I'd like to use delegate to pass map from a string on to chars, then join back to a string result.
require 'forwardable'
module Map
module String
extend Forwardable
def self.included(base)
base.send :extend, Forwardable
end
# Map for String
delegate map: :chars
end
end
class String
include Map::String
end
As it's originally a string I'd like to perform join after the delegated method has performed its duties. How do I modify the delegate line to include the additional change? The closest thing I've seen online is SimpleDelegator with __setobj__. But that's not well documented and I'm not able to ascertain how to use it for this.
I'm strictly looking for an answer in regards to delegate or SimpleDelegate
The equivalent behavior I'm looking for is this:
module Map
module String
def map(*args, &block)
if (!args.compact.empty? || !block.nil?)
self.chars.map(*args,&block).join
else
self.chars.map(*args,&block)
end
end
end
end
class String
include Map::String
end
I'm looking to understand how to do this with delegate.
The Fowardable docs are hilarious--as if that first example will run without a hundred errors. Your pseudo code tells ruby to forward the method call String#map, which doesn't exist, to String#chars, and you want to join() the result of that? Skip all the method calls and just write puts "some_string". So your question doesn't seem to make a lot of sense. In any case, Forwardable#delegate() does not allow you to map one name to another name.
With regards to SimpleDelegat**or**, you can do this:
module Map
require 'delegate'
class MyStringDecorator < SimpleDelegator
def map
chars.shuffle.join('|')
end
end
end
d = Map::MyStringDecorator.new 'hello'
puts d.map
--output:--
h|o|l|l|e
Response to edit: The equivalent behavior I'm looking for..
The problem is ruby won't let you do this:
class String < SomeClass
end
which is what include does, and you need to be able to do that in order to use delegate to forward all the method calls sent to one class to another class. This is the best you can do:
require 'delegate'
class MyString < DelegateClass(String)
def map(*args, &block)
if (!args.compact.empty? || !block.nil?)
self.chars.map(*args,&block).join
else
self.chars.map(*args,&block)
end
end
end
s = MyString.new 'hello'
puts s.upcase
puts s.map {|letter| letter.succ }
--output:--
HELLO
ifmmp
Or:
require 'forwardable'
class MyString
extend Forwardable
def initialize(str)
#str = str
end
def_delegators :#str, :upcase, :capitalize, :[], :chars #etc., etc., etc.
#Or: delegate({[:upcase, :capitalize, :[], :chars] => :#str})
#Or: instance_delegate({[:upcase, :capitalize, :[], :chars] => :#str})
def map(*args, &block)
if (!args.compact.empty? || !block.nil?)
self.chars.map(*args,&block).join
else
self.chars.map(*args,&block)
end
end
end
s = MyString.new('hello')
puts s.upcase
puts s.map {|letter| letter.succ }
--output:--
HELLO
ifmmp
Of course, you could always override String#method_missing() to do what you want. What is it that you read about delegate that made you think it could replace include?
Related
In Rails we can define a class like:
class Test < ActiveRecord::Base
before_initialize :method
end
and when calling Test.new, method() will be called on the instance. I'm trying to learn more about Ruby and class methods like this, but I'm having trouble trying to implement this in plain Ruby.
Here's what I have so far:
class LameAR
def self.before_initialize(*args, &block)
# somehow store the symbols or block to be called on init
end
def new(*args)
## Call methods/blocks here
super(*args)
end
end
class Tester < LameAR
before_initialize :do_stuff
def do_stuff
puts "DOING STUFF!!"
end
end
I'm trying to figure out where to store the blocks in self.before_initialize. I originally tried an instance variable like #before_init_methods, but that instance variable wouldn't exist in memory at that point, so I couldn't store or retrieve from it. I'm not sure how/where could I store these blocks/procs/symbols during the class definition, to later be called inside of new.
How could I implement this? (Either having before_initialize take a block/proc/list of symbols, I don't mind at this point, just trying to understand the concept)
For a comprehensive description, you can always check the Rails source; it is itself implemented in 'plain Ruby', after all. (But it handles lots of edge cases, so it's not great for getting a quick overview.)
The quick version is:
module MyCallbacks
def self.included(klass)
klass.extend(ClassMethods) # we don't have ActiveSupport::Concern either
end
module ClassMethods
def initialize_callbacks
#callbacks ||= []
end
def before_initialize(&block)
initialize_callbacks << block
end
end
def initialize(*)
self.class.initialize_callbacks.each do |callback|
instance_eval(&callback)
end
super
end
end
class Tester
include MyCallbacks
before_initialize { puts "hello world" }
end
Tester.new
Left to the reader:
arguments
calling methods by name
inheritance
callbacks aborting a call and supplying the return value
"around" callbacks that wrap the original invocation
conditional callbacks (:if / :unless)
subclasses selectively overriding/skipping callbacks
inserting new callbacks elsewhere in the sequence
... but eliding all of those is what [hopefully] makes this implementation more approachable.
