Building A Gaussian Blur? - filter

I am trying to write my own (or at least gain a better understanding of) Gaussian Blur filter using Python 2.7. I would really appreciate some direction. Everywhere else I have looked just uses built-ins...

You need to loop through each pixel in the image. At every pixel take weighted samples from its surroundings and sum them all together to new value of the pixel. So the code would look something like this:
for x in range(input.size[0]):
for y in range(input.size[1]):
result[x, y] = 0
result[x, y] += 0.01 * input[x-1, y+1] + 0.08 * input[x, y+1] + 0.01 * input[x+1, y+1]
result[x, y] += 0.08 * input[x-1, y ] + 0.64 * input[x, y ] + 0.08 * input[x+1, y ]
result[x, y] += 0.01 * input[x-1, y-1] + 0.08 * input[x, y-1] + 0.01 * input[x+1, y-1]
BUT in my code I'm not taking care of the edges of the image. This will result under and over indexing the image. There are at least three different easy ways how to take care of the edges:
You can decrease the range of the for loop so it doesn't blur the pixels on the edge and crop not blurred pixels out of the image after the blur.
You can make if statements in which you check that if you are on the edge of the image. On the edge you are not taking samples out of range and adjusting weights of the other pixels to sum to 1.0.
You can mirror the image to every side. This can be done by actually mirroring the image or by accessing pixels inside the image as far away of the edge as far the over indexing would have gone.
With the options 2 and 3 the edges are not as blurred as the center of the image. This is a minor issue if your sample window size is 3x3 but it can be visible with much bigger sample window sizes.
If you want to achieve good performance, you can try for example replacing the for loops with OpenCL or OpenGL launch and write the inner loop into OpenCL kernel or GLSL shader. These will result as many pixels as possible to be computed in parallel. These can be optimized even further by blurring first in horizontal axes and then in vertical axes, which reduces sample counts and should be faster with bigger sample windows.
About the same thing are explained with other words in this post.

Related

Calculate 3D distance based on change in intensity

I have three sections (top, mid, bot) of grayscale images (3D). In each section, I have a point with coordinates (x,y) and intensity values [0-255]. The distance between each section is 20 pixels.
I created an illustration to show how those images were generated using a microscope:
Illustration
Illustration (side view): red line is the object of interest. Blue stars represents the dots which are visible in top, mid, bot section. The (x,y) coordinates of these dots are known. The length of the object remains the same but it can rotate in space - 'out of focus' (illustration shows a rotating line at time point 5). At time point 1, the red line is resting (in 2D image: 2 dots with a distance equal to the length of the object).
I want to estimate the x,y,z-coordinate of the end points (represents as stars) by using the changes in intensity, the knowledge about the length of the object and the information in the sections I have. Any help would be appreciated.
Here is an example of images:
Bot section
Mid section
Top section
My 3D PSF data:
https://drive.google.com/file/d/1qoyhWtLDD2fUy2zThYUgkYM3vMXxNh64/view?usp=sharing
Attempt so far:
enter image description here
I guess the correct approach would be to record three images with slightly different z-coordinates for your bot and your top frame, then do a 3D-deconvolution (using Richardson-Lucy or whatever algorithm).
However, a more simple approach would be as I have outlined in my comment. If you use the data for a publication, I strongly recommend to emphasize that this is just an estimation and to include the steps how you have done it.
I'd suggest the following procedure:
Since I do not have your PSF-data, I fake some by estimating the PSF as a 3D-Gaussiamn. Of course, this is a strong simplification, but you should be able to get the idea behind it.
First, fit a Gaussian to the PSF along z:
[xg, yg, zg] = meshgrid(-32:32, -32:32, -32:32);
rg = sqrt(xg.^2+yg.^2);
psf = exp(-(rg/8).^2) .* exp(-(zg/16).^2);
% add some noise to make it a bit more realistic
psf = psf + randn(size(psf)) * 0.05;
% view psf:
%
subplot(1,3,1);
s = slice(xg,yg,zg, psf, 0,0,[]);
title('faked PSF');
for i=1:2
s(i).EdgeColor = 'none';
end
% data along z through PSF's center
z = reshape(psf(33,33,:),[65,1]);
subplot(1,3,2);
plot(-32:32, z);
title('PSF along z');
% Fit the data
% Generate a function for a gaussian distibution plus some background
gauss_d = #(x0, sigma, bg, x)exp(-1*((x-x0)/(sigma)).^2)+bg;
ft = fit ((-32:32)', z, gauss_d, ...
'Start', [0 16 0] ... % You may find proper start points by looking at your data
);
subplot(1,3,3);
plot(-32:32, z, '.');
hold on;
plot(-32:.1:32, feval(ft, -32:.1:32), 'r-');
title('fit to z-profile');
The function that relates the intensity I to the z-coordinate is
gauss_d = #(x0, sigma, bg, x)exp(-1*((x-x0)/(sigma)).^2)+bg;
You can re-arrange this formula for x. Due to the square root, there are two possibilities:
% now make a function that returns the z-coordinate from the intensity
% value:
zfromI = #(I)ft.sigma * sqrt(-1*log(I-ft.bg))+ft.x0;
zfromI2= #(I)ft.sigma * -sqrt(-1*log(I-ft.bg))+ft.x0;
Note that the PSF I have faked is normalized to have one as its maximum value. If your PSF data is not normalized, you can divide the data by its maximum.
Now, you can use zfromI or zfromI2 to get the z-coordinate for your intensity. Again, I should be normalized, that is the fraction of the intensity to the intensity of your reference spot:
zfromI(.7)
ans =
9.5469
>> zfromI2(.7)
ans =
-9.4644
Note that due to the random noise I have added, your results might look slightly different.

