BiConsumer cannot modify argument - java-8

I implemented a Collector for a java 8 stream that will store Entities to a Repository when a given threshold is hit.
public BiConsumer<Tuple2<Integer,List<T>>, T> accumulator() {
return (tuple, e) -> {
List<T> list = tuple._2;
list.add(e);
if (list.size() >= this.threshold) {
this.repository.save(list);
this.repository.flush();
list = new LinkedList<>();
}
tuple = new Tuple2<>(tuple._1 + 1, list);
};
}
This does not work as intended. The the Element e is added to the list but is not reset after the threshold is reached. Also Integer stays at 0 which is to be expected since its a final member.
As it seems my only option is to make my Tuple2 mutable and empty the List :-(
Any suggestions how to solve this using immutable tuples?

A lambda expression can be thought of as a function (or method) that simply doesn't have a name. In this example it would be like a method that has two formal parameters tuple and e and also some local variables within its body, including list.
When you make an assignment to a formal parameter or to a local variable, that assignment is local to the current method (or lambda body). No mutation or side effects will be visible to the outside after the accumulator returns, so these assignments won't affect the data structure you're collecting into.
I'm not entirely sure what you're trying to do, but instead of using a tuple (which presumably is immutable and must be replaced instead of mutated) you might try writing an ordinary, mutable class that contains an integer counter (or whatever) and a list. The accumulator would add to the list, conditionally flush and replace the list, and increment the counter. These mutative operations are allowed in collectors because the collector framework carefully thread-confines these operations, so the object you're mutating doesn't need to be thread-safe.