One way would be by overriding Class#new:
class LameAR
def self.before_initialize(*symbols_or_callables, &block)
#before_init_methods ||= []
#before_init_methods.concat(symbols_or_callables)
#before_init_methods << block if block
nil
end
def self.new(*args, &block)
obj = allocate
#before_init_methods.each do |symbol_or_callable|
if symbol_or_callable.is_a?(Symbol)
obj.public_send(symbol_or_callable)
else
symbol_or_callable.(obj)
end
end
obj.__send__(:initialize, *args, &block)
end
end
class Tester < LameAR
before_initialize :do_stuff
def do_stuff
puts "DOING STUFF!!"
end
end
How to define an original name scope in module/class with Ruby
I want to implement class like the following:
module SomeModule
extend OriginalNameScope
scope(:some) do
def method1
puts 1
end
def method2
puts 2
end
end
end
class SomeClass
include SomeModule
end
c = SomeClass.new
# I want to call methods like the following:
c.some_method1
c.some_method2
How to implement the OriginalNameScope module? I found out to get the method definitions in this method, but I don't know how to redefine methods with a prefix scope.
module OriginalNameScope
def scope(name, &method_definition)
puts method_definition.class
# => Proc
end
end
This is actually just a combination of some simple standard Ruby metaprogramming patterns and idioms:
module OriginalNameScope
def scope(name)
singleton_class.prepend(Module.new do
define_method(:method_added) do |meth|
if name && !#__recursion_guard__
#__recursion_guard__ = meth
method = instance_method(meth)
undef_method(meth)
define_method(:"#{name}_#{meth}") do |*args, &block|
method.bind(self).(*args, &block)
end
end
#__recursion_guard__ = nil
super(meth)
end
end)
yield
end
end
I just slapped this together, there's probably a lot that can be improved (e.g. use Refinements) and simplified.
I'm trying to create a method that passes the caller as the default last argument. According to this, I only need:
class A
def initialize(object = self)
# work with object
end
end
so that in:
class B
def initialize
A.new # self is a B instance here
end
end
self will be B rather than A;
However, this doesn't seem to work. Here's some test code:
class A
def self.test test, t=self
puts t
end
end
class B
def test test,t=self
puts t
end
end
class T
def a
A.test 'hey'
end
def b
B.new.test 'hey'
end
def self.a
A.test 'hey'
end
def self.b
B.new.test'hey'
end
end
and I get:
T.new.a # => A
T.new.b # => #<B:0x000000015fef00>
T.a # => A
T.b # => #<B:0x000000015fed98>
whereas I expect it to be T or #<T:0x000000015fdf08>. Is there a way to set the default last argument to the caller?
EDIT:
class Registry
class << self
def add(component, base=self)
self.send(component).update( base.to_s.split('::').last => base)
end
end
end
The idea is pretty simple, you would use it like this
class Asset_Manager
Registry.add :utilities
end
and you access it like:
include Registry.utilities 'Debugger'
I'm trying to de-couple classes by having a middle-man management type class that takes care of inter-class communications, auto-loading of missing classes and erroring when it doesn't exist, it works but I just want to be able to use the above rather than:
class Asset_Manager
Registry.add :utilities, self
end
It just feels cleaner, that and I wanted to know if such a thing was possible.
You can't escape the explicit self. But you can hide it with some ruby magic.
class Registry
def self.add(group, klass)
puts "registering #{klass} in #{group}"
end
end
module Registrable
def self.included(base)
base.extend(ClassMethods)
end
module ClassMethods
def register_in(group)
Registry.add(group, self)
end
end
end
class AssetManager
include Registrable
register_in :utilities
end
# >> registering AssetManager in utilities
In short, you can't.
