I have some code which, very much simplified, looks somewhat like this:
#include <iostream>
#include <type_traits>
namespace X {
struct Foo {int x;};
struct Bar {int x;};
template <typename T , typename = typename std::enable_if<
std::is_same<decltype(T::x),int>::value
>::type>
std::ostream & operator<<(std::ostream & os, const T&) {
return os;
}
}
namespace Y {
struct Faa : X::Foo {int y;};
struct Baz {int x; int y;};
template <typename T , typename = typename std::enable_if<
std::is_same<decltype(T::x),int>::value &&
std::is_same<decltype(T::y),int>::value
>::type>
std::ostream & operator<<(std::ostream & os, const T&) {
return os;
}
}
int main() {
// Everything is ok
X::Foo x;
std::cout << x;
Y::Baz k;
std::cout << k;
// Problems..
Y::Faa y;
// std::cout << y; // <--operator is ambiguous
Y::operator<<(std::cout, y);
return 0;
}
Is there any way to avoid the ambiguous operator for Y::Faa and having to manually specify Y::operator<<? If not, why?
Two functions have a conflict because conditions on their arguments have non-empty intersection (actually, 1st supersedes 2nd). Function overloading works only if signatures are different. So, to solve this we have 2 options:
Change conditions so that they have empty intersection (manually forbid having y field by adding && !sfinae_has_member_y<T>::value condition to the 1st enable_if)
template<typename T>
struct sfinae_has_member_y {
static int has(...);
template<typename U = T, typename = decltype(U::y)>
static char has(const U& value);
enum { value = sizeof(char) == sizeof(has(std::declval<T>())) };
};
OR use another C++ feature that supports arguments overlapping, like struct/class template specialization. If you replace bool with int, other fields may be added too:
template<typename T, bool>
struct Outputter {
};
template<typename T>
struct Outputter<T, false> {
static std::ostream & output(std::ostream & os, const T&) {
os << "x";
return os;
}
};
template<typename T>
struct Outputter<T, true> {
static std::ostream & output(std::ostream & os, const T&) {
os << "y";
return os;
}
};
template<typename T, typename = std::enable_if_t<std::is_same<decltype(T::x), int>::value>>
std::ostream & operator<<(std::ostream & os, const T& a) {
return Outputter<T, sfinae_has_member_y<T>::value>::output(os, a);
}
Related
I have an application with several boost::variants which share many of the fields. I would like to be able to compose these visitors into visitors for "larger" variants without copying and pasting a bunch of code. It seems straightforward to do this for non-recursive variants, but once you have a recursive one, the self-references within the visitor (of course) point to the wrong class. To make this concrete (and cribbing from the boost::variant docs):
#include "boost/variant.hpp"
#include <iostream>
struct add;
struct sub;
template <typename OpTag> struct binop;
typedef boost::variant<
int
, boost::recursive_wrapper< binop<add> >
, boost::recursive_wrapper< binop<sub> >
> expression;
template <typename OpTag>
struct binop
{
expression left;
expression right;
binop( const expression & lhs, const expression & rhs )
: left(lhs), right(rhs)
{
}
};
// Add multiplication
struct mult;
typedef boost::variant<
int
, boost::recursive_wrapper< binop<add> >
, boost::recursive_wrapper< binop<sub> >
, boost::recursive_wrapper< binop<mult> >
> mult_expression;
class calculator : public boost::static_visitor<int>
{
public:
int operator()(int value) const
{
return value;
}
int operator()(const binop<add> & binary) const
{
return boost::apply_visitor( *this, binary.left )
+ boost::apply_visitor( *this, binary.right );
}
int operator()(const binop<sub> & binary) const
{
return boost::apply_visitor( *this, binary.left )
- boost::apply_visitor( *this, binary.right );
}
};
class mult_calculator : public boost::static_visitor<int>
{
public:
int operator()(int value) const
{
return value;
}
int operator()(const binop<add> & binary) const
{
return boost::apply_visitor( *this, binary.left )
+ boost::apply_visitor( *this, binary.right );
}
int operator()(const binop<sub> & binary) const
{
return boost::apply_visitor( *this, binary.left )
- boost::apply_visitor( *this, binary.right );
}
int operator()(const binop<mult> & binary) const
{
return boost::apply_visitor( *this, binary.left )
* boost::apply_visitor( *this, binary.right );
}
};
// I'd like something like this to compile
// class better_mult_calculator : public calculator
// {
// public:
// int operator()(const binop<mult> & binary) const
// {
// return boost::apply_visitor( *this, binary.left )
// * boost::apply_visitor( *this, binary.right );
// }
// };
int main(int argc, char **argv)
{
// result = ((7-3)+8) = 12
expression result(binop<add>(binop<sub>(7,3), 8));
assert( boost::apply_visitor(calculator(),result) == 12 );
std::cout << "Success add" << std::endl;
// result2 = ((7-3)+8)*2 = 12
mult_expression result2(binop<mult>(binop<add>(binop<sub>(7,3), 8),2));
assert( boost::apply_visitor(mult_calculator(),result2) == 24 );
std::cout << "Success mult" << std::endl;
}
I would really like something like that commented out better_mult_expression to compile (and work) but it doesn't -- because the this pointers within the base calculator visitor don't reference mult_expression, but expression.
