algorithm for forming a convex polygon - algorithm

I am trying to find an algorithm that would take a sequence of edge lengths as input and form a convex polygon with these edges. I know that such convex does not always exist, but I am working with data where it should exist.
Basically I am trying to figure out the angles between the edges. When I know them, I can also calculate the coordinates of the corners.

Greedily place edges end-to-end until adding the next edge would consume more than half of the available length. This gives you one side of the triangle. Another side of the triangle will be the next edge, and the third side will be all remaining edges. You can work out the trigonometry.

Related

Find common tangents of two convex polygons

Given two convex polygons P, Q separated by a line, how can I find their common tangents?
There should be 4 total.
Geometry isn't my strong side so any help will be appreciated :)
Any tangent will be generated from (at least) one point on each polygon. The tangent forms a half-space for each polygon, containing that entire polygon; different tangents are generated by requiring that each polygon be above or below the tangent line.
Whenever you have a problem involving two convex polygons, the algorithm probably involves "pick a point on each one, then iterate." This algorithm is no different.
What you do, basically, is start with a random guess, and refine. Pick a vertex on each polygon and calculate the line through the two vertices. Look at polygon A and see whether either of the two neighboring vertices is on the wrong side of the line. If one is, replace the current vertex with that vertex. Then do the same check on polygon B. Then, if you updated either vertex, repeat. Eventually the lines will converge to tangents with each vertex the extremal one in the desired direction.

Best way to merge overlapping convex polygons into a single concave polygon?

I am working with several convex polygons that overlap each other and I need to combine them back together to form one single polygon that may be convex or concave.
The problem is always as follows:
1) The polygons that I need to merge together are always convex.
2) The vertices of each polygon are defined in clockwise order.
3) The polygons are never in any specific order.
4) The final polygon can only be simple convex or concave polygon, i.e. no self-intersection, no duplicate vertices or holes in the shape.
Here is an example of the kind of polygons that I am working with.
![overlapping convex polygons]"image removed")
My current approach is to start from the first polygon and vertex by vertex I loop through all vertices of all of the polygons to find overlap. If there is no overlap, I store the vertex for the final outline and continue.
Upon finding overlapping vertices, I determine which polygon to continue to by measuring the angles of the possible paths and by choosing the one that leads towards the outside of the shape.
This method works until I encounter polygons that do not have vertices overlapping each other, but instead one polygon's vertex is overlapping another polygon's side, as is the case with the rectangle in the image.
I am currently planning on solving these situations by running line intersect checks for all shapes that I have not yet processed, but I am convinced that this cannot be the easiest or the best method in terms of performance.
Does someone know how I should approach this problem in a more efficient manner and/or universal manner?
I solved this issue and I'm posting the answer here in case someone else runs into this issue as well.
My first step was to implement a pre-processing loop based on trincot's suggestions.
I calculated the minimum and maximum x and y bounds for each individual shape.
I used these values to determine all overlapping shapes and I stored a simple array for each shape that I could later use to only look at shapes that can overlap each other.
Then, for the actual loop that determines the outline of the final polygon:
I start from the first shape and simply compare its vertices to those of the nearby shapes. If there is at least one vertex that isn't shared by another vertex, it must be on the outer edge and the loop starts from there. If there are only overlapping vertices, then I add the first shape to a table for all checked shapes and repeat this process with another shape until I find a vertex that is on the outer edge.
Once the starting vertex is found, the main loop will check the vertices of the starting shape one by one and measure how far from the given vertex is from every nearby shapes' edges. If the distance is zero, then the vertex either overlaps with another shape's vertex or the vertex lies on the side of another shape.
Upon finding the aforementioned type of vertex, I add the previous shape's number to the table of checked shapes so that it isn't checked again. Then, I check if there are other shapes that share this particular vertex. If there are, then I determine the outermost shape and continue from there, starting back from step 2.
Once all shapes have been checked, I check that all non-overlapping vertices from the starting shape were indeed added to the outline. If they weren't, I add them at the end.
There may be computationally faster methods, but I found this one to be simple to write, that it meets all of my requirements and it is fast enough for my needs.
Given a vertex, you could speed up the search of an "overlapping" vertex or edge as follows:
Finding vertices
Assuming that the coordinates are exact, in the sense that if two vertices overlap, they have exactly the same x and y coordinates, without any "error" of imprecision, then it would be good to first create a hash by x-coordinate, and then for each x-entry you would have a hash by y-coordinate. The value of that inner hash would be a list of polygons that have that vertex.
That structure can be built in O(n) time, and will allow you to find a matching vertex in constant time.
Only if that gives no match, you would go to the next algorithm:
Finding edges
In a pre-processing step (only once), create a segment tree for these polygons where a "segment" corresponds to a min/max x-coordinate range for a particular polygon.
Given a vertex, use the segment tree to find the polygons that are in the right x-coordinate range, i.e. where the x-coordinate of the vertex is within the min/max range of x-coordinates of the polygon.
Iterate those polygons, and eliminate those that do not have an y-coordinate range that has the y-coordinate of the vertex.
If no polygons remain, the vertex does not participate in any edge of another polygon.
You cannot get more than one polygon here, since that would mean another polygon shares the vertex, which is a case already covered by the hash-based algorithm.
If you get just one polygon, then continue your search by going through the edges of that polygon to find a match -- which is what you already planned on doing (line intersect check), but now you would only need to do it for one polygon.
You could speed that line intersect check up a little bit by first filtering the edges to those that have the right x-range. For convex polygons you would end up with at most two edges. At most one of those two will have the right y-range. If you get such an edge, check whether the vertex is really on that edge.