High Pass Butterworth Filter on images in MATLAB

I need to implement a high pass Butterworth filter in MATLAB for the purposes of image filtering. I have implemented one but it looks like it doesn't work. Here is the code I have written. Can anyone tell me what is wrong?
n=1;
d=50;
A=1.5;
im=imread('imagex.jpg');
h=size(im,1);
w=size(im,2);
[x y]=meshgrid(-floor(w/2):floor(w-1/2),-floor(h/2):floor(h-1/2));
hhp=(1./(d./(x.^2+y.^2).^0.5).^(2*n));
image_2Dfilter=fftshift(fft2(im));
Image_butterworth=image_2Dfilter;
imshow(Image_butterworth);
ifftshow(Image_butterworth);
For one thing, there is no such command called ifftshow. Secondly, you aren't filtering anything. All you're doing is visualizing the spectrum of the image.
In terms of visualizing the spectrum, how you're doing it right now is very dangerous. For one thing, you are visualizing the coefficients at each spatial frequency component which is complex-valued in nature. If you want to visualize the spectrum in a way that makes sense to most of us, it's better to take a look at either the magnitude or phase. However, because this is a Butterworth filter, it's best to apply it to the magnitude of the filter.
You can find the magnitude of the spectrum by using the abs function. Even when you do that, if you did imshow directly on the magnitude, you will get a visualization that is zero everywhere except for the middle. This is because the DC component is so large and the rest of the spectrum is small in comparison.
Let me show you an example. This is the cameraman image that is part of the image processing toolbox:
im = imread('cameraman.tif');
figure;
imshow(im);
Now, let's visualize the spectrum and ensuring that the DC component is in the centre of the image - you already did this with fftshift. It's also a good idea to cast the image to double to ensure the best precision of data. In addition, make sure you apply abs to find the magnitude:
fftim = fftshift(fft2(double(im)));
mag = abs(fftim);
figure;
imshow(mag, []);
As you can see, it's not very useful due to the reason that I mentioned. A better way to visualize the spectrum of the image is usually to apply a log transformation to the spectrum. This is also useful if you want to de-mean or remove the mean so that the dynamic range fits better for display. In other words, you would add 1 to the magnitude, then apply a logarithm to the magnitude so that higher values can taper off. It doesn't matter which base you use, so I'll just use the natural logarithm which is encapsulated by the log command:
figure;
imshow(log(1 + mag), []);
Now that's much better. Now we'll get onto your filtering mechanism. Your Butterworth filter is slightly incorrect. The meshgrid of coordinates is slightly wrong. The -1 operation that's at the ending interval needs to go outside:
[x y]=meshgrid(-floor(w/2):floor(w/2)-1,-floor(h/2):floor(h/2)-1);
Remember, you are defining a symmetric interval about the centre of the image, and what you had originally wasn't correct. I'd also like to mention that this looks like a high-pass filter, so the output should look like an edge detection. In addition, the definition of the Butterworth high pass filter is incorrect. The correct definition of the filter in frequency domain is:
D(u,v) is the distance from the centre of the image in frequency domain, Do is the cutoff distance while B is a controlling scale factor controlling what the desired gain would be at the cutoff distance. n is the order of the filter. Do in your case is d = 50. In practice, B = sqrt(2) - 1 so that at the cutoff distance of Do, D(u,v) = 1 / sqrt(2) = 0.707, which is the 3 dB cutoff frequency mostly seen in electronics circuit filters. Sometimes you'll see B being set to 1 for simplicity, but it's common to set this to B = sqrt(2) - 1.
