#transactional in spring jpa not updating table - spring

I am using spring jpa transactions in my project.One Case includes inserting a data in a synchronized method and when another thread accesses it the data is not updated.My code is given below :
public UpdatedDTO parentMethod(){
private UpdatedDTO updatedDTO = getSomeMethod();
childmethod1(inputVal);
return updatedDTO;
}
#Transactional
public synchronized childmethod1(inputVal){
//SomeCodes
//Place where update takes place
TableEntityObject obj = objectRepository.findByInputVal(inputVal);
if(obj == null){
childMethod2(inputVal);
}
}
#Transactional
public void childMethod2(inputVal){
//Code for inserting
TableEntityObject obj = new TableEntityObject();
obj.setName("SomeValue");
obj.setValueSet(inputVal);
objectRepository.save(obj);
}
Now if two threads access at the same time and if first thread completes childmethod2 and childmethod1 and without completing parentMethod() after that if second thread comes to the childMethod1() and checks if data exists,the data is null and is not updated by first thread.I have tried many ways like
#Transactional(propagation = Propagation.REQUIRES_NEW)
public synchronized childmethod1(inputVal){
//SomeCodes
//Place where update takes place
TableEntityObject obj = objectRepository.findByInputVal(inputVal);
if(obj == null){
childMethod2(inputVal);
}
}
#Transactional(propagation = Propagation.REQUIRES_NEW)
public void childMethod2(inputVal){
//Code for inserting
TableEntityObject obj = new TableEntityObject();
obj.setName("SomeValue");
obj.setValueSet(inputVal);
objectRepository.save(obj);
}
also tried taking off #transactional in the childMethod1() but nothing works out.I know im doing something wrong here , but couldnt figure out where and what exactly i am doing wrong.Can anyone help me out with this

#Transactional is resolved using proxies on spring beans. It means it will have no effect if your method with #Transactional is called from the same class. Take a look at Spring #Transaction method call by the method within the same class, does not work?
The easiest would be moving those methods into separate service.

Typical checklist I follow in cases like these :
If Java based configuration then make sure
#EnableTransactionManagement annocation is present in the class
containing the #Configuration annotation
Make sure the transactionManager bean is created, again this should be mentioned in the configuration class.
Use of #Transactional annocatio over the method which is calling the repository, typically a class in the DAO layer
Adding the #Service annotation for the class which is invoking the methods in the repository
Nice blog which explains the Transaction configuration with JPA in depth --> http://www.baeldung.com/2011/12/26/transaction-configuration-with-jpa-and-spring-3-1/68954

Related

Without JPA #Transaction and save() when is the commit done?

When a method has a #Transaction annatotion, I know the commit is done at the end of the method. But when I don't use #Transaction, it's not clear to me when the commit is done. In my example I don't use #Transaction, do the real change in another service and don't use someRepository .save(), but it still works:
#Service
public class ServiceA {
private final SomeRepository someRepository;
private final ServiceB serviceB;
public ServiceA(SomeRepository someRepository, ) {
this.someRepository = someRepository;
this.serviceB = serviceB;
}
// Called from controller
public void doStuff() {
var someEntity = someRepository.findById(1);
serviceB.makeChange(someEntity);
}
}
#Service
public class ServiceB {
public ServiceB() {}
public void makeChange(SomeEntity someEntity) {
someEntity.setName("Test"); // this is working and committed to the database
}
}
So actually I have 2 questions:
When I don't add a #Transaction annatotion to a method when is the commit done?
I don't even have to call someRepository.save(entity)? I thought that worked only when using the #Transaction annotation?
Context:
Spring Boot 2.2.6
"spring-boot-starter-data-jpa" as dependency
first one clarification: the #Transactional annotation does not mean there is a commit at end of the method. It means the method joins the transaction (or start a new one - this depends on the propagation attributes to be precise), so the commit (or rollback) will be performed at the end of the transaction, which can (and often does) involve multiple methods with various DB access.
Normally Spring (or another transaction manager) takes care of this (ie disabling auto-commit).
#Transactional missing
There is no transactional context so the commit is performed immediately as the database in modified. There is no rollback option and, if there is an error, the data integrity might be violated,
#Transactional defined
During the transactions the JPA entities are in managed-state, at the end of the transaction the state is automatically flushed to the DB (no need to call someRepository.save(entity)