Does anyone have suggestions for overcoming this or am I just barking down the wrong tree?
Firstly, I'd suggest the variant to include all possible node types, not distinguishing between mult and expression. This distinction makes no sense at the AST level, only at a parser stage (if you implement operator precedence in recursive/PEG fashion).
Other than that, here's a few observations:
if you encapsulate the apply_visitor dispatch into your evaluation functor you can reduce the code duplication by a big factor
your real question seems not to be about composing variants, but composing visitors, more specifically, by inheritance.
You can use using to pull inherited overloads into scope for overload resolution, so this might be the most direct answer:
Live On Coliru
struct better_mult_calculator : calculator {
using calculator::operator();
auto operator()(const binop<mult>& binary) const
{
return boost::apply_visitor(*this, binary.left) *
boost::apply_visitor(*this, binary.right);
}
};
IMPROVING!
Starting from that listing let's shave off some noise!
remove unncessary AST distinction (-40 lines, down to 55 lines of code)
generalize the operations; the <functional> header comes standard with these:
namespace AST {
template <typename> struct binop;
using add = binop<std::plus<>>;
using sub = binop<std::minus<>>;
using mult = binop<std::multiplies<>>;
using expr = boost::variant<int,
recursive_wrapper<add>,
recursive_wrapper<sub>,
recursive_wrapper<mult>>;
template <typename> struct binop { expr left, right; };
} // namespace AST
Now the entire calculator can be:
struct calculator : boost::static_visitor<int> {
int operator()(int value) const { return value; }
template <typename Op>
int operator()(AST::binop<Op> const& binary) const {
return Op{}(boost::apply_visitor(*this, binary.left),
boost::apply_visitor(*this, binary.right));
}
};
Here your variant can add arbitrary operations without even needing to touch the calculator.
Live Demo, 43 Lines Of Code
Like I mentioned starting off, encapsulate visitation!
struct Calculator {
template <typename... T> int operator()(boost::variant<T...> const& v) const {
return boost::apply_visitor(*this, v);
}
template <typename T>
int operator()(T const& lit) const { return lit; }
template <typename Op>
int operator()(AST::binop<Op> const& bin) const {
return Op{}(operator()(bin.left), operator()(bin.right));
}
};
Now you can just call your calculator, like intended:
Calculator calc;
auto result1 = calc(e1);
It will work when you extend the variant with operatios or even other literal types (like e.g. double). It will even work, regardless of whether you pass it an incompatible variant type that holds a subset of the node types.