However, your current code isn't doing any filtering. To filter in the frequency domain, you simply multiply the spectrum of the image with the spectrum of the filter itself. This is equivalent to convolution in the spatial domain. Once you do that, you simply undo the fftshift that was performed on the image, take the inverse FFT and then eliminate any imaginary components that are due to numerical imprecision. Also, let's cast to uint8 to make sure that we respect the original image type.
That can be done like so:
%// Your code with meshgrid fix
n=1;
d=50;
h=size(im,1);
w=size(im,2);
fftim = fftshift(fft2(double(im)));
[x y]=meshgrid(-floor(w/2):floor(w/2)-1,-floor(h/2):floor(h/2)-1);
%hhp=(1./(d./(x.^2+y.^2).^0.5).^(2*n));
%%%%%%// New code
B = sqrt(2) - 1; %// Define B
D = sqrt(x.^2 + y.^2); %// Define distance to centre
hhp = 1 ./ (1 + B * ((d ./ D).^(2 * n)));
out_spec_centre = fftim .* hhp;
%// Uncentre spectrum
out_spec = ifftshift(out_spec_centre);
%// Inverse FFT, get real components, and cast
out = uint8(real(ifft2(out_spec)));
%// Show image
imshow(out);
If you want to see what the filtered spectrum looks like, just do this:
figure;
imshow(log(1 + abs(out_spec_centre)), []);
We get:
This makes sense. You see that in the middle of the spectrum, it's slightly darker in comparison to the outer edges of the spectrum. That's because with the high-pass Butterworth filter, you are amplifying the higher frequency terms and it gets visualized to be a higher intensity.
Now, out contains your filtered image, and we finally get this:
That looks like a fine result! However, naively casting the image to uint8 truncates any negative values to 0 and any positive values greater than 255 to 255. Because this is an edge detection, you want to detect both the negative and positive transitions... so a good idea would be to normalize the output so that it ranges from [0,1], and then cast with uint8 after you multiply by 255. This way, no changes in the image get visualized to gray, negative changes get visualized as dark and positive changes get visualized as white.... so you'd do something like this:
%// Your code with meshgrid fix
n=1;
d=50;
h=size(im,1);
w=size(im,2);
fftim = fftshift(fft2(double(im)));
[x y]=meshgrid(-floor(w/2):floor(w/2)-1,-floor(h/2):floor(h/2)-1);
%hhp=(1./(d./(x.^2+y.^2).^0.5).^(2*n));
%%%%%%// New code
B = sqrt(2) - 1; %// Define B
D = sqrt(x.^2 + y.^2); %// Define distance to centre
hhp = 1 ./ (1 + B * ((d ./ D).^(2 * n)));
out_spec_centre = fftim .* hhp;
%// Uncentre spectrum
out_spec = ifftshift(out_spec_centre);
%// Inverse FFT, get real components
out = real(ifft2(out_spec));
%// Normalize and cast
out = (out - min(out(:))) / (max(out(:)) - min(out(:)));
out = uint8(255*out);
%// Show image
imshow(out);
We get this:
I think that you should work a little bit diferent
n=1;
D0=50; % change the name for d0, d is usuaally the (u²+v²)⁽1/2)
A=1.5; % normally the amplitude is 1
im=imread('cameraman.jpg');
[M,N]=size(im); % is easy to get the h and w like this
% compute the 2d fourier transform in order to multiply
F=fft2(double(im));
% compute your filter and do the meshgrid for your matrix but it is M*n, and get only the real part
u=0:(M-1);
v=0:(N-1);
idx=find(u>M/2);
u(idx)=u(idx)-M;
idy=find(v>N/2);
v(idy)=v(idy)-N;
[V,U]=meshgrid(v,u);
D=sqrt(U.^2+V.^2);
H =A * (1./(1 + (D0./D).^(2*n)));
% multiply element by element
G=H.*F;
g=real(ifft2(double(G)));
subplot(1,2,1); imshow(im); title('Input image');
subplot(1,2,2); imshow(g,[ ]); title('filtered image');