Can one polygon be transformed into another using only parallel translation and proportional scaling?

At the entrance, two polygons are given (the coordinates of the vertices of these polygons are listed in the order of their traversal; however, the traversal order for different polygon angles can be chosen different). Can one polygon be transformed into another using only parallel translation and proportional scaling?
I have following idea
So, find some common peak for two polygons and make the transfer of one polygon so that these vertices lie on one point then Scaling so that the neighboring point matches the corresponding point of another polygon, but I think it's wrong , at least I can't write it in code
Is there some special formula or theorem for this problem?
I would solve it like this.
Find the necessary parallel transport.
Find the necessary scaling.
See if they are the same polygon now.
So to start take the vertex that it farthest to the left, and if there is a tie, the one that is farthest down. Find that for both polygons. Use parallel transport to put that vertex at the origin for both.
Now take the vertex that is farthest to the right, and if there is a tie, the one that is farthest up. Find that for both polygons. If it is not at the same slope, then they are different. If it is, then scale one so that the points match.
Now see if all of the points match. If not, they are different. Otherwise the answer is yes.
Compute the axis-aligned bounding boxes of the two polygons.
If the aspect ratios do not match, the answer is negative. Otherwise the ratio of corresponding sides is your scaling factor. The translation is obtained by linking the top left corners and the transformation equations are
X = s.(x - xtl) + Xtl
Y = s.(y - ytl) + Ytl
where s is the scaling factor and (xtl, ytl), (Xtl, Ytl) are the corners.
Now choose a vertex of the first polygon, predict the coordinates in the other and find the matching vertex. If you can't, the answer is negative. Otherwise, you can compare the remaining vertices*.
*I assume that the polygons do not have overlapping vertices. If they can have arbitrary self-overlaps, I guess that you have to try matching all vertices, with all cyclic permutations.