Ruby resolves the default arguments in the context of the receiver. That is, the object before the . in a method call. What you called the receiver should be the caller, actually.
class A
def test1(value = a)
puts a
end
def test2(value = b)
puts b
end
def a
"a"
end
end
a = A.new
a.test1 #=> a
def a.b; "b" end
a.test2 #=> b
If I were you, I would use the extended (or included) hook, where both the extending class and the extended module can be accessed. You can program what ever logic you want based on the information.
module Registry
module Utilities
def self.extended(cls)
#puts cls
::Registry.send(component).update( cls.to_s.split('::').last => cls)
end
end
end
class Asset_Manager
extend Registry::Utilities
end
I try to write a metaprogramming for execute a method before 'master' method. Why ? Because, I have several class and it's ugly to repeat the call in the head of the method
Case :
class MyClass
include MySuperModule
before :method, call: before_method
def before_method
puts "Before.."
end
end
class SomeClass < MyClass
def method
puts "Method.."
end
end
module MySuperModule
# the awesome code
end
Output :
SomeClass.new.method => "Before.. Method.."
So, I try write a module with ClassMethodsor method_missingwithout success.
You don't need a gem for simple metaprogramming like this. What you can do is redefine the "after" method to call the "before" method and then the original "after" method.
This works even when using before multiple times on the same method or when creating a chain of before calls.
module MySuperModule
def before meth, opts
old_method = instance_method(meth)
define_method(meth) do
send opts[:call]
old_method.bind(self).call
end
end
end
class MyClass
extend MySuperModule
def foo
puts "foo"
end
def bar
puts "bar"
end
def baz
puts "baz"
end
before :foo, call: :bar
before :bar, call: :baz
end
MyClass.new.foo
# baz
# bar
# foo
If it is just for subclassing purposes you can take advantage of Module#prepend:
class Superclass
def self.inherited(subclass)
# subclass.send :prepend, Module.new { on Ruby < 2.1
subclass.prepend Module.new {
def method
before_method
super
end
}
end
def before_method
puts 'Before'
end
end
class Subclass < Superclass
def method
puts 'Method'
end
end
Subclass.new.method
#=> Before
#=> Method
What you are looking for is Aspect oriented programming support for ruby. There are several gems implementing this, like aquarium.
Another way to do this is to use the rcapture gem.
It is pretty awesome.
Eg:
require 'rcapture'
class A
# Makes the class intercept able
include RCapture::Interceptable
def first
puts 'first'
end
def second
puts 'second'
end
end
# injects methods to be called before each specified instance method.
A.capture_pre :methods => [:first, :second] do
puts "hello"
end
n = A.new
n.first
n.second
produces:
hello
first
hello
second
Maybe you can use a decorator. In ruby there is a nice gem called 'drapeer'. See Drapper Link
Every call in ruby runs through set_trace_func so you can hook into that and call exactly what you want. Not the prettiest solution and there are better ways but it does work. Another option is the Hooks gem, though I haven't tried it myself, it looks like it should give you the ability to do what you want.
module MySuperModule
# the awesome code
end
class MyClass
include MySuperModule
def before_method
puts "Before.."
end
end
class SomeClass < MyClass
def method
puts "Method.."
end
end
set_trace_func proc { |event, file, line, id, binding, class_name|
if event == "call" && class_name == SomeClass && id == :method
caller = binding.eval("self")
caller.send(:before_method)
end
}
SomeClass.new.method
#=> Before..
#=> Method..
How would I use the parameter value as the instance variable name of an object?
This is the object
Class MyClass
def initialize(ex,ey)
#myvar = ex
#myothervar = ey
end
end
I have the following method
def test(element)
instanceofMyClass.element #this obviously doesnt work
end
How can I have the test method return either myvar or myothervar value depending on the element parameter. I don't want to write an if condition though, I want to pass myvar or myother var via element to the object instance if possible.
def test(element)
instanceofMyClass.send(element.to_sym)
end
You'll get a missing method error if instanceofMyClass doesn't respond to element.
def test(element)
instanceofmyclass.instance_variable_get element
end
test :#myvar # => ex
test :#myothervar # => ey
I like the simplicity of send(), though one bad thing with it is that it can be used to access privates. The issue is still remains solution below, but at least then it's explicitly specified, and reader can see which methods are to be forwarded. The first one just uses delegation, while the second one uses more dynamic way to define methods on the fly.
require 'forwardable'
class A
extend Forwardable
def_delegators :#myinstance, :foo, :bar
class B
def foo
puts 'foo called'
end
def bar
puts 'bar called'
end
def quux
puts 'quux called'
end
def bif
puts 'bif called'
end
end
def initialize
#myinstance = B.new
end
%i(quux bif).each do |meth| # note that only A#quux and A#bif are defined dynamically
define_method meth do |*args_but_we_do_not_have_any|
#myinstance.send(meth)
end
end
end
a = A.new
a.foo
a.bar
a.quux
a.bif