How do you calculate the mid-point between two CGAffineTransform scale transforms?

This might be more of a math question than a programming question, but in this example it's within the context of CGAffineTransform.
If you have two transforms that each represent a scaling transform, how do you calculate a mid-point between the two that would visually represent "half way" to the user?
For example:
CGAffineTransform minimumScale = CGAffineTransformMakeScale(1, 1);
CGAffineTransform maximumScale = CGAffineTransformMakeScale(10, 10);
Creating a transform with a scale factor of 5 does not produce the result I would like because going from 1 -> 5 represents a "5x magnification" from the user's perspective but going from 5 -> 10 only represents a "2x magnification".
In this trivial example, a scale factor of roughly 3.33 would produce the result I'm looking for as it would transform a frame like so:
W:100 x H:100 -> 333 x 333 // A 3x magnification from the user's perspective
W:333 x H:333 -> 999 x 999 // Also a 3x magnification from the user's perspective
However, the math formula eludes me for calculating this value given any two minimum and maximum scale values (of which the minimum could be less than 1.0, e.x.: 0.2 -> 3.9).

Algorithm to make overly bright (HDR) colours become white?

You know how every colour eventually turns white in an image if it's bright enough or sufficiently over-exposed? I'm trying to figure out a function to do this to apply to generated HDR images, in a realistic and pleasing looking way (using idealised camera performance as a reference I guess).
The problem the algorithm/function I want to obtain should solve is, let's say you have an orange pixel with the (linear RGB) values {1.0, 0.2, 0.0}. Everything is fine if you multiply each value by a factor of 1.0 or less, but let's say you multiply that pixel by 6, now you get {6.0, 1.2, 0.0}, what do you do with your out of range red and green value of 6.0 and 1.2? You could clip them which would give you {1.0, 1.0, 0.0}, which sadly is what Photoshop and 3DS Max seem to do, but it looks so very wrong as now your formerly orange pixel is yellow (so if you start with any saturated hue (meaning at least one channel is 0.0) you always end up with either magenta, yellow or cyan) and it will never become white.
I considered taking half of the excess of one channel and splitting it equally between the other channels, so for example {1.6, 0.5, 0.1} would become {1.0, 0.8, 0.4} but it's too simplistic and not very realistic. I strongly doubt that an acceptable solution could be anywhere near this trivial.
I'm sure there must have been research done on the topic, but I cannot find any relevant literature and sensitometry doesn't seem to be quite what I'm looking for.
Modifying the Python code I left in an answer on another question to work in the range [0.0-1.0]:
def redistribute_rgb(r, g, b):
threshold = 1.0
m = max(r, g, b)
if m <= threshold:
return r, g, b
total = r + g + b
if total >= 3 * threshold:
return threshold, threshold, threshold
x = (3 * threshold - total) / (3 * m - total)
gray = threshold - x * m
return gray + x * r, gray + x * g, gray + x * b
This should return acceptable results in either a linear or gamma-corrected color space, although linear will be better.
