Interpreting basic output from Vowpal Wabbit - vowpalwabbit

I had a couple questions about the output from a simple run of VW. I have read around the internet and the wiki sites but am still unsure about a couple of basic things.
I ran the following on the boston housing data:
vw -d housing.vm --progress 1
where the housing.vm file is set up as (partially):
and output is (partially):
Question 1:
1) Is it correct to think about the average loss column as the following steps:
a) predict zero, so the first average loss is the squared error of the first example (with the prediction as zero)
b) build a model on example 1 and predict example 2. Average the now 2 squared losses
c) build a model on example 1-2 and predict example 3. Average the now 3 squared losses
d) ...
Do this until you hit the end of the data (assuming a single pass)
2) What is the current features columns? It appears to be the number of non-zero features + an intercept. What is shown in the example, suggests that a feature is not counted if it is zero - is that true? For instance, the second record has a value of zero for 'ZN'. Does VW really look at that numeric feature as missing??

Your statements are basically correct. By default, VW does online learning, so in step c it takes the current model (weights) and updates it with the current example (rather than learning from all the previous examples again).
As you supposed, the current features column is the number of (non-zero) features for the current example. The intercept feature is included automatically, unless you specify --noconstant.
There is no difference between a missing feature and a feature with zero value. Both means that you won't update the corresponding weight.

Related

VW contextual bandits: historical data and online learning

I'd like to test CB for e-commerce task: personal offer recommendations (like "last chance to buy", "similar positions", "consumers recommend", "bestsellers", etc.). My task is to order them (more relevant issue is higher in the list of recommendations).
So, there are 5 possible offers.
I have some historical data collected without using any model: context (user and web-session features), action id (one of my 5 offers), reward (1 if user clicked this offer, 0 - not clicked). So I have N users and 5 offers with known reward, totally 5*N rows in my historical data.
Ex:
1:1:1 | user_id:1 f1:... f2:...
2:-1:1 | user_id:1 f1:... f2:...
3:-1:1 | user_id:1 f1:... f2:...
This means that user 1 have seen 3 offers (1,2,3), cost of the 1 offer is equal to 1 (didn't click), user ckickes on offers 2 and 3 (cost is negative -> reward is positive). Probabilities are equal to 1, since all offers were shown and we know rewards.
Global task is to increase CTR. I'd like to use this data for training CB and then improve the model by exploration/exploitation policies. I set probabilities equal to 1 in this data (Is it right?). But next I'd like to set the order of offers according to rewards.
Should I use for this warm start in VW CB? Will this work correctly with data collected without using CB? Maybe you can advise more relevant methods in CB for this data and task?
Thanks a lot.
If there are only 5 possible offers and if you (as indicated) have data of the form "I have N users and 5 offers with known reward, totally 5*N rows in my historical data." then your historical data is supervised multilabel data and the warm-start functionality would apply; make sure you use the cost-sensitive version to accommodate the multilabel aspect of your historical data (i.e., there is more than one offer that would result in a click).
Will this work correctly with data collected without using CB?
Because the every action-reward is specified for every user in the data set, you only have to ensure that the sample of users is representative of the population you care about.
Maybe you can advise more relevant methods in CB for this data and task?
The first paragraph started with "if" because the more typical case is 1) there are many possible offers and 2) users have only seen a few of them historically.
In such case what you have is a combination of a degenerate logging policy and multiple rewards being revealed. If there are k possible actions but each user has only seen n<=k historically then you could try and make n lines for each user as you did. Theoretically this does not necessarily work but in practice it might help.
Out of the box: change the data
If the data you have was collected as the result of running an existing policy, then an alternative would be to start randomizing the decisions made by that system in order to collect a dataset which conforms to CB. For example, use your current system to pick the "best" action 96% of the time, and one of the other 4 actions at random 4% of the time, and log the probability along with the reward (either 0.96 or 0.01 depending upon whether it was the considered best), and then set up a proper CB-style training set for vw. With this you can also counterfactually estimate the value of both your current policy and the policy vw generates, and only switch to vw when it is winning.
The fastest way to implement the last paragraph is to just start using APS.

Rating System with Elo, better alternatives?

I'm working on a rating algorithm. I have a set of exercises. They are all categorized in levels (1 = easiest, 5 = hardest).
Users get shown two exercises and should decide which one is harder or if both are equal. Based on user ratings, the levels should get adjusted.
What I've done:
I experimented with the Elo rating.
My Questions:
Are there any better algorithms for doing this use case? (found nothing so far)
Thanks in advance and cheers.
Toby
I would try to solve the problem in a simple yet (I hope) effective way.
First, you only update an exercise rating when the vote is different that what the system actually expects. From now on, I will only considers the cases where the user output differs from what the system actually expects.
Second, I would give more weight to the votes where the two levels have a big difference. A wrong expectation on two esercises with rating 2 and 3 should have less impact than a wrong expectation on two exercises with rating 1 and 5.
That said, my algorithm would be along the lines of:
1- A constant percentage is set, let's call it increment. It establishes the percentage of impact that a vote has, and can be modified along the way based on the number of users.
2- For an "unexpected" vote, I would calculate the difference between the original levels (minimum of 1).
diff = max(1, abs(ex1.level - ex2.level))
3- I would update each exercise rating by a percentage, based on the multiplication of increment and diff.
if (ex1 level expected bigger)
ex1.rating = ex1.rating + diff*increment;
else
ex1.rating = ex1.rating - diff*increment;
Rating would be a float, and level would be the rounding of rating:
ex1.level = round(ex1.rating)
Example:
let's set increment = 0.1. exA, with a rating of 2.0 and level 2 is compared with exB, rating of 3.0 and level 3.
The first user selects exB as the hardest. Nothing changes, because it is the result expected by the system.
The second user selects exA. It is not the expected result. The difference between the two exercises is 1, so the rating is modified by a factor 1*0.1 = 0.1,
resulting in a exA.rating = 2.1 for exB.rating = 2.9

