Alright, can someone help me how to properly iterate a dynamic size array?
Here's what I mean:
my_array = [1, 2, 3, 4, 2, 5, 15, 2] # <= there are three 2 inside my_array
Then I would like to add "good" everytime the iteration hit integer 2, I tried several method but not find the way, here's the best method I've tried(still not resulting in what I want)
# First Method
for i in 0..(my_array.length - 1)
my_array.insert(i + 1, "good") if my_array[i] == 2
end
p my_array # => [1, 2, "good", 3, 4, 2, "good", 5, 15, 2]
# Second Method
for i in 0..(my_array.length - 1)
my_array[i + 1] = "good" if my_array[i] == 2
end
p my_array # => [1, 2, "good", 4, 2, "good", 15, 2, "good"]
The first method is not good because it's not showing "good" after the last 2, I guess this because the iteration could not reach the last integer 2(in the last array) and that is expected because the array size is changed bigger everytime "good" is inserted.
The second one is also bad, because I replace the data after every 2 with "good" string.
Now can someone point it out to me how can I doing this properly so I can produce it like this:
p my_array # => [1, 2, "good", 3, 4, 2, "good", 5, 15, 2, "good"]
All "good" is added without replacing any data.
Any help is appreciated, thank you very much.
You'd have a better time transforming this into a new array than modifying in-place:
my_array = [1, 2, 3, 4, 2, 5, 15, 2]
def add_good(a)
a.flat_map do |value|
case (value)
when 2
[ 2, 'good' ]
else
value
end
end
end
puts add_good(my_array).inspect
# => [1, 2, "good", 3, 4, 2, "good", 5, 15, 2, "good"]
The flat_map method is useful for situations where you want to create zero or more entries in the resulting array. map is a 1:1 mapping, flat_map is a 1:N.
It's also possible to make this much more generic:
def fancy_insert(a, insert)
a.flat_map do |value|
if (yield(value))
[ value, insert ]
else
value
end
end
end
result = fancy_insert(my_array, 'good') do |value|
value == 2
end
puts result.inspect
That way you can pass in an arbitrary block and value to be inserted.
Why not using the .each_with_index method:
arr = [1, 2, 3, 4, 5, 2, 3, 5]
arr.each_with_index {|e, i| arr.insert(i+1, "good") if e == 2}
Fast and furious.
Here's another way you can do it, using an Enumerator:
my_array = [1, 2, 3, 4, 2, 5, 15, 2]
enum = my_array.each
#=> #<Enumerator: [1, 2, 3, 4, 2, 5, 15, 2]:each>
my_array = []
loop do
x = enum.next
my_array << x
my_array << "good" if x == 2
end
my_array
#=> [1, 2, "good", 3, 4, 2, "good", 5, 15, 2, "good"]
Enumerator#next raises a StopInteration exception when the enumerator is already on the last element. Kernel#loop handles the exception by breaking the loop. That's why you will often see loop used when stepping through an enumerator.
Related
I'm not sure what sugar syntax this is, but let me just show you the problem.
def factors num
(1..num).select {|n| num % n == 0}
end
def mutual_factors(*nums)
nums
.map { |n| factors(n) }
.inject(:&)
end
p mutual_factors(50, 30) # [1, 2, 5, 10]
p mutual_factors(50, 30, 45, 105) # [1, 5]
p mutual_factors(8, 4) # [1, 2, 4]
p mutual_factors(8, 4, 10) # [1, 2]
p mutual_factors(12, 24) # [1, 2, 3, 4, 6, 12]
p mutual_factors(12, 24, 64) # [1, 2, 4]
p mutual_factors(22, 44) # [1, 2, 11, 22]
p mutual_factors(22, 44, 11) # [1, 11]
p mutual_factors(7) # [1, 7]
p mutual_factors(7, 9) # [1]
with this being the portion in questioning:
nums
.map { |n| factors(n) }
.inject(:&)
okay, so this is my mental trace: first, map uses the helper method to get the factors, and outputs the factors into another array, and then that array gets injected?
I think the
.inject(:&)
is what is throwing me off. I ran a quick google on it, but I haven't used inject for many things other than summing arrays, and basic stuff like that. I've also done things like
test = "hello".split("").map(&:upcase)
p test.join
but .inject(:&)? I know & is a proc, but I've only used them in arguments. I don't know the fundamentals under the hood. Please, take my current level into mind when trying to explain this to me =), I know how the basic inject works, and the splat operator also.
Partial quote form the documentation of Enumerable#inject.
inject(symbol) → object
[...]
Returns an object formed from operands via either:
A method named by symbol.
[...]
With method-name argument symbol, combines operands using the method:
# Sum, without initial_operand.
(1..4).inject(:+) # => 10
That means in the context of inject the (:&) is not a proc but simply the symbol :& that tells inject what operation to perform to combine the elements in the array.
Let's look at this example:
mutual_factors(8, 4, 10)
#=> [1, 2]
and let's look what happens at each step:
nums
.map { |n| factors(n) } #=> [[1, 2, 4, 8], [1, 2, 4], [1, 2, 5, 10]]
.inject(:&) #=> [1, 2, 4, 8] & [1, 2, 4] & [1, 2, 5, 10]
And Array#& is a method that returns a new array containing each element found in both arrays (duplicates are omitted).
