Lists traversal in Scheme - scheme

myList is a list with elements both as symbols or lists of the same type of myList.
For example: myList = '(a b (a d c) d ()) , etc.
I want to write a function in Scheme which would just traverse it (eventually I will replace the symbols with other values).
I wrote this function:
(define traversal (lambda (myList)
(if (null? myList) '()
(if (and (list? (car myList)) (not (null? (car myList))))
(list (traversal (car myList)) (traversal (cdr myList)))
; else if car is an empty list
(if (null? (car myList))
(list (traversal (cdr myList)))
; else car is a symbol
(append (list (car myList)) (traversal (cdr myList))))))))
It gives correct results for some configuration of myList, but definitely it is not the one.
For example,
(display (traversal '((f) h (r t b) (x m b m y) b (c (d)))))
adds additional paranthesis which I don't need.
What would be a correct way to display such a list?

You're testing null? in so many places, where one test is generally enough.
You rarely use list in these traversals, but simply cons.
Also, append is best avoided, and not needed here.
Repetitive use of (car ...) is optimised with a let form.
The simplified form of your code would be:
(define traversal
(lambda (myList)
(if (null? myList)
'()
(let ((c (car myList)))
(cons (if (list? c) (traversal c) c)
(traversal (cdr myList)))))))
EDIT
While this procedure works well for proper lists, it doesn't correctly work for improper lists (although it appears to). The following is a more general approach that works for every kind of S-expression, including proper lists, and I recommend this over the previous code:
(define traversal
(lambda (sexp)
(cond
((null? sexp) '())
((pair? sexp) (cons (traversal (car sexp))
(traversal (cdr sexp))))
(else sexp))))

You are close to the solution. Here are a few hints:
Instead of nested ifs try using the cond form, it is more readable.
The expression (and (list? (car myList)) (not (null? (car myList)))) is correct, but you may use (pair? (car myList)) which is shorter and does almost the same thing.
traversal should return a list but using list with list arguments here
(list (traversal (car myList)) (traversal (cdr myList)))
will return a list of lists. E.g. (list '(a) '(b)) will return ((a) (b)) instead of (a b). In these cases you should use append (append '(a) '(b)) -> (a b).
If a value is not a list but you want to add it to an existing list, use the cons procedure.
(cons 'a '(b c)) -> (a b c).

Related

Scheme and Merge Sort?

I was assigned to write a merge sort in Scheme but I have some issues with it. I showed it my professor and he said there is one simple mistake. Can someone help me?
Plzz!
(define msort
(lamdba(1st)
(cond
((null?? 1st) 1st)
((null? (cdr 1st)) 1st)
(#t ((letrec ((half (quotient (lenght 1st) 2))
(merge (lamdba (a b result)
(cond ((null? a) (apped (reserve a) result))
((null? b) (append (reserve a) result))
((> (car a) (car b) (merge a (cdr b) (cons (car b) result))
(#t (merge (cdr a) b (cons (car a) result)))))))
(merge (msort (take 1st half)) (msort (drop 1st half)) '()))))))
One simple mistake? He probably referred to #1, but even after fixing that you have some identifiers and parenthesis to fix:
lambda, null?, length, append, and reverse is spelled incorrectly.
letrec result gets applied since you have excess parenthesis around it.
cond in merge where you compare elements are missing parenthesis two places.
It's obvious you need help with parenthesis matching so you should download a decent IDE to write code in. I use DrRacket for Scheme development (#!R5RS, #!R6RS and #!racket) and it idents (just press CTRL+i to get it reidented after pasting in code) and indicate where function names are written wrong when you hit RUN.
Making merge a global function in the beginning and perhaps move it to a letrec later (if you have to) might ease development. Eg. you could find errors by testing stuff like (merge '(3 2 1) '()).
This is no guarantee the program will work since I only address syntax here. You need to debug it! DrRacket has a debugger too!
I think it is useful to implement first a function that allow to merge two ordered lists:
(define (merge l1 l2)
(if (empty? l1)
l2
(if (empty? l2)
l1
(if (< (car l1) (car l2))
(cons (car l1) (merge (cdr l1) l2))
(cons (car l2) (merge l1 (cdr l2)))))))
Now assume we have a function (get ls pos) capable to return the element of ls in position pos:
(define (get ls pos)
(if (= pos 1)
(car ls)
(get (cdr ls) (- pos 1))))
Finally, we can implement mergesort function:
(define (mergesort l p r)
(if (= p r)
(cons (get l p) empty)
(merge (mergesort l p (floor (/ (+ p r) 2))) (mergesort l (+ (floor (/ (+ p r) 2)) 1) r))))