#Async is not working if I give it at service level in spring-boot

I am autowiring service in controller. And in service, I have a scenario where I need to throw an exception and DB changes also. So, I tried #Async
#Transactional
public void verifyOtp(OtpDto otpDto)
...
if(xyz){
deactivateOtp(emp.getId());
throw new ServException("Mobile no requested is already assigned", "error-code");
}
}
#Async
#Transactional //with or without
public void deactivateOtp(Integer id){
otpRepo.deactivateOtp(id);
}
public interface OtpRepository extends JpaRepository<Otp, Integer> {
#Modifying
#Query("UPDATE Otp SET isActive = 0 WHERE id = :id")
public void deactiveOtp(#Param("id") Integer id);
This is not creating new thread. But, if I gives at repo, it works
public void deactivateOtp(Integer id){
otpRepo.deactivateOtp(id);
}
public interface OtpRepository extends JpaRepository<Otp, Integer> {
#Async
#Transactional
#Modifying
#Query("UPDATE Otp SET isActive = 0 WHERE id = :id")
public void deactiveOtp(#Param("id") Integer id);
First of all check that the service is wrapped into proxy (you can place a breakpoint in controller and see the reference to the service, it will be with proxy). Otherwise there is something wrong with the configuration and #Transactional/#Async won't work till you fix that.
Now, assuming this is not an issue, there is an issue in the code:
When the controller calls service.verifyOtp it goes to the proxy (to handle the transaction) and then to your implementation.
But when it reaches your implementation and you call the method that belongs to the same impl, it doesn't pass through the proxy again, instead it directly goes to the deactivateOtp as if there is no spring at all here. Of course, #Async doesn't work.
In terms of resolution:
Consider using self injection if you work with spring 4.3+. Read this thread for more information.
Alternatively, refactor your code so that the deactivateOtp will be a public method of another class. In this case the call won't be "internal" anymore, it will path through Proxy hence the #Async will work.
This is discussed many times.
Basically, Spring AOP will not intercept local method call
(in your case call deactivateOtp() within the same class)
You can read more about this behavior here: Understanding AOP proxies
Highlight:
The key thing to understand here is that the client code inside the main(..) of the Main class has a reference to the proxy. This means that method calls on that object reference will be calls on the proxy, and as such the proxy will be able to delegate to all of the interceptors (advice) that are relevant to that particular method call. However, once the call has finally reached the target object, the SimplePojo reference in this case, any method calls that it may make on itself, such as this.bar() or this.foo(), are going to be invoked against the this reference, and not the proxy. This has important implications. It means that self-invocation is not going to result in the advice associated with a method invocation getting a chance to execute.

Making a method transactional in Spring

I use a hibernate as JPA provider
#RestController
public class RestController {
private final TestService testService;
#PostMapping(value = "/file/{entityId}", produces = MediaType.APPLICATION_OCTET_STREAM_VALUE)
public void test(#PathVariable #NotNull UUID entityId) {
testService.delete(entityId);
}
}
class TestService {
#AutoWired
EntityRepository repo; // <- Crud repository from Spring Data
public void delete(UUID id2){
//if row not exists with id == id2
throw NoFoundException
// else
//remove from database using repo.
}
}
And how to resolve the following case:
"if row not exists with id == id2 " evaluated to false, because object exists in fact.
Other thread deleted that row.
"remove from database using repo" <- error, there is no such row because it was removed by other thread in the step 2.
You can use #Transactional on your Service methods to ensure your database operations run in a transaction. By default, you can roll back the transaction if you throw a unchecked exception inside the annotated method. You can also specify on which exceptions to rollback using #Transactional's rollbackFor Parameter
Not sure why you've got a delete method that is basically doing exactly the same as the SimpleJpaRepository delete method, so for starters I'd change your code to
repo.delete(entityId)
and get rid of test service.
If you are worried about getting a EmptyResultDataAccessException when there is no data to delete, either catch the exception and ignore it or use pessimistic locking on whatever else is doing deletes, as explained
here
You can use the annotation #Transaction for your service method delete(UUID id2).Default propagation of #Transaction is Propagation.REQUIRED which means that if you get an existing transaction it continues that and if you do not have existing transaction it will create one for you.