Multiplying each r,g,b value by the same amount retains their original proportions and thus the hue, up to the point where x=0 and you've achieved white. You've expressed interest in a non-linear response once clipping starts, but I'm not entirely sure how to work that in. The math was carefully chosen so that at least one of the returned values will be at the threshold, and none will be above.
Running this on your example of (1.6, 0.5, 0.1) returns (1.0, 0.6615, 0.5385).
I've found a way to do it based on Mark Ransom's suggestion with a twist. When the colour is out of gamut we compute the grey colour of equivalent perceptual luminosity then we linearly interpolate between the out-of-gamut input colour and that grey value to find the first in-gamut colour. Weighting each RGB channel to get the perceptual luminosity part is the tricky part seeing as the most commonly used formula from CIELab L = 0.2126*red + 0.7152*green + 0.0722*blue is quite blatantly wrong as it makes the blue way too bright. Instead I did some tests and chose the weights which looked the most correct to me, though these are not definite and you might want to tweak them, although for this particular problem this is perhaps not too crucial.
Or in fewer words the solution is to desaturate the out-of-gamut colour just enough that it might be in-gamut.
Here is my solution in C code. All variables are in floating point format.
Wr=0.125; Wg=0.68; Wb=0.195; // these are the weights for each colour
max = MAXN(MAXN(red, grn), blu); // max is the maximum value of the 3 colours
if (max > 1.) // if the colour is out of gamut
{
L = Wr*red + Wg*grn + Wb*blu; // Luminosity of the colour's grey point
if (L < 1.) // if the grey point is no brighter than white
{
// t represents the ratio on the line between the input colour
// and its corresponding grey point. t is between 0 and 1,
// a lower t meaning closer to the grey point and a
// higher t meaning closer to the input colour
t = (1.-L) / (max-L);
// a simple linear interpolation between the
// input colour and its grey point
red = red*t + L*(1.-t);
grn = grn*t + L*(1.-t);
blu = blu*t + L*(1.-t);
}
else // if it's too bright regardless of saturation
{
red = grn = blu = 1.;
}
}
Here's what it looks like with a linear orange gradient:
It does not use anything like arbitrary gamma which is good, the only mostly arbitrary thing has to do with the Luminosity weights, but I guess those are quite necessary.
You have to map it to some non-linear scale. For example: http://en.wikipedia.org/wiki/Gamma_correction .
Ex: Let y = f(x) = log(1+x) - log(1-x) define the "actual" luminescence.
The reverse function is x = g(y) = (e^y-1)/(e^y+1).
now, you have values x=1 and x=0.2. For the first case the corresponding y is infinity. Six times the infinity is still infinity. If you use function g, you get new x_new = 1.
For x=0.2, y = 0.4054651. After multiplying by 6, y_new = 2.432791 . The corresponding x_new = 0.8385876.
For x=0, x_new will still be 0 (I will leave the calculations to you).
So starting from (1.0, 0.2, 0.0) your new set of points are (1.0, 0.8385876, 0.0).
This is one example of mapping function. There are infinite number of them. Choose one that looks best to you.