To finish that off for maintainability/readability, I'd suggest making operator() only a dispatch function:
Full Demo
Live On Coliru
#include <boost/variant.hpp>
#include <iostream>
namespace AST {
using boost::recursive_wrapper;
template <typename> struct binop;
using add = binop<std::plus<>>;
using sub = binop<std::minus<>>;
using mult = binop<std::multiplies<>>;
using expr = boost::variant<int,
recursive_wrapper<add>,
recursive_wrapper<sub>,
recursive_wrapper<mult>>;
template <typename> struct binop { expr left, right; };
} // namespace AST
struct Calculator {
auto operator()(auto const& v) const { return call(v); }
private:
template <typename... T> int call(boost::variant<T...> const& v) const {
return boost::apply_visitor(*this, v);
}
template <typename T>
int call(T const& lit) const { return lit; }
template <typename Op>
int call(AST::binop<Op> const& bin) const {
return Op{}(call(bin.left), call(bin.right));
}
};
int main()
{
using namespace AST;
std::cout << std::boolalpha;
auto sub_expr = add{sub{7, 3}, 8};
expr e1 = sub_expr;
expr e2 = mult{sub_expr, 2};
Calculator calc;
auto result1 = calc(e1);
std::cout << "result1: " << result1 << " Success? " << (12 == result1) << "\n";
// result2 = ((7-3)+8)*2 = 12
auto result2 = calc(e2);
std::cout << "result2: " << result2 << " Success? " << (24 == result2) << "\n";
}
Still prints
result1: 12 Success? true
result2: 24 Success? true
I have a method that takes an index-able object as a template parameter, something like:
template <typename OBJ>
int foo(int n, OBJ o)
{
int x = 0;
for (int i = 0; i < n; ++i) {
x += o[i];
}
return x;
}
Is there a way I can pass a lambda function in for the o parameter? In other words, having the lambda be call-able via the [] operator rather than the () operator?
template<class F>
struct square_bracket_invoke_t {
F f;
template<class T>
auto operator[](T&& t)const
-> typename std::result_of< F const&(T&&) >::type
{ return f(std::forward<T>(t)); }
};
template<class F>
square_bracket_invoke_t< typename std::decay<F>::type >
make_square_bracket_invoke( F&& f ) {
return {std::forward<F>(f)};
}
Live example.
Code is C++11 and has basically zero overhead.
int main() {
std::cout << foo( 6, make_square_bracket_invoke([](int x){ return x; } ) ) << "\n";
}
result is 0+1+2+3+4+5 aka 15.
Is this a good idea? Maybe. But why stop there?
For max amusement:
const auto idx_is = make_square_bracket_invoke([](auto&&f){return make_square_bracket_invoke(decltype(f)(f));});
int main() {
std::cout << foo( 6, idx_is[[](int x){ return x; }] ) << "\n";
}
You can do that by:
Creating a class template, a functor, that has the operator[] defined.
Implementing the operator[] in terms of the operator() of a std::function.
Storing the lambda in a wrapped std::function as a member variable of the class template.
Here's a demonstrative program.
#include <iostream>
#include <functional>
template <typename OBJ>
int foo(int n, OBJ o)
{
int x = 0;
for (int i = 0; i < n; ++i) {
x += o[i];
}
return x;
}
template <typename> struct Functor;
template <typename R> struct Functor<R(int)>
{
using ftype = std::function<R(int)>;
Functor(ftype f) : f_(f) {}
R operator[](int i) const { return f_(i); }
ftype f_;
};
int main()
{
Functor<int(int)> f = {[](int i) -> int {return i*i;}};
std::cout << foo(10, f) << std::endl;
}
and its output
285
Live demo
PS
Functor is not the appropriate name here. It does not overload the function call operator. I suspect there is a more appropriate name.
Well, if it helps, here's a way to forward a wrapper class's operator[] to your lambda's operator().
template<class F>
struct SubscriptWrapper_t {
F f_;
template<class T> auto operator[](T const& t_) const -> decltype(f_(t_)) {
return f_(t_);
}
};
template<class F>
SubscriptWrapper_t<typename std::decay<F>::type> SubscriptWrapper(F&& f_) {
return{std::forward<F>(f_)};
}
I use wrappers like this a lot. They're convenient, and they don't seem to have any computational overhead, at least when compiled by GCC. You can make one for at or even make one for find.