Related

Removing a std::function<()> from a vector c++

I'm building a publish-subscribe class (called SystermInterface), which is responsible to receive updates from its instances, and publish them to subscribers.
Adding a subscriber callback function is trivial and has no issues, but removing it yields an error, because std::function<()> is not comparable in C++.
std::vector<std::function<void()> subs;
void subscribe(std::function<void()> f)
{
subs.push_back(f);
}
void unsubscribe(std::function<void()> f)
{
std::remove(subs.begin(), subs.end(), f); // Error
}
I've came down to five solutions to this error:
Registering the function using a weak_ptr, where the subscriber must keep the returned shared_ptr alive.
Solution example at this link.
Instead of registering at a vector, map the callback function by a custom key, unique per callback function.
Solution example at this link
Using vector of function pointers. Example
Make the callback function comparable by utilizing the address.
Use an interface class (parent class) to call a virtual function.
In my design, all intended classes inherits a parent class called
ServiceCore, So instead of registering a callback function, just
register ServiceCore reference in the vector.
Given that the SystemInterface class has a field attribute per instance (ID) (Which is managed by ServiceCore, and supplied to SystemInterface by constructing a ServiceCore child instance).
To my perspective, the first solution is neat and would work, but it requires handling at subscribers, which is something I don't really prefer.
The second solution would make my implementation more complex, where my implementation looks as:
using namespace std;
enum INFO_SUB_IMPORTANCE : uint8_t
{
INFO_SUB_PRIMARY, // Only gets the important updates.
INFO_SUB_COMPLEMENTARY, // Gets more.
INFO_SUB_ALL // Gets all updates
};
using CBF = function<void(string,string)>;
using INFO_SUBTREE = map<INFO_SUB_IMPORTANCE, vector<CBF>>;
using REQINF_SUBS = map<string, INFO_SUBTREE>; // It's keyed by an iterator, explaining it goes out of the question scope.
using INFSRC_SUBS = map<string, INFO_SUBTREE>;
using WILD_SUBS = INFO_SUBTREE;
REQINF_SUBS infoSubrs;
INFSRC_SUBS sourceSubrs;
WILD_SUBS wildSubrs;
void subscribeInfo(string info, INFO_SUB_IMPORTANCE imp, CBF f) {
infoSubrs[info][imp].push_back(f);
}
void subscribeSource(string source, INFO_SUB_IMPORTANCE imp, CBF f) {
sourceSubrs[source][imp].push_back(f);
}
void subscribeWild(INFO_SUB_IMPORTANCE imp, CBF f) {
wildSubrs[imp].push_back(f);
}
The second solution would require INFO_SUBTREE to be an extended map, but can be keyed by an ID:
using KEY_T = uint32_t; // or string...
using INFO_SUBTREE = map<INFO_SUB_IMPORTANCE, map<KEY_T,CBF>>;
For the third solution, I'm not aware of the limitations given by using function pointers, and the consequences of the fourth solution.
The Fifth solution would eliminate the purpose of dealing with CBFs, but it'll be more complex at subscriber-side, where a subscriber is required to override the virtual function and so receives all updates at one place, in which further requires filteration of the message id and so direct the payload to the intended routines using multiple if/else blocks, which will increase by increasing subscriptions.
What I'm looking for is an advice for the best available option.
Regarding your proposed solutions:
That would work. It can be made easy for the caller: have subscribe() create the shared_ptr and corresponding weak_ptr objects, and let it return the shared_ptr.
Then the caller must not lose the key. In a way this is similar to the above.
This of course is less generic, and then you can no longer have (the equivalent of) captures.
You can't: there is no way to get the address of the function stored inside a std::function. You can do &f inside subscribe() but that will only give you the address of the local variable f, which will go out of scope as soon as you return.
That works, and is in a way similar to 1 and 2, although now the "key" is provided by the caller.
Options 1, 2 and 5 are similar in that there is some other data stored in subs that refers to the actual std::function: either a std::shared_ptr, a key or a pointer to a base class. I'll present option 6 here, which is kind of similar in spirit but avoids storing any extra data:
Store a std::function<void()> directly, and return the index in the vector where it was stored. When removing an item, don't std::remove() it, but just set it to std::nullptr. Next time subscribe() is called, it checks if there is an empty element in the vector and reuses it:
std::vector<std::function<void()> subs;
std::size_t subscribe(std::function<void()> f) {
if (auto it = std::find(subs.begin(), subs.end(), std::nullptr); it != subs.end()) {
*it = f;
return std::distance(subs.begin(), it);
} else {
subs.push_back(f);
return subs.size() - 1;
}
}
void unsubscribe(std::size_t index) {
subs[index] = std::nullptr;
}
The code that actually calls the functions stored in subs must now of course first check against std::nullptrs. The above works because std::nullptr is treated as the "empty" function, and there is an operator==() overload that can check a std::function against std::nullptr, thus making std::find() work.
One drawback of option 6 as shown above is that a std::size_t is a rather generic type. To make it safer, you might wrap it in a class SubscriptionHandle or something like that.
As for the best solution: option 1 is quite heavy-weight. Options 2 and 5 are very reasonable, but 6 is, I think, the most efficient.

How to return the count, while using nested foreach loops in the stream

I am using java8 streams to iterate two lists, In that one list contains some custom objects and another contains string.
With this, I have to call a method by passing custom object and sting as a input and then I have to get the count.
This is what I tried:
public int returnCode() {
/*int count = 0;
* list.forEach(x -> {
list2.forEach(p -> {
count+ = myDao.begin(conn, x.getCode(), p);
});
return count;
});*/
}
compiler is giving an error that count should be final.
Can anyone, give me how to do this in a better way.
What you're attempting to do is not possible as local variables accessed from a lambda must be final or effectively final i.e. any variable whose value does not change.
You're attempting to change the value of count in the lambda passed to the forEach hence the compilation error.
To replicate your exact code using the stream API, it would be:
int count = list.stream()
.limit(1)
.flatMapToInt(x -> list2.stream().mapToInt(p -> myDao.begin(conn, x.getCode(), p)))
.sum();
However, if you want to iterate over the entire sequence in list and not just the first then you can proceed with the following:
int count = list.stream()
.flatMapToInt(x -> list2.stream().mapToInt(p -> myDao.begin(conn, x.getCode(), p)))
.sum();
Lambdas mainly substitutes anonymous inner classes. Inside an anonymous inner class you can access only final local variables. Hence the same holds true with lambda expressions. Local variable is copied when JVM creates a lambda instance, hence it is counter intuitive to allow any update to them. So declaring the variable as final would solve the issue. But if you make it final you won't be able to do this, leading to another pitfall.
count+ = myDao.begin(conn, x.getCode(), p);
So your solution is not good and does not comply with lambda. So this will be a one way of doing it.
final int count = customObjects.stream()
.mapToInt(co -> strings.stream().mapToInt(s -> myDao.begin(conn, co.getCode(), s)).sum())
.sum();