Measuring the average thickness of traces in an image

Here's the problem: I have a number of binary images composed by traces of different thickness. Below there are two images to illustrate the problem:
First Image - size: 711 x 643 px
Second Image - size: 930 x 951 px
What I need is to measure the average thickness (in pixels) of the traces in the images. In fact, the average thickness of traces in an image is a somewhat subjective measure. So, what I need is a measure that have some correlation with the radius of the trace, as indicated in the figure below:
Notes
Since the measure doesn't need to be very precise, I am willing to trade precision for speed. In other words, speed is an important factor to the solution of this problem.
There might be intersections in the traces.
The trace thickness might not be constant, but an average measure is OK (even the maximum trace thickness is acceptable).
The trace will always be much longer than it is wide.
I'd suggest this algorithm:
Apply a distance transformation to the image, so that all background pixels are set to 0, all foreground pixels are set to the distance from the background
Find the local maxima in the distance transformed image. These are points in the middle of the lines. Put their pixel values (i.e. distances from the background) image into a list
Calculate the median or average of that list
I was impressed by #nikie's answer, and gave it a try ...
I simplified the algorithm for just getting the maximum value, not the mean, so evading the local maxima detection algorithm. I think this is enough if the stroke is well-behaved (although for self intersecting lines it may not be accurate).
The program in Mathematica is:
m = Import["http://imgur.com/3Zs7m.png"] (* Get image from web*)
s = Abs[ImageData[m] - 1]; (* Invert colors to detect background *)
k = DistanceTransform[Image[s]] (* White Pxs converted to distance to black*)
k // ImageAdjust (* Show the image *)
Max[ImageData[k]] (* Get the max stroke width *)
The generated result is
The numerical value (28.46 px X 2) fits pretty well my measurement of 56 px (Although your value is 100px :* )
Edit - Implemented the full algorithm
Well ... sort of ... instead of searching the local maxima, finding the fixed point of the distance transformation. Almost, but not quite completely unlike the same thing :)
m = Import["http://imgur.com/3Zs7m.png"]; (*Get image from web*)
s = Abs[ImageData[m] - 1]; (*Invert colors to detect background*)
k = DistanceTransform[Image[s]]; (*White Pxs converted to distance to black*)
Print["Distance to Background*"]
k // ImageAdjust (*Show the image*)
Print["Local Maxima"]
weights =
Binarize[FixedPoint[ImageAdjust#DistanceTransform[Image[#], .4] &,s]]
Print["Stroke Width =",
2 Mean[Select[Flatten[ImageData[k]] Flatten[ImageData[weights]], # != 0 &]]]
As you may see, the result is very similar to the previous one, obtained with the simplified algorithm.
From Here. A simple method!
3.1 Estimating Pen Width
The pen thickness may be readily estimated from the area A and perimeter length L of the foreground
T = A/(L/2)
In essence, we have reshaped the foreground into a rectangle and measured the length of the longest side. Stronger modelling of the pen, for instance, as a disc yielding circular ends, might allow greater precision, but rasterisation error would compromise the signicance.
While precision is not a major issue, we do need to consider bias and singularities.
We should therefore calculate area A and perimeter length L using functions which take into account "roundedness".
In MATLAB
A = bwarea(.)
L = bwarea(bwperim(.; 8))
Since I don't have MATLAB at hand, I made a small program in Mathematica:
m = Binarize[Import["http://imgur.com/3Zs7m.png"]] (* Get Image *)
k = Binarize[MorphologicalPerimeter[m]] (* Get Perimeter *)
p = N[2 Count[ImageData[m], Except[1], 2]/
Count[ImageData[k], Except[0], 2]] (* Calculate *)
The output is 36 Px ...
Perimeter image follows
HTH!
Its been a 3 years since the question was asked :)
following the procedure of #nikie, here is a matlab implementation of the stroke width.
clc;
clear;
close all;
I = imread('3Zs7m.png');
X = im2bw(I,0.8);
subplottight(2,2,1);
imshow(X);
Dist=bwdist(X);
subplottight(2,2,2);
imshow(Dist,[]);
RegionMax=imregionalmax(Dist);
[x, y] = find(RegionMax ~= 0);
subplottight(2,2,3);
imshow(RegionMax);
List(1:size(x))=0;
for i = 1:size(x)
List(i)=Dist(x(i),y(i));
end
fprintf('Stroke Width = %u \n',mean(List));
Assuming that the trace has constant thickness, is much longer than it is wide, is not too strongly curved and has no intersections / crossings, I suggest an edge detection algorithm which also determines the direction of the edge, then a rise/fall detector with some trigonometry and a minimization algorithm. This gives you the minimal thickness across a relatively straight part of the curve.