EDIT: Updated for C++11 (and updated to be able to return a reference)
A sketch of a wrapper type that would do this.
template<typename UnaryFunction>
class index_wrapper
{
public:
index_wrapper(UnaryFunction func) : func(std::move(func)) {}
template<typename T>
std::invoke_result_t<UnaryFunction, T> operator[](T&& t)
{ return func(std::forward<T>(t)); }
private:
UnaryFunction func;
};
With usage
#include <iostream>
template <typename OBJ>
int foo(int n, OBJ o)
{
int x = 0;
for (int i = 0; i < n; ++i) {
x += o[i];
}
return x;
}
int main()
{
index_wrapper f([](int i) -> int { return i*i; });
std::cout << foo(10, f) << std::endl;
}
You might want to restrict it to a single parameter type, so that you can provide member type aliases similar to std::vector::reference et.al.
I have a template class(CrMultiIndex) that receive as template parameter a definition of boost multi index(GlobalHash).
I need :
To add statistics to my template class according to Index used.
So i need a way to resize the vector(m_StatsByIndex) at init with the number of existing indices.
I still want the user to search according to tag and not index number.
So i need a way to convert from tag to index number so i can update statistics in vector according to index in vector.
I have template class
template <typename KeysType, typename MultiIndexType>
class CrMultiIndex
{
std::vector<SrStatisticsByIndex> m_StatsByIndex;
public:
MultiIndexType *m_pMultiIndex=NULL;
CrMultiIndex()
{
m_pMultiIndex = new MultiIndexType(typename
MultiIndexType::ctor_args_list());
}
Here is the definition of boost multi index container:
typedef boost::multi_index::multi_index_container<
CrUsersKeys,
UsersKey_hash_indices/*,
bip::allocator<CrUsersKeys,bip::managed_shared_memory::segment_manager>*/
> GlobalHash;
with a search function according to Tag
template <typename TagType,typename SearchingKey>
typename MultiIndexType::template index<TagType>::type::iterator
GetIteratorBy(SearchingKey & key)
{
return m_pMultiIndex->template get<TagType>().find(key) ;
}
Code is at http://coliru.stacked-crooked.com/a/d97195a6e4bb7ad4
You'd need to query the embedded index type lists:
typedef typename MultiIndexType::index_type_list::size NumberOfIndexes;
template <typename Tag> constexpr static size_t IndexOfTag() {
namespace mpl = boost::mpl;
using tl = typename MultiIndexType::index_type_list;
using B = typename mpl::begin<tl>::type;
using helper = typename MultiIndexType::template index<Tag>;
static_assert(helper::index_found, "index not found");
auto N = mpl::distance<B, typename helper::iter>::value;
return N;
}
Or, using Boost Mpl all the way:
typedef typename MultiIndexType::index_type_list::size NumberOfIndexes;
template <typename Tag> constexpr static size_t IndexOfTag() {
namespace mpl = boost::mpl;
using tl = typename MultiIndexType::index_type_list;
using B = typename mpl::begin<tl>::type;
using E = typename mpl::end<tl>::type;
using It = typename mpl::find_if<tl, bmi::detail::has_tag<Tag> >::type;
static_assert(not std::is_same<E, It>(), "index not found");
auto N = mpl::distance<B, It>::value;
return N;
}
You can use it like so:
template <typename TagType, typename SearchingKey>
typename MultiIndexType::template index<TagType>::type::iterator
GetIteratorBy(SearchingKey &key) {
auto& idx = m_pMultiIndex.template get<TagType>();
auto& stats = GetStats<TagType>();
auto it = idx.find(key);
++(it == idx.end()? stats.searchedNotFound : stats.searchedSuccessfully);
return it;
}
DEMO
Note the code has been simplified:
Live On Coliru
#include <iostream>
#include <boost/multi_index/member.hpp> // for member
#include <boost/multi_index/hashed_index.hpp> // for hashed_unique
#include <boost/multi_index/ordered_index.hpp> // for ordered_non_unique
#include <boost/multi_index_container.hpp> // for multi_index_container
namespace bmi = boost::multi_index;
struct SrStatisticsByIndex {
int deleted;
int searchedSuccessfully;
int searchedNotFound;
};