Statistics/Algorithm: How do I compare a weekly graph with its own history to see when in the past it was almost the same?

I’ve got a statistical/mathematical problem I’m stumped on and I was really hoping to get some help. I’m working on a research where I need to compare a weekly graph with its own history to see when in the past it was almost the same. Think of this as “finding the closest match”. The information is displayed as a line graph, but it’s readily available as raw data:
Date...................Result
08/10/18......52.5
08/07/18......60.2
08/06/18......58.5
08/05/18......55.4
08/04/18......55.2
and so on...
What I really want is the output to be a form of correlation between the current data points with the other set of 5 concurrent data points in history. So, something like:
Date range.....................Correlation
07/10/18-07/15/18....0.98
We’ll be getting a code written in Python for the software to do this automatically (so that as new data is added, it automatically runs and finds the closest set of numbers to match the current one).
Here’s where the difficulty sets in: Since numbers are on a general upward trend over time, we don’t want it to compare the absolute value (since the numbers might never really match). One suggestion has been to compare the delta (rate of change as a percentage over the previous day), or using a log scale.
I’m wondering: how do I go about this? What kind of calculation I can use to get the desired results? I’ve looked at the different kind of correlation equations, but they don’t account for the “shape” of the data, and they generally just average it out. The shape of the line chart is the important thing.
Thanks very much in advance!
I would simply divide the data of each week by their average (i.e., normalize them to an average of 1), then sum the squares of the differences of each day of each pair of weeks. This sum is what you want to minimize.
If you don't care about how much a graph oscillates relative to its mean, you can normalize also the variance. For each week, calculate mean and variance, then subtract the mean and divide by the root of the variance. Each week will have mean 0 and variance 1. Then minimize the sum of squares of differences like before.
If the normalization of data is all you can change in your workflow, just leave out the sum of squares of differences minimization part.

How many simulations need to do?

Hello my problem is more related with the validation of a model. I have done a program in netlogo that i'm gonna use in a report for my thesis but now the question is, how many repetitions (simulations) i need to do for justify my results? I already have read some methods using statistical approach and my colleagues have suggested me some nice mathematical operations, but i also want to know from people who works with computational models what kind of statistical test or mathematical method used to know that.
There are two aspects to this (1) How many parameter combinations (2) How many runs for each parameter combination.
(1) Generally you would do experiments, where you vary some of your input parameter values and see how some model output changes. Take the well known Schelling segregation model as an example, you would vary the tolerance value and see how the segregation index is affected. In this case you might vary the tolerance from 0 to 1 by 0.01 (if you want discrete) or you could just take 100 different random values in the range [0,1]. This is a matter of experimental design and is entirely affected by how fine you wish to examine your parameter space.
(2) For each experimental value, you also need to run multiple simulations so that you can can calculate the average and reduce the impact of randomness in the simulation run. For example, say you ran the model with a value of 3 for your input parameter (whatever it means) and got a result of 125. How do you know whether the 'real' answer is 125 or something else. If you ran it 10 times and got 10 different numbers in the range 124.8 to 125.2 then 125 is not an unreasonable estimate. If you ran it 10 times and got numbers ranging from 50 to 500, then 125 is not a useful result to report.
The number of runs for each experiment set depends on the variability of the output and your tolerance. Even the 124.8 to 125.2 is not useful if you want to be able to estimate to 1 decimal place. Look up 'standard error of the mean' in any statistics text book. Basically, if you do N runs, then a 95% confidence interval for the result is the average of the results for your N runs plus/minus 1.96 x standard deviation of the results / sqrt(N). If you want a narrower confidence interval, you need more runs.
The other thing to consider is that if you are looking for a relationship over the parameter space, then you need fewer runs at each point than if you are trying to do a point estimate of the result.
Not sure exactly what you mean, but maybe you can check the books of Hastie and Tishbiani
http://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf
specially the sections on resampling methods (Cross-Validation and bootstrap).
They also have a shorter book that covers the possible relevant methods to your case along with the commands in R to run this. However, this book, as a far as a I know, is not free.
http://www.springer.com/statistics/statistical+theory+and+methods/book/978-1-4614-7137-0
Also, could perturb the initial conditions to see you the outcome doesn't change after small perturbations of the initial conditions or parameters. On a larger scale, sometimes you can break down the space of parameters with regard to final state of the system.
1) The number of simulations for each parameter setting can be decided by studying the coefficient of variance Cv = s / u, here s and u are standard deviation and mean of the result respectively. It is explained in detail in this paper Coefficient of variance.
2) The simulations where parameters are changed can be analyzed using several methods illustrated in the paper Testing methods.
These papers provide scrupulous analyzing methods and refer to other papers which may be relevant to your question and your research.

