforms specifying where to draw the mesh, then you step through and draw the mesh with the different transforms. Note, however, that this doesn't necessarily give a major improvement -- it depends on the implementation (even more than most things do).