template <typename MultiIndexType, typename ValueType = typename MultiIndexType::value_type>
class CrMultiIndex {
typedef typename MultiIndexType::index_type_list::size NumberOfIndexes;
template <typename Tag> constexpr static size_t IndexOfTag() {
using tl = typename MultiIndexType::index_type_list;
using B = typename boost::mpl::begin<tl>::type;
using helper = typename MultiIndexType::template index<Tag>;
static_assert(helper::index_found, "index not found");
return boost::mpl::distance<B, typename helper::iter>::value;
}
public:
MultiIndexType m_pMultiIndex;
template <typename Tag> SrStatisticsByIndex& GetStats()
{ return m_StatsByIndex.at(IndexOfTag<Tag>()); }
template <typename Tag> SrStatisticsByIndex const& GetStats() const
{ return m_StatsByIndex.at(IndexOfTag<Tag>()); }
// All the protected function are non locking function
template <typename TagType, typename SearchingKey>
typename MultiIndexType::template index<TagType>::type::iterator
GetIteratorBy(SearchingKey &key) {
auto& idx = m_pMultiIndex.template get<TagType>();
auto& stats = GetStats<TagType>();
auto it = idx.find(key);
++(it == idx.end()? stats.searchedNotFound : stats.searchedSuccessfully);
return it;
}
void Insert(ValueType const &key) {
std::cout << (m_pMultiIndex.insert(key).second? "success":"failed") << std::endl;
}
private:
std::vector<SrStatisticsByIndex> m_StatsByIndex { NumberOfIndexes() };
};
class CrUsersValue {
int val1;
int val2;
};
class CrUsersKeys {
public:
int IMSI;
int TIMESTAMP;
CrUsersValue val;
};
typedef boost::multi_index::multi_index_container<
CrUsersKeys,
bmi::indexed_by<
bmi::ordered_non_unique<bmi::tag<struct TIMESTAMP_tag>,
bmi::member<CrUsersKeys, int, &CrUsersKeys::TIMESTAMP> >,
bmi::hashed_unique<bmi::tag<struct IMSI_tag>,
bmi::member<CrUsersKeys, int, &CrUsersKeys::IMSI> /*, boost::hash<int>, std::equal_to<int>*/>
>
/*, bip::allocator<CrUsersKeys,bip::managed_shared_memory::segment_manager>*/
>
GlobalHash;
int main() {
CrMultiIndex<GlobalHash> multi;
CrUsersKeys key;
key.IMSI = 2;
multi.Insert(key);
int searchKey = 2;
auto it = multi.GetIteratorBy<IMSI_tag>(searchKey);
if (it != multi.m_pMultiIndex.get<IMSI_tag>().end())
std::cout << "found " << std::endl;
}
Prints
success
found
As a supplement to sehe's answer, this a rewrite of IndexOfTag that does not depend on undocumented Boost.MultiIndex features:
Live On Coliru
template<typename MultiIndexContainer,std::size_t N=0>
struct index_position:index_position<MultiIndexContainer,N+1>
{
using index_type=typename boost::multi_index::nth_index<MultiIndexContainer,N>::type;
using index_position<MultiIndexContainer,N+1>::case_of;
static constexpr std::size_t case_of(std::in_place_type_t<index_type>){return N;}
};
template<typename MultiIndexContainer>
struct index_position<
MultiIndexContainer,
boost::mpl::size<typename MultiIndexContainer::index_type_list>::value
>
{
static constexpr void case_of(...){}
};
template <typename MultiIndexContainer,typename Tag>
constexpr std::size_t IndexOfTag()
{
using index_type=typename boost::multi_index::index<MultiIndexContainer,Tag>::type;
return index_position<MultiIndexContainer>::case_of(std::in_place_type<index_type>);
}
Edit: In C++14:
Live On Coliru
template<typename MultiIndexContainer,std::size_t N=0>
struct index_position:index_position<MultiIndexContainer,N+1>
{
using index_type=typename boost::multi_index::nth_index<MultiIndexContainer,N>::type;
using index_position<MultiIndexContainer,N+1>::case_of;
static constexpr std::size_t case_of(index_type*){return N;}
};
template<typename MultiIndexContainer>
struct index_position<
MultiIndexContainer,
boost::mpl::size<typename MultiIndexContainer::index_type_list>::value
>
{
static constexpr void case_of(...){}
};
template <typename MultiIndexContainer,typename Tag>
constexpr std::size_t IndexOfTag()
{
using index_type=typename boost::multi_index::index<MultiIndexContainer,Tag>::type;
return index_position<MultiIndexContainer>::case_of((index_type*)(nullptr));
}
How can I have this effect without the arbitrary typedefs?