Spring nested transactions

In my Spring Boot project I have implemented following service method:
#Transactional
public boolean validateBoard(Board board) {
boolean result = false;
if (inProgress(board)) {
if (!canPlayWithCurrentBoard(board)) {
update(board, new Date(), Board.AFK);
throw new InvalidStateException(ErrorMessage.BOARD_TIMEOUT_REACHED);
}
if (!canSelectCards(board)) {
update(board, new Date(), Board.COMPLETED);
throw new InvalidStateException(ErrorMessage.ALL_BOARD_CARDS_ALREADY_SELECTED);
}
result = true;
}
return result;
}
Inside this method I use another service method which is called update:
#Transactional(propagation = Propagation.REQUIRES_NEW)
public Board update(Board board, Date finishedDate, Integer status) {
board.setStatus(status);
board.setFinishedDate(finishedDate);
return boardRepository.save(board);
}
I need to commit changes to database in update method independently of the owner transaction which is started in validateBoard method. Right now any changes is rolling back in case of any exception.
Even with #Transactional(propagation = Propagation.REQUIRES_NEW) it doesn't work.
How to correctly do this with Spring and allow nested transactions ?
This documentation covers your problem - https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/data-access.html#transaction-declarative-annotations
In proxy mode (which is the default), only external method calls coming in through the proxy are intercepted. This means that self-invocation, in effect, a method within the target object calling another method of the target object, will not lead to an actual transaction at runtime even if the invoked method is marked with #Transactional. Also, the proxy must be fully initialized to provide the expected behaviour so you should not rely on this feature in your initialization code, i.e. #PostConstruct.
However, there is an option to switch to AspectJ mode
Using "self" inject pattern you can resolve this issue.
sample code like below:
#Service #Transactional
public class YourService {
//... your member
#Autowired
private YourService self; //inject proxy as an instance member variable ;
#Transactional(propagation= Propagation.REQUIRES_NEW)
public void methodFoo() {
//...
}
public void methodBar() {
//call self.methodFoo() rather than this.methodFoo()
self.methodFoo();
}
}
The point is using "self" rather than "this".
The basic thumb rule in terms of nested Transactions is that they are completely dependent on the underlying database, i.e. support for Nested Transactions and their handling is database dependent and varies with it.
In some databases, changes made by the nested transaction are not seen by the 'host' transaction until the nested transaction is committed. This can be achieved using Transaction isolation in #Transactional (isolation = "")
You need to identify the place in your code from where an exception is thrown, i.e. from the parent method: "validateBoard" or from the child method: "update".
Your code snippet shows that you are explicitly throwing the exceptions.
YOU MUST KNOW::
In its default configuration, Spring Framework’s transaction
infrastructure code only marks a transaction for rollback in the case
of runtime, unchecked exceptions; that is when the thrown exception is
an instance or subclass of RuntimeException.
But #Transactional never rolls back a transaction for any checked exception.
Thus, Spring allows you to define
Exception for which transaction should be rollbacked
Exception for which transaction shouldn't be rollbacked
Try annotating your child method: update with #Transactional(no-rollback-for="ExceptionName") or your parent method.
Your transaction annotation in update method will not be regarded by Spring transaction infrastructure if called from some method of same class. For more understanding on how Spring transaction infrastructure works please refer to this.
Your problem is a method's call from another method inside the same proxy.It's self-invocation.
In your case, you can easily fix it without moving a method inside another service (why do you need to create another service just for moving some method from one service to another just for avoid self-invocation?), just to call the second method not directly from current class, but from spring container. In this case you call proxy second method with transaction not with self-invocatio.
This principle is useful for any proxy-object when you need self-invocation, not only a transactional proxy.
#Service
class SomeService ..... {
-->> #Autorired
-->> private ApplicationContext context;
-->> //or with implementing ApplicationContextAware
#Transactional(any propagation , it's not important in this case)
public boolean methodOne(SomeObject object) {
.......
-->> here you get a proxy from context and call a method from this proxy
-->>context.getBean(SomeService.class).
methodTwo(object);
......
}
#Transactional(any propagation , it's not important in this case)public boolean
methodTwo(SomeObject object) {
.......
}
}
when you do call context.getBean(SomeService.class).methodTwo(object); container returns proxy object and on this proxy you can call methodTwo(...) with transaction.
You could create a new service (CustomTransactionalService) that will run your code in a new transaction :
#Service
public class CustomTransactionalService {
#Transactional(propagation= Propagation.REQUIRES_NEW)
public <U> U runInNewTransaction(final Supplier<U> supplier) {
return supplier.get();
}
#Transactional(propagation= Propagation.REQUIRES_NEW)
public void runInNewTransaction(final Runnable runnable) {
runnable.run();
}
}
And then :
#Service
public class YourService {
#Autowired
private CustomTransactionalService customTransactionalService;
#Transactional
public boolean validateBoard(Board board) {
// ...
}
public Board update(Board board, Date finishedDate, Integer status) {
this.customTransactionalService.runInNewTransaction(() -> {
// ...
});
}
}