Kotlin Instantiate Immutable List

I've started using Kotlin as a substitute for java and quite like it. However, I've been unable to find a solution to this without jumping back into java-land:
I have an Iterable<SomeObject> and need to convert it to a list so I can iterate through it more than once. This is an obvious application of an immutable list, as all I need to do is read it several times. How do I actually put that data in the list at the beginning though? (I know it's an interface, but I've been unable to find an implementation of it in documentation)
Possible (if unsatisfactory) solutions:
val valueList = arrayListOf(values)
// iterate through valuelist
or
fun copyIterableToList(values: Iterable<SomeObject>) : List<SomeObject> {
var outList = ArrayList<SomeObject>()
for (value in values) {
outList.add(value)
}
return outList
}
Unless I'm misunderstanding, these end up with MutableLists, which works but feels like a workaround. Is there a similar immutableListOf(Iterable<SomeObject>) method that will instantiate an immutable list object?
In Kotlin, List<T> is a read-only list interface, it has no functions for changing the content, unlike MutableList<T>.
In general, List<T> implementation may be a mutable list (e.g. ArrayList<T>), but if you pass it as a List<T>, no mutating functions will be exposed without casting. Such a list reference is called read-only, stating that the list is not meant to be changed. This is immutability through interfaces which was chosen as the approach to immutability for Kotlin stdlib.
Closer to the question, toList() extension function for Iterable<T> in stdlib will fit: it returns read-only List<T>.
Example:
val iterable: Iterable<Int> = listOf(1, 2, 3)
val list: List<Int> = iterable.toList()

Equivalent of enumerators in C++11?