Flatten once procedure

I'm having a bit of a struggle with coding a procedure that flattens a list once, i.e
(flatten-once '((b) (c f) ((d)(e)))) would produce '(b c f (d) (e))). I checked up on a few sources on how the standard flatten procedure works but it implements functions that are not included in the intermediate student with lambda language form I'm required to use. As far as I have it figured out a foldr would be somewhat helpful and have managed to get this
(define (flatten-once lst)
(cond
[(empty? lst) lst]
[else
((foldr cons (first (rest lst)) (first lst)))]))
which returns '(b c f) , so I guess it flattens part of the list. I tried continuing the definition through recursion but that just gives errors, so I guess I'm missing something.
The proposed code is overly complicated, resist the temptation to use folds everywhere, they're not the answer to everything - I say this because I've seen other of your questions and frequently, there's an unnecessary call to foldr or foldl. A simple append will do the trick:
(define (flatten-once lst)
(apply append lst))
It works as expected:
(flatten-once '((b) (c f) ((d)(e))))
=> '(b c f (d) (e))
If the input list contains elements which are not lists, then a bit more of work needs to be done. To be extra-careful, we can do this:
(define (flatten-once lst)
(apply append
(map (lambda (e) (if (cons? e) e (list e)))
lst)))
Now it'll work for inputs such as this one, noticing that the element a was added to the list. Another alternative would be to delete it from the list, if that makes more sense then replace (list e) with '() in the code above.
(flatten-once '(a (b) (c f) ((d)(e))))
=> '(a b c f (d) (e))
Finally, in the spirit of #Alex's answer, this second variant can also be written using foldr:
(define (flatten-once lst)
(foldr (lambda (e acc)
(append (if (cons? e) e (list e)) acc))
'()
lst))
The trick is as Óscar López already said, to use append.
If you want to use a solution with foldr :
(define (flatten-once lst)
(foldr append '() lst))
It should work as expected.
Less elegant that Oscar's version, but without append (and twice as fast in my tests):
(define (flatten-once lst)
(reverse
(let loop ((lst lst) (first #t) (res null))
(if (null? lst)
res
(let ((e (car lst)))
(loop (cdr lst)
first
(if (and first (cons? e))
(loop e #f res)
(cons e res))))))))
NB in intermediate student with lambda language this needs to be expressed as:
(define (flatten-once-helper lst first res)
(if (null? lst)
res
(let ((e (car lst)))
(flatten-once-helper
(cdr lst)
first
(if (and first (cons? e))
(flatten-once-helper e #f res)
(cons e res))))))
(define (flatten-once lst)
(reverse (flatten-once-helper lst #t null)))

Deep-reverse for trees in Scheme (Lisp)