Point inside arbitrary polygon with partitions

Say I have a polygon. It can be a convex one or not, it doesn't matter, but it doesn't have holes. It also has "inner" vertices and edges, meaning that it is partitioned.
Is there any kind of popular/known algorithm or standard procedures for when I want to check if a point is inside that kind of polygon?
I'm asking because Winding Number and Ray Casting aren't accurate in this case
Thanks in advance
You need to clarify what you mean by 'inner vertices and edges'. Let's take a very general case and hope that you find relevance.
The ray casting (point in polygon) algorithm shoots off a ray counting the intersections with the sides of the POLYGON (Odd intersections = inside, Even = outside).
Hence it accurately gives the correct result regardless of whether you start from inside the disjoint trapezoidal hole or the triangular hole (inner edges?) or even if a part of the polygon is completely seperated and/or self intersecting.
However, in what order do you feed the vertices of the polygon such that all the points are evaluated correctly?
Though this is code specific, if you're using an implementation that is counting every intersection with the sides of the polygon then this approach will work -
- Break the master polygon into polygonal components. eg - trapezoidal hole is a polygonal component.
- Start with (0,0) vertex (doesn't matter whether (0,0) actually lies wrt your polygon) followed by the first component' vertices, repeating its first vertex after the last vertex.
- Include another (0,0) vertex.
- Include the next component , repeating its first vertex after the last vertex.
- Repeat the above two steps for each component.
- End with a final (0,0) vertex.
2 component eg- Let the vertices of the two components be (1x,1y), (2x,2y), (3x,3y) and (Ax,Ay), (Bx,By), (Cx,Cy). Where (Ax,Ay), (Bx,By), (Cx,Cy) could be anything from a disjoint triangular hole, intersecting triangle or separated triangle.
Hence , the vertices of a singular continous polygon which is mathematically equivalent to the 2 components is -
(0,0),(1x,1y),(2x,2y),(3x,3y),(1x,1y),(0,0),(Ax,Ay),(Bx,By),(Cx,Cy),(Ax,Ay),(0,0)
To understand how it works, try drawing this mathematically equivalent polygon on a scratch pad.-
1. Mark all the vertices but don't join them yet.
2. Mark the repeated vertices separately also. Do this by marking them close to the original points, but not on them. (at a distance e, where e->0 (tends to/approaches) ) (to help visualize)
3. Now join all the vertices in the right order (as in the example above)
You will notice that this forms a continuous polygon and only becomes disjoint at the e=0 limit.
You can now send this mathematically equivalent polygon to your ray casting function (and maybe even winding number function?) without any issues.