Adding #Transactional causes "collection with cascade="all-delete-orphan" was no longer referenced"

I am upgrading a working project from Spring2+Hibernate3 to Spring3+Hibernate4. Since HibernateTemplate and HibernateDAOSupport have been retired, I did the following
Before (simplified)
public List<Object> loadTable(final Class<?> cls)
{
Session s = getSession(); // was calling the old Spring getSession
Criteria c = s.createCriteria(cls);
List<Object> objects = c.list();
if (objects == null)
{
objects = new ArrayList<Object>();
}
closeSession(s);
return objects;
}
Now (simplified)
#Transactional(propagation=Propagation.REQUIRED)
public List<Object> loadTable(final Class<?> cls)
{
Session s = sessionFactory.getCurrentSession();
Criteria c = s.createCriteria(cls);
List<Object> objects = c.list();
if (objects == null)
{
objects = new ArrayList<Object>();
}
return objects;
}
I also added the transaction annotation declaration to Spring XML and removed this from Hibernate properties
"hibernate.current_session_context_class", "org.hibernate.context.ThreadLocalSessionContext"
The #Transactional annotation seems to have worked as I see this in the stacktrace
at com.database.spring.DatabaseDAOImpl$$EnhancerByCGLIB$$7d20ef95.loadTable(<generated>)
During initialization, the changes outlined above seem to work for a few calls to the loadTable function but when it gets around to loading an entity with a parent, I get the "collection with cascade="all-delete-orphan" was no longer referenced" error. Since I have not touched any other code that sets/gets parents or children and am only trying to fix the DAO method, and the query is only doing a sql SELECT, can anyone see why the code got broken?
The problem seems similar to Spring transaction management breaks hibernate cascade
This is unlikely problem of Spring, but rather issue with your entity handling / definition. When you are using deleteOrphans on a relation, the underlying PersistentSet MUST NOT be removed from the entity itself. You are allowed only to modify the set instance itself. So if you are trying to do anything clever within your entity setters, that is the cause.
Also as far as I remember there are some issues when you have deleteOrphans on both sides of the relation and/or load/manipulate both sides within one session.
Btw. I don't think "hibernate.current_session_context_class", "org.hibernate.context.ThreadLocalSessionContext" is necessary. In our project, this is the only configuration we have:
#Bean
public LocalSessionFactoryBuilder sessionFactoryBuilder() {
return ((LocalSessionFactoryBuilder) new LocalSessionFactoryBuilder(
dataSourceConfig.dataSource()).scanPackages(ENTITY_PACKAGES).
setProperty("hibernate.id.new_generator_mappings", "true").
setProperty("hibernate.dialect", dataSourceConfig.dialect()).
setProperty("javax.persistence.validation.mode", "none"));
}
#Bean
public SessionFactory sessionFactory() {
return sessionFactoryBuilder().buildSessionFactory();
}
The issue was with Session Management. The same block of transactional code was being called by other modules that were doing their own session handling. To add to our woes, some of the calling modules were Spring beans while others were written in direct Hibernate API style. This disorganization was sufficient work to keep us away from moving up to Hibernate 4 immediately.
Moral of the lesson (how do you like that English?): Use a consistent DAO implementation across the entire project and stick to a clearly defined session and transaction management strategy.

Resources