In C#, you can define a custom enumeration very trivially, eg:
public IEnumerable<Foo> GetNestedFoos()
{
foreach (var child in _SomeCollection)
{
foreach (var foo in child.FooCollection)
{
yield return foo;
}
foreach (var bar in child.BarCollection)
{
foreach (var foo in bar.MoreFoos)
{
yield return foo;
}
}
}
foreach (var baz in _SomeOtherCollection)
{
foreach (var foo in baz.GetNestedFoos())
{
yield return foo;
}
}
}
(This can be simplified using LINQ and better encapsulation but that's not the point of the question.)
In C++11, you can do similar enumerations but AFAIK it requires a visitor pattern instead:
template<typename Action>
void VisitAllFoos(const Action& action)
{
for (auto& child : m_SomeCollection)
{
for (auto& foo : child.FooCollection)
{
action(foo);
}
for (auto& bar : child.BarCollection)
{
for (auto& foo : bar.MoreFoos)
{
action(foo);
}
}
}
for (auto& baz : m_SomeOtherCollection)
{
baz.VisitAllFoos(action);
}
}
Is there a way to do something more like the first, where the function returns a range that can be iterated externally rather than calling a visitor internally?
(And I don't mean by constructing a std::vector<Foo> and returning it -- it should be an in-place enumeration.)
I am aware of the Boost.Range library, which I suspect would be involved in the solution, but I'm not particularly familiar with it.
I'm also aware that it's possible to define custom iterators to do this sort of thing (which I also suspect might be involved in the answer) but I'm looking for something that's easy to write, ideally no more complicated than the examples shown here, and composable (like with _SomeOtherCollection).
I would prefer something that does not require the caller to use lambdas or other functors (since that just makes it a visitor again), although I don't mind using lambdas internally if needed (but would still prefer to avoid them there too).
If I'm understanding your question correctly, you want to perform some action over all elements of a collection.
C++ has an extensive set of iterator operations, defined in the iterator header. Most collection structures, including the std::vector that you reference, have .begin and .end methods which take no arguments and return iterators to the beginning and the end of the structure. These iterators have some operations that can be performed on them manually, but their primary use comes in the form of the algorithm header, which defines several very useful iteration functions.
In your specific case, I believe you want the for_each function, which takes a range (as a beginning to end iterator) and a function to apply. So if you had a function (or function object) called action and you wanted to apply it to a vector called data, the following code would be correct (assuming all necessary headers are included appropriately):
std::for_each(data.begin(), data.end(), action);
Note that for_each is just one of many functions provided by the algorithm header. It also provides functions to search a collection, copy a set of data, sort a list, find a minimum/maximum, and much more, all generalized to work over any structure that has an iterator. And if even these aren't enough, you can write your own by reading up on the operations supported on iterators. Simply define a template function that takes iterators of varying types and document what kind of iterator you want.
template <typename BidirectionalIterator>
void function(BidirectionalIterator begin, BidirectionalIterator end) {
// Do something
}
One final note is that all of the operations mentioned so far also operate correctly on arrays, provided you know the size. Instead of writing .begin and .end, you write + 0 and + n, where n is the size of the array. The trivial zero addition is often necessary in order to decay the type of the array into a pointer to make it a valid iterator, but array pointers are indeed random access iterators just like any other container iterator.
What you can do is writing your own adapter function and call it with different ranges of elements of the same type.
This is a non tested solution, that will probably needs some tweaking to make it compile,but it will give you an idea. It uses variadic templates to move from a collection to the next one.
template<typename Iterator, Args...>
visitAllFoos(std::pair<Iterator, Iterator> collection, Args&&... args)
{
std::for_each(collection.first, collection.second, {}(){ // apply action });
return visitAllFoos(std::forward<Args>(args)...);
}
//you can call it with a sequence of begin/end iterators
visitAllFoos(std::make_pair(c1.begin(), c1,end()), std::make_pair(c2.begin(), c2,end()))
I believe, what you're trying to do can be done with Boost.Range, in particular with join and any_range (the latter would be needed if you want to hide the types of the containers and remove joined_range from the interface).
However, the resulting solution would not be very practical both in complexity and performance - mostly because of the nested joined_ranges and type erasure overhead incurred by any_range. Personally, I would just construct std::vector<Foo*> or use visitation.
You can do this with the help of boost::asio::coroutine; see examples at https://pubby8.wordpress.com/2014/03/16/multi-step-iterators-using-coroutines/ and http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio/overview/core/coroutine.html.

How do I Extract a Method That Assigns Two Values?

Extract Method (a refactoring from Fowler's book) works great if your method doesn't assign any values. If it assigns one value, that becomes the return value of the extracted method. What if it assigns two values?
Some C# code to illustrate:
private void someBigFunction() {
doSomething();
doSomethingElse();
// start extraction here
string first = Database.Select(...);
// ...
// next is dependent on the value of "first"
int next = Database.Select(...);
// ...
// stop extraction here
doMoreUselessStuff();
}
The exact code or values are not important here. The point is extracting this method. (The two values are linked, so it makes sense to have them in the same method -- and not to make two methods.)
Possible answers to this question would be "return both in an array," "return them both in a pair-like data structure," or "use out parameters (pass by reference)" -- but I'm looking for something cleaner. (The actual code is in Delphi, not C#)
Perhaps Sprout Class is what you're looking for. Make the two members instance variables of a new class and extract this method into that class, assigning the instance variables and providing getters for the caller. Or, of course, you could convert the local variables to be instance variables of the original class. That conversion frequently makes Extract Method easier, but you wind up with what is arguably an excess of instance variables. With Sprout class, you have a class whose only purpose is to retrieve and provide those values, so there's no question that they deserve to be instance variables in it.

Resources