I have a deep reverse for a basic tree data structure in Scheme
(define (deep-reverse t)
(cond ((null? t) '())
((not (pair? t)) t)
(else (cons (deep-reverse (cdr t)) (deep-reverse (car t))))))
(define stree (cons (list 1 2) (list 3 4)))
1 ]=> (deep-reverse stree)
;Value: (((() . 4) . 3) (() . 2) . 1)
I feel like a cleaner, better result would be:
(4 3 (2 1))
Can anyone provide some guidance as to where I'm going wrong in my deep-reverse function? Thank you.
It's better to split the task into simple operations instead of trying to do all at once. What you want to achieve can be described like this: Reverse the current list itself, then deep-reverse all sublists in it (or the other way round, the order of the two steps doesn't really matter. I choose this order because it results in nicer formatting of the source code).
Now, there already is a function in the standard library for simply reversing a list, reverse. So all you need to do is to combine that with the recursion on those elements that are sublists:
(define (deep-reverse t)
(map (lambda (x)
(if (list? x)
(deep-reverse x)
x))
(reverse t)))
Try this:
(define (deep-reverse t)
(let loop ((t t)
(acc '()))
(cond ((null? t) acc)
((not (pair? t)) t)
(else (loop (cdr t)
(cons (loop (car t) '()) acc))))))
Call it like this:
(define stree (cons (list 1 2) (list 3 4)))
(deep-reverse stree)
> (4 3 (2 1))
For creating a reversed list, one technique is to accumulate the answer in a parameter (I usually call it acc). Since we're operating on a list of lists, the recursion has to be called on both the car and the cdr part of the list. Lastly, I'm using a named let as a shorthand for avoiding the creation of an extra function, but the same result could be obtained by defining a helper function with two parameters, the tree and the accumulator:
(define (deep-reverse t)
(aux t '()))
(define (aux t acc)
(cond ((null? t) acc)
((not (pair? t)) t)
(else (aux (cdr t)
(cons (aux (car t) '()) acc)))))
I think it better to reverse a list based on its element count:
an empty list is reverse, a single element list is also reverted, more than 1 element is concatenation of the reverse of tail and head.
(defun deep-reverse (tree)
(cond ((zerop (length tree)) nil)
((and (= 1 (length tree)) (atom (car tree))) tree)
((consp (car tree)) (append (deep-reverse (cdr tree))
(list (deep-reverse (car tree)))))
(t (append (deep-reverse (cdr tree)) (list (car tree))))))
The following worked for me:
(define (deep-reverse tree)
(define (deep-reverse-iter items acc)
(cond
((null? items) acc)
((not (pair? items)) items)
(else (deep-reverse-iter
(cdr items)
(cons (deep-reverse (car items)) acc)))))
(deep-reverse-iter tree ()))
(define x (list (list 1 2) (list 3 4 (list 5 6))))
(newline)
(display (deep-reverse x))
It prints (((6 5) 4 3) (2 1)) as expected and uses the minimum of standard library functions: pair? to check if the tree is a cons and null? to check for an empty tree/list.
This solution for trees is a generalization of the reverse function for lists:
(define (reverse items)
(define (reverse-iter items acc)
(cond
((null? items) acc)
((not (pair? items)) items)
(else (reverse-iter (cdr items) (cons (car items) acc)))))
(reverse-iter items ()))
the difference being that deep-reverse is also applied to car items

Help explaining how `cons` in Scheme work?

This is the function that removes the last element of the list.
(define (remove-last ll)
(if (null? (cdr ll))
'()
(cons (car ll) (remove-last (cdr ll)))))
So from my understanding if we cons a list (eg. a b c with an empty list, i.e. '(), we should get
a b c. However, testing in interaction windows (DrScheme), the result was:
If (cons '() '(a b c))
(() a b c)
If (cons '(a b c) '())
((a b c))
I'm like what the heck :(!
Then I came back to my problem, remove all elements which have adjacent duplicate. For example,
(a b a a c c) would be (a b).
(define (remove-dup lst)
(cond ((null? lst) '())
((null? (cdr lst)) (car lst))
((equal? (car lst) (car (cdr lst))) (remove-dup (cdr (cdr lst))))
(else (cons (car lst) (car (cdr lst))))
)
)
It was not correct, however I realize the answer have a . between a b. How could this happen?
`(a . b)`
There was only one call to cons in my code above, I couldn't see which part could generate this .. Any idea?
Thanks,
cons build pairs, not lists. Lisp interpreters uses a 'dot' to visually separate the elements in the pair. So (cons 1 2) will print (1 . 2). car and cdr respectively return the first and second elements of a pair. Lists are built on top of pairs. If the cdr of a pair points to another pair, that sequence is treated as a list. The cdr of the last pair will point to a special object called null (represented by '()) and this tells the interpreter that it has reached the end of the list. For example, the list '(a b c) is constructed by evaluating the following expression:
> (cons 'a (cons 'b (cons 'c '())))
(a b c)
The list procedure provides a shortcut for creating lists:
> (list 'a 'b 'c)
(a b c)
The expression (cons '(a b c) '()) creates a pair whose first element is a list.
Your remove-dup procedure is creating a pair at the else clause. Instead, it should create a list by recursively calling remove-dup and putting the result as the second element of the pair. I have cleaned up the procedure a bit:
(define (remove-dup lst)
(if (>= (length lst) 2)
(if (eq? (car lst) (cadr lst))
(cons (car lst) (remove-dup (cddr lst)))
(cons (car lst) (remove-dup (cdr lst))))
lst))
Tests:
> (remove-dup '(a b c))
(a b c)
> (remove-dup '(a a b c))
(a b c)
> (remove-dup '(a a b b c c))
(a b c)
Also see section 2.2 (Hierarchical Data and the Closure Property) in SICP.
For completeness, here is a version of remove-dup that removes all identical adjacent elements:
(define (remove-dup lst)
(if (>= (length lst) 2)
(let loop ((f (car lst)) (r (cdr lst)))
(cond ((and (not (null? r))(eq? f (car r)))
(loop f (cdr r)))
(else
(cons (car lst) (remove-dup r)))))
lst))
Here in pseudocode:
class Pair {
Object left,
Object right}.
function cons(Object left, Object right) {return new Pair(left, right)};
So,
1. cons('A,'B) => Pair('A,'B)
2. cons('A,NIL) => Pair('A,NIL)
3. cons(NIL,'A) => Pair(NIL,'A)
4. cons('A,cons('B,NIL)) => Pair('A, Pair('B,NIL))
5. cons(cons('A 'B),NIL)) => Pair(Pair('A,'B),NIL)
Let's see lefts and rights in all cases:
1. 'A and 'B are atoms, and whole Pair is not a list, so (const 'a 'b) gives (a . b) in scheme
2. NIL is an empty list and 'A is an atom, (cons 'a '()) gives list (a)
3. NIL and 'A as above, but as left is list(!), (cons '() 'a) gives pair (() . a)
4. Easy case, we have proper list here (a b).
5. Proper list, head is pair (a . b), tail is empty.
Hope, you got the idea.
Regarding your function. You working on LIST but construct PAIRS.
Lists are pairs (of pairs), but not all pairs are lists! To be list pair have to have NIL as tail.
(a b) pair & list
(a . b) pair not list
Despite cons, your function has errors, it just don't work on '(a b a a c c d). As this is not related to your question, I will not post fix for this here.