New to Ruby (coming from Python) and try to experiment this exercise:
(mixed the array items by taking first, last in rotating fashion)
Expected Output to be - [1, 7, 2, 6, 3, 5, 4]. But I did not expect 'nil' at the end... The orig. array can contain even or odd size of numbers.
Can someone shed the light of this unexpected? Thanks in advance.
[Updates - re-write the example from Ruby Cookbook p.162 Array ]
nums = (1..7).to_a # [1, 2, 3, 4, 5, 6, 7]
mixed = []
#middle = nums.length / 2
#index = 0
until nums.empty?
mixed << nums.shift(). #get 1st element out
mixed << nums.pop() #get last element out
#index += 1
end
print mixed # Got [1, 7, 2, 6, 3, 5, 4, nil]
What's happening is that the total num of elements in the array is odd so the last value is put into mixed on 'shift' and then there is no element left in the array. This will solve your issue:
nums = (1..7).to_a # [1, 2, 3, 4, 5, 6, 7]
mixed = []
#middle = nums.length / 2
#index = 0
until nums.empty?
mixed << nums.shift()
mixed << nums.pop() unless nums.empty?
#index += 1
end
print mixed # Got [1, 7, 2, 6, 3, 5, 4]
Another way is: If the num of elements is odd then run the loop till n-1 and then get the last element out using shift/pop (doesn't matter if you use shift or pop at the end, you will get the same element.)
The Cookbook method can be made non-destructive (avoid modifying nums) as follows.
def doit(nums)
nums.size.times.map { |i| i.even? ? nums[i/2] : nums[-i/2] }
end
doit [1, 2, 3, 4, 5, 6, 7]
#=> [1, 7, 2, 6, 3, 5, 4]
doit [1, 2, 3, 5, 6, 7]
#=> [1, 7, 2, 6, 3, 5]
Here is another (non-destructive) way to do that.
def doit(nums)
n = nums.size/2
nums.first(n).zip(nums.last(n).reverse).flatten.tap do |a|
a << nums[n] if nums.size.odd?
end
end
doit [1, 2, 3, 4, 5, 6, 7]
#=> [1, 7, 2, 6, 3, 5, 4]
doit [1, 2, 3, 5, 6, 7]
#=> [1, 7, 2, 6, 3, 5]
Problem:
Given an array of numbers in Ruby, return the groups of numbers that appear between 1 and 2.
The numbers 1 and 2 do not appear in between other 1's and 2's (there are no subsets of subsets).
Example 1
input: [1, 3, 2, 1, 4, 2]
output: [[1, 3, 2], [1, 4, 2]]
Example 2
input: [0, 1, 3, 2, 10, 1, 5, 6, 7, 8, 7, 5, 2, 3, 1, -400, 2, 12, 16]
output: [ [1, 3, 2], [1, 5, 6, 7, 8, 7, 5, 2], [1, -400, 2] ]
My hunch is to use a combination of #chunk and #drop_while or a generator.
Thanks in advance.
This is an option using [Enumerable#slice_when][1]:
ary1 = [1, 3, 2, 1, 4, 2]
ary2 = [0, 1, 3, 2, 10, 1, 5, 6, 7, 8, 7, 5, 2, 3, 1, -400, 2, 12, 16]
For example:
stop = [1, 2]
ary2.slice_when{ |e| stop.include? e }
.each_slice(2).map { |a, b| b.unshift(a.last) if b }
.reject { |e| e.nil? || (e.intersection stop).empty? }
#=> [[1, 3, 2], [1, 5, 6, 7, 8, 7, 5, 2], [1, -400, 2]]
Other option
More verbose but clearer, given the input:
input = %w(b a b c a b c a c b c a c a)
start = 'a'
stop = 'b'
Using Enumerable#each_with_object, why not use the good old if then else?:
tmp = []
pickup = false
input.each_with_object([]) do |e, res|
if e == start
pickup = true
tmp << e
elsif pickup && e == stop
tmp << e
res << tmp
tmp = []
pickup = false
elsif pickup
tmp << e
end
end
#=> [["a", "b"], ["a", "b"], ["a", "c", "b"]]
[1]: https://ruby-doc.org/core-2.7.0/Enumerable.html#method-i-slice_when
Sounds like an interview question. I'll explain the simplest algorithm I can think of:
You loop through the array once and build the output as you go. When you encounter 1, you store it and the subsequent numbers into another temporary array. When you encounter 2, you put the array in the output array. The edge cases are:
another 1 after you start building the temporary array
a 2 when you don't have a temporary array
First case is easy, always build a new temp array when you encounter a 1. For the second one, you have to check whether you have any items in your temporary array and only append the temp array to your output if it's not empty.
That should get you started.