I guess the error to be up to 25%.
First use an edge detector that gives us the information where an edge is and which direction (in 45° or PI/4 steps) it has. This is done by filtering with 4 different 3x3 matrices (Example).
Usually I'd say it's enough to scan the image horizontally, though you could also scan vertically or diagonally.
Assuming line-by-line (horizontal) scanning, once we find an edge, we check if it's a rise (going from background to trace color) or a fall (to background). If the edge's direction is at a right angle to the direction of scanning, skip it.
If you found one rise and one fall with the correct directions and without any disturbance in between, measure the distance from the rise to the fall. If the direction is diagonal, multiply by squareroot of 2. Store this measure together with the coordinate data.
The algorithm must then search along an edge (can't find a web resource on that right now) for neighboring (by their coordinates) measurements. If there is a local minimum with a padding of maybe 4 to 5 size units to each side (a value to play with - larger: less information, smaller: more noise), this measure qualifies as a candidate. This is to ensure that the ends of the trail or a section bent too much are not taken into account.
The minimum of that would be the measurement. Plausibility check: If the trace is not too tangled, there should be a lot of values in that area.
Please comment if there are more questions. :-)
Here is an answer that works in any computer language without the need of special functions...
Basic idea: Try to fit a circle into the black areas of the image. If you can, try with a bigger circle.
Algorithm:
set image background = 0 and trace = 1
initialize array result[]
set minimalExpectedWidth
set w = minimalExpectedWidth
loop
set counter = 0
create a matrix of zeros size w x w
within a circle of diameter w in that matrix, put ones
calculate area of the circle (= PI * w)
loop through all pixels of the image
optimization: if current pixel is of background color -> continue loop
multiply the matrix with the image at each pixel (e.g. filtering the image with that matrix)
(you can do this using the current x and y position and a double for loop from 0 to w)
take the sum of the result of each multiplication
if the sum equals the calculated circle's area, increment counter by one
store in result[w - minimalExpectedWidth]
increment w by one
optimization: include algorithm from further down here
while counter is greater zero
Now the result array contains the number of matches for each tested width.
Graph it to have a look at it.
For a width of one this will be equal to the number of pixels of trace color. For a greater width value less circle areas will fit into the trace. The result array will thus steadily decrease until there is a sudden drop. This is because the filter matrix with the circular area of that width now only fits into intersections.
Right before the drop is the width of your trace. If the width is not constant, the drop will not be that sudden.
I don't have MATLAB here for testing and don't know for sure about a function to detect this sudden drop, but we do know that the decrease is continuous, so I'd take the maximum of the second derivative of the (zero-based) result array like this
Algorithm:
set maximum = 0
set widthFound = 0
set minimalExpectedWidth as above
set prevvalue = result[0]
set index = 1
set prevFirstDerivative = result[1] - prevvalue
loop until index is greater result length
firstDerivative = result[index] - prevvalue
set secondDerivative = firstDerivative - prevFirstDerivative
if secondDerivative > maximum or secondDerivative < maximum * -1
maximum = secondDerivative
widthFound = index + minimalExpectedWidth
prevFirstDerivative = firstDerivative
prevvalue = result[index]
increment index by one
return widthFound
Now widthFound is the trace width for which (in relation to width + 1) many more matches were found.
I know that this is in part covered in some of the other answers, but my description is pretty much straightforward and you don't have to have learned image processing to do it.
I have interesting solution:
Do edge detection, for edge pixels extraction.
Do physical simulation - consider edge pixels as positively charged particles.
Now put some number of free positively charged particles in the stroke area.
Calculate electrical force equations for determining movement of these free particles.
Simulate particles movement for some time until particles reach position equilibrium.
(As they will repel from both stoke edges after some time they will stay in the middle line of stoke)
Now stroke thickness/2 would be average distance from edge particle to nearest free particle.

Resources