how to define last in scheme?

how can I write a function to take the last element of the list?
find the last of a list:
(define (last l)
(cond ((null? (cdr l)) (car l))
(else (last (cdr l)))))
use map to map last to a list:
(map last '((a b) (c d) (e f)))
==> (b d f)
so a new function:
(define (last-list l)
(map last l)
)
(last-list '((a b) (c d) (e f)))
==> (b d f)
May not be the most efficient, but certainly one of the simplest:
(define (last lst)
(car (reverse lst)))
Examples:
(last '(1 2 3 4)) => 4
(last '((a b) (b c) (d e))) => (d e)
The code you've written - to take the last element of a list - is correctly returning the last element of the list. You have a list of lists. There is an outer list
(x y z)
where
x = (a b)
y = (c d)
z = (e f)
So you're getting the last element of the list, z, which is (e f)
Did you want your last function to do something different? If you want it to return the last element of the last nested list, you need to change your base case. Right now you return the car. Instead, you want to check if the car is a list and then call your nested-last function on that.
Make sense?
Your last function is good, but you have to think about what you want to do with it now.
You have a list of lists, and you want to take the last of all those.
So recurse down your list applying it each time:
(define (answer lst)
(cond ((null? (cdr l)) null)
(else (cons (last (car l)) (answer (cdr lst))))
Yet another possibility:
(define (last thelist)
(if
(null? (cdr thelist)) (car thelist)
(last (cdr thelist))))
(define (all-last lists) (map last lists))
Edit: just saw that you don't know map, and want a solution without it:
(define (all-last lists)
(if
(null? lists) `()
(cons (last (car lists)) (all-last (cdr lists)))))
As far as getting an empty list goes, I'd guess you're trying to use this map-like front-end with your original definition of last, whereas it's intended to work with the definition of last I gave above. Try the following definitions:
(define (last thelist) (if
(null? (cdr thelist)) (car thelist)
(last (cdr thelist))))
(define (all-last lists) (if
(null? lists) `()
(cons (last (car lists)) (all-last (cdr lists)))))
and running a quick test:
(all-last `((a b) (c d) (e f)))
The result should be:
(b d f)
(define last
(lambda (ls)
(list-ref ls (- (length ls) 1))))
I like short, sweet, fast, tail-recursive procedures.
Named let is my friend.
This solves the original problem and returns #f if the list has no last element.
(define (last L) (let f ((last #f) (L L)) (if (empty? L) last (f (car L) (cdr L)))))
The best way to get what you want:
(define (last lst)
(cond [(empty? lst) empty]
[(empty? (rest lst)) (first lst)]
[else (last (rest lst))]))

Resources