#include <type_traits>
#include <iostream>
typedef int Primary;
typedef float Secondary;
template<Class C, std::enable_if<std::is_same<Class, Primary>::value || std::is_same<Class, Secondary>::value> = 0>
class Entity {
public:
template<std::enable_if<std::is_same<Class, Secondary>::value>::type = 0>
void onlyLegalForSecondaryEntities() {
std::cout << "Works" << std::endl;
}
};
int main() {
Entity<Secondary> e;
e.onlyLegalForSecondaryEntities();
return 0;
}
Is there a more elegant way to produce this so that Entity can only be instantiated with Primary or Secondary as template arguments?
After fixing the errors in your code:
In C++1z you can easily roll a trait is_any with std::disjunction:
template<typename T, typename... Others>
struct is_any : std::disjunction<std::is_same<T, Others>...>
{
};
In C++11, you can implement disjuncation as
template<class...> struct disjunction : std::false_type { };
template<class B1> struct disjunction<B1> : B1 { };
template<class B1, class... Bn>
struct disjunction<B1, Bn...>
: std::conditional<B1::value != false, B1, disjunction<Bn...>>::type { };
Then define your class template as
template<class C, typename std::enable_if<is_any<C, Primary, Secondary>::value>::type* = nullptr>
class Entity {
public:
template<typename std::enable_if<std::is_same<C, Secondary>::value>::type* = nullptr>
void onlyLegalForSecondaryEntities() {
std::cout << "Works" << std::endl;
}
};
demo
You can take this further and make enable_if_any alias that would resolve to void if possible:
template<typename This, typename... Elems>
using enable_if_is_any = typename std::enable_if<is_any<This, Elems...>::value>::type;
template<class C, enable_if_is_any<C, Primary, Secondary>* = nullptr>
class Entity {
public:
template<typename std::enable_if<std::is_same<C, Secondary>::value>::type* = nullptr>
void onlyLegalForSecondaryEntities() {
std::cout << "Works" << std::endl;
}
};
demo
I have the following code:
#include <iostream>
#include <functional>
class test
{
public:
typedef std::function<bool(int)> Handler;
void handler(Handler h){h(5);}
};
class test2
{
public:
template< typename Ret2, typename Ret, typename Class, typename Param>
inline Ret2 MemFn(Ret (Class::*f)(Param), int arg_num)
{
if (arg_num == 1)
return std::bind(f, this, std::placeholders::_1);
}
bool f(int x){ std::cout << x << std::endl; return true;}
};
int main()
{
test t;
test2 t2;
t.handler(t2.MemFn<test::Handler>(&test2::f, 1));
return 0;
}
It works as expected.
I would like to be able to call this:
t.handler(t2.MemFn<test::Handler>(&test2::f));
instead of
t.handler(t2.MemFn<test::Handler>(&test2::f, 1));
Basically I need MemFn to determine in runtime what Handler expects as the number of arguments.
Is that even possible?
You may create some type_traits to have your info, something like:
template <typename T> struct function_trait;
template <typename Ret, typename ... Args>
struct function_trait<std::function<Ret(Args...)>>
{
static constexpr std::size_t args_count = sizeof...(Args);
};
And so your method may look like:
template<typename Ret2, typename Ret, typename Class, typename Param>
inline Ret2 MemFn(Ret (Class::*f)(Param))
{
if (function_trait<Ret2>::args_count == 1)
return std::bind(f, this, std::placeholders::_1);
throw std::runtime_error("invalid number of arguments");
}