Understanding Perceptrons

I just started a Machine learning class and we went over Perceptrons. For homework we are supposed to:
"Choose appropriate training and test data sets of two dimensions (plane). Use 10 data points for training and 5 for testing. " Then we are supposed to write a program that will use a perceptron algorithm and output:
a comment on whether the training data points are linearly
separable
a comment on whether the test points are linearly separable
your initial choice of the weights and constants
the final solution equation (decision boundary)
the total number of weight updates that your algorithm made
the total number of iterations made over the training set
the final misclassification error, if any, on the training data and
also on the test data
I have read the first chapter of my book several times and I am still having trouble fully understanding perceptrons.
I understand that you change the weights if a point is misclassified until none are misclassified anymore, I guess what I'm having trouble understanding is
What do I use the test data for and how does that relate to the
training data?
How do I know if a point is misclassified?
How do I go about choosing test points, training points, threshold or a bias?
It's really hard for me to know how to make up one of these without my book providing good examples. As you can tell I am pretty lost, any help would be so much appreciated.
What do I use the test data for and how does that relate to the
training data?
Think about a Perceptron as young child. You want to teach a child how to distinguish apples from oranges. You show it 5 different apples (all red/yellow) and 5 oranges (of different shape) while telling it what it sees at every turn ("this is a an apple. this is an orange). Assuming the child has perfect memory, it will learn to understand what makes an apple an apple and an orange an orange if you show him enough examples. He will eventually start to use meta-features (like shapes) without you actually telling him. This is what a Perceptron does. After you showed him all examples, you start at the beginning, this is called a new epoch.
What happens when you want to test the child's knowledge? You show it something new. A green apple (not just yellow/red), a grapefruit, maybe a watermelon. Why not show the child the exact same data as before during training? Because the child has perfect memory, it will only tell you what you told him. You won't see how good it generalizes from known to unseen data unless you have different training data that you never showed him during training. If the child has a horrible performance on the test data but a 100% performance on the training data, you will know that he has learned nothing - it's simply repeating what he has been told during training - you trained him too long, he only memorized your examples without understanding what makes an apple an apple because you gave him too many details - this is called overfitting. To prevent your Perceptron from only (!) recognizing training data you'll have to stop training at a reasonable time and find a good balance between the size of the training and testing set.
How do I know if a point is misclassified?
If it's different from what it should be. Let's say an apple has class 0 and an orange has 1 (here you should start reading into Single/MultiLayer Perceptrons and how Neural Networks of multiple Perceptrons work). The network will take your input. How it's coded is irrelevant for this, let's say input is a string "apple". Your training set then is {(apple1,0), (apple2,0), (apple3,0), (orange1,1), (orange2,1).....}. Since you know the class beforehand, the network will either output 1 or 0 for the input "apple1". If it outputs 1, you perform (targetValue-actualValue) = (1-0) = 1. 1 in this case means that the network gives a wrong output. Compare this to the delta rule and you will understand that this small equation is part of the larger update equation. In case you get a 1 you will perform a weight update. If target and actual value are the same, you will always get a 0 and you know that the network didn't misclassify.
How do I go about choosing test points, training points, threshold or
a bias?
Practically the bias and threshold isn't "chosen" per se. The bias is trained like any other unit using a simple "trick", namely using the bias as an additional input unit with value 1 - this means the actual bias value is encoded in this additional unit's weight and the algorithm we use will make sure it learns the bias for us automatically.
Depending on your activation function, the threshold is predetermined. For a simple perceptron, the classification will occur as follows:
Since we use a binary output (between 0 and 1), it's a good start to put the threshold at 0.5 since that's exactly the middle of the range [0,1].
Now to your last question about choosing training and test points: This is quite difficult, you do that by experience. Where you're at, you start off by implementing simple logical functions like AND, OR, XOR etc. There's it's trivial. You put everything in your training set and test with the same values as your training set (since for x XOR y etc. there are only 4 possible inputs 00, 10, 01, 11). For complex data like images, audio etc. you'll have to try and tweak your data and features until you feel like the network can work with it as good as you want it to.
What do I use the test data for and how does that relate to the training data?
Usually, to asses how well a particular algorithm performs, one first trains it and then uses different data to test how well it does on data it has never seen before.
How do I know if a point is misclassified?
Your training data has labels, which means that for each point in the training set, you know what class it belongs to.
How do I go about choosing test points, training points, threshold or a bias?
For simple problems, you usually take all the training data and split it around 80/20. You train on the 80% and test against the remaining 20%.

Resources