You could use chunk and Ruby's flip-flop operator:
input = [0, 1, 3, 2, 10, 1, 5, 6, 7, 8, 7, 5, 2, 3, 1, -400, 2, 12, 16]
input.chunk { |i| true if i==1..i==2 }.each { |_, ary| p ary }
Output:
[1, 3, 2]
[1, 5, 6, 7, 8, 7, 5, 2]
[1, -400, 2]
For all people wanting to take a walk on the beach but for obvious reasons can't:
class Flipflop
def initialize(flip, flop) #flip and flop being boolean-returning lambdas
#state = false
#flip = flip
#flop = flop
end
def flipflop(x) #logic taken from The Ruby Programming Language page 111
if !#state
result = #flip[x]
if result
#state = !#flop[x]
end
result
else
#state = !#flop[x]
true
end
end
end
ff = Flipflop.new( ->(x){x == 1}, ->(x){x == 2} )
input = [0, 1, 3, 2, 10, 1, 5, 6, 7, 8, 7, 5, 2, 3, 1, -400, 2, 12, 16]
res = input.select{|el| ff.flipflop(el) }.slice_before(1) #an Enumerator
p res.to_a
# =>[[1, 3, 2], [1, 5, 6, 7, 8, 7, 5, 2], [1, -400, 2]]
For strings, ff = Flipflop.new( ->(x){x.chomp == "BEGIN"}, ->(x){x.chomp == "END"} ) or something like that should work.
Since you commented and added that you are actually reading a file, I deleted my old answer (which was faulty anyways, as #Stefan pointed out) and cam up with this. You can paste this in a file and run it, the DATA IO contains everything that appears after __END__. In your application you would replace it with your File.
class Chunker
BEGIN_INDICATOR = "BEGIN"
END_INDICATOR = "END"
def initialize(io)
#io = io
end
def each
return enum_for(:each) if !block_given?
chunk = nil
while !io.eof? do
line = io.readline.chomp
if line == BEGIN_INDICATOR
chunk = []
chunk << line
elsif line == END_INDICATOR
chunk << line
yield chunk.freeze
chunk = nil
elsif chunk
chunk << line
end
end
end
private
attr_reader :io
end
chunker = Chunker.new(DATA)
chunker.each do |chunk|
p chunk
end
# or, thanks to the `return enum_for(:each) if !block_given?` line:
chunker.each.with_index do |chunk, index|
p "at #{index} is #{chunk}"
end
__END__
ignore
BEGIN
some
thing
END
BEGIN
some
other
thing
END
maybe ignore as well
´´´
You could enhance it to throw EOF when `each` is called multiple times or whatever suits your needs.
I am trying to loop through an array, adding every other item to a new array.
def yes_no(arr)
i = 0
new_array = []
while i != arr.size
arr.select.each_with_index {|value , index| index.even?}
new_array << value
i += 1
end
new_array
end
The code is supposed to return a new array with values by their order. For:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
it should return:
[1, 3, 5, 7, 9, 2, 6, 10, 8, 4]
The first value of the initial array is always taken. I believe I have the correct logic with my code, but I need some help completing this problem.
Here is another example:
arr = ['this', 'code', 'is', 'right', 'the']
// returns ['this', 'is', 'the', 'right', 'code']
I'm not sure how to fix your code, but here's another way to get the expected result:
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
new_array = []
until arr.empty?
new_array << arr.shift
arr.rotate!
end
new_array
#=> [1, 3, 5, 7, 9, 2, 6, 10, 8, 4]
Note that arr is being modified, you might want to dup it.
I've got two arrays of Tasks - created and assigned.
I want to remove all assigned tasks from the array of created tasks.
Here's my working, but messy, code:
#assigned_tasks = #user.assigned_tasks
#created_tasks = #user.created_tasks
#Do not show created tasks assigned to self
#created_not_doing_tasks = Array.new
#created_tasks.each do |task|
unless #assigned_tasks.include?(task)
#created_not_doing_tasks << task
end
end
I'm sure there's a better way. What is it?
Thanks :-)
You can subtract arrays in Ruby:
[1,2,3,4,5] - [1,3,4] #=> [2,5]
ary - other_ary → new_ary Array Difference
Returns a new array that is a copy of the original array, removing any
items that also appear in other_ary. The order is preserved from the
original array.
It compares elements using their hash and eql? methods for efficiency.
[ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ]
If you need
set-like behavior, see the library class Set.
See the Array documentation.
The above solution
a - b
deletes all instances of elements in array b from array a.
[ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ]
In some cases, you want the result to be [1, 2, 3, 3, 5]. That is, you don't want to delete all duplicates, but only the elements individually.
You could achieve this by
class Array
def delete_elements_in(ary)
ary.each do |x|
if index = index(x)
delete_at(index)
end
end
end
end
test
irb(main):198:0> a = [ 1, 1, 2, 2, 3, 3, 4, 5 ]
=> [1, 1, 2, 2, 3, 3, 4, 5]
irb(main):199:0> b = [ 1, 2, 4 ]
=> [1, 2, 4]
irb(main):200:0> a.delete_elements_in(b)
=> [1, 2, 4]
irb(main):201:0> a
=> [1, 2, 3, 3, 5]
The code works even when the two arrays are not sorted. In the example, the arrays are sorted, but this is not required.