How to find convex hull in a 3 dimensional space

Given a set of points S (x, y, z). How to find the convex hull of those points ?
I tried understanding the algorithm from here, but could not get much.
It says:
First project all of the points onto the xy-plane, and find an edge that is definitely on the hull by selecting the point with highest y-coordinate and then doing one iteration of gift wrapping to determine the other endpoint of the edge. This is the first part of the incomplete hull. We then build the hull iteratively. Consider this first edge; now find another point in order to form the first triangular face of the hull. We do this by picking the point such that all the other points lie to the right of this triangle, when viewed appropriately (just as in the gift-wrapping algorithm, in which we picked an edge such that all other points lay to the right of that edge). Now there are three edges in the hull; to continue, we pick one of them arbitrarily, and again scan through all the points to find another point to build a new triangle with this edge, and repeat this until there are no edges left. (When we create a new triangular face, we add two edges to the pool; however, we have to first check if they have already been added to the hull, in which case we ignore them.) There are O(n) faces, and each iteration takes O(n) time since we must scan all of the remaining points, giving O(n2).
Can anyone explain it in a more clearer way or suggest a simpler alternative approach.
Implementing the 3D convex hull is not easy, but many algorithms have been implemented, and code is widely available. At the high end of quality and time investment to use is CGAL. At the lower end on both measures is my own C code:
In between there is code all over the web, including this implementation of QuickHull.
I would suggest first try an easier approach like quick hull. (Btw, the order for gift wrapping is O(nh) not O(n2), where h is points on hull and order of quick hull is O(n log n)).
Under average circumstances quick hull works quite well, but processing usually becomes slow in cases of high symmetry or points lying on the circumference of a circle. Quick hull can be broken down to the following steps:
Find the points with minimum and maximum x coordinates, those are
bound to be part of the convex.
Use the line formed by the two points to divide the set in two
subsets of points, which will be processed recursively.
Determine the point, on one side of the line, with the maximum
distance from the line. The two points found before along with this
one form a triangle.
The points lying inside of that triangle cannot be part of the
convex hull and can therefore be ignored in the next steps.
Repeat the previous two steps on the two lines formed by the
triangle (not the initial line).
Keep on doing so on until no more points are left, the recursion has
come to an end and the points selected constitute the convex hull.
See this impementaion and explanation for 3d convex hull using quick hull algorithm.
Gift wrapping algorithm:
Jarvis's match algorithm is like wrapping a piece of string around the points. It starts by computing the leftmost point l, since we know that the left most point must be a convex hull vertex.This process will take linear time.Then the algorithm does a series of pivoting steps to find each successive convex hull vertex untill the next vertex is the original leftmost point again.
The algorithm find the successive convex hull vertex like this: the vertex immediately following a point p is the point that appears to be furthest to the right to someone standing at p and looking at the other points. In other words, if q is the vertex following p, and r is any other input point, then the triple p, q, r is in counter-clockwise order. We can find each successive vertex in linear time by performing a series of O(n) counter-clockwise tests.
Since the algorithm spends O(n) time for each convex hull vertex, the worst-case running time is O(n2). However, if the convex hull has very few vertices, Jarvis's march is extremely fast. A better way to write the running time is O(nh), where h is the number of convex hull vertices. In the worst case, h = n, and we get our old O(n2) time bound, but in the best case h = 3, and the algorithm only needs O(n) time. This is a so called output-sensitive algorithm, the smaller the output, the faster the algorithm.
The following image should give you more idea
GPL C++ code for finding 3D convex hulls is available at http://www.newtonapples.net/code/NewtonAppleWrapper_11Feb2016.tar.gz and a description of the O(n log(n)) algorithm at http://www.newtonapples.net/NewtonAppleWrapper.html
One of the simplest algorithms for convex hull computation in 3D was presented in the paper The QuickHull algorithm for Convex Hulls by Barber, etc from 1995. Unfortunately the original paper lacks any figures to simplify its understanding.
The algorithm works iteratively by storing boundary faces of some convex set with the vertices from the subset of original points. The remaining points are divided on the ones already inside the current convex set and the points outside it. And each step consists in enlarging the convex set by including one of outside points in it until no one remains.
The authors propose to start the algorithm in 3D from any tetrahedron with 4 vertices in original points. If these vertices are selected so that they are on the boundary of convex hull then it will accelerate the algorithm (they will not be removed from boundary during the following steps). Also the algorithm can start from the boundary surface containing just 2 oppositely oriented triangles with 3 vertices in original points. Such points can be selected as follows.
The first point has with the minimal (x,y,z) coordinates, if compare coordinates lexicographically.
The second point is the most distant from the first one.
The third point is the most distant from the line through the first two points.
The next figure presents initial points and the starting 2 oppositely oriented triangles:
The remaining points are subdivided in two sets:
Black points - above the plane containing the triangles - are associated with the triangle having normal oriented upward.
Red points - below the plane containing the triangles - are associated with the triangle having normal oriented downward.
On the following steps, the algorithm always associates each point currently outside the convex set with one of the boundary triangles that is "visible" from the point (point is within positive half-space of that triangle). More precisely each outside point is associated with the triangle, for which the distance between the point and the plane containing the triangle is the largest.
On each step of algorithm the furthest outside point is selected, then all faces of the current convex set visible from it are identified, these faces are removed from the convex set and replaced with the triangles having one vertex in furthest point and two other points on the horizon ridge (boundary of removed visible faces).
On the next figure the furthest point is pointed by green arrow and three visible triangles are highlighted in red:
Visible triangles deleted, back faces and inside points can be seen in the hole, horizon ridge is shown with red color:
5 new triangles (joining at the added point) patch the hole in the surface:
The points previously associated with the removed triangles are either become inner for the updated convex set or redistributed among new triangles.
The last figure also presents the final result of convex hull computation without any remaining outside points. (The figures were prepared in MeshInspector application, having this algorithm implemented.)

Resources