How to read Pig "detailed locations" log lines? - hadoop

When executing a Pig script, some of these logs are emited :
2014-10-29 16:07:03,658 [MainThread] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher - detailed locations: M: TRACKED[155,10],null[-1,-1],null[-1,-1],TRACKED_USERS[156,16],null[-1,-1],HAS_CONV[163,11],HAS_CONV[164,11],null[-1,-1],REACHED[159,10],REACHED[160,10] C: R:
I understand that all my aliases listed after the M: sections are mapper-based locations, C: should be combiners, and R: should be reducers.
How should I interpret the values between brackets, such as 159 and 10 in: REACHED[159,10] ? Do they provide me a hint about the input splits that are being processed ?

It provides information about the aliases of the Pig script in the form of alias[line, offset] and how they are related to the different stages of the translated MR job (M:map, C:combiner, R:reducer).
References:
New features in Pig 0.11
Example testcase

Related

Hadoop Streaming - Too many map tasks

I realize that we can't exactly dictate how many map tasks to use, we can only suggest. But still it doesn't make sense.
2016-01-07 07:19:25,117 INFO org.apache.hadoop.mapred.FileInputFormat (main): Total input paths to process : 1
2016-01-07 07:19:25,165 INFO org.apache.hadoop.mapreduce.JobSubmitter (main): number of splits:40
I have a single .txt file in my input which contains:
x,2,65
t,6,12
y,5,11
n,3,71
.
.
(8 lines)
I would expect 8 map tasks to be created, but instead I get 40 map tasks, from which 32 have nothing coming through stdin and hence don't do anything.
I'm running a separate executable through each map task with each line containing the parameters needed.
How does this all work?

yarn hadoop run slowly

I installed cloudera manager(CDH 5) and create own claster. Everything is good but when I run task that it run slowly(18 min). But the ruby's script is running about 5 seconds.
My task consists of:
#mapper.py
import sys
def do_map(doc):
for word in doc.split():
yield word.lower(), 1
for line in sys.stdin:
for key, value in do_map(line):
print(key + "\t" + str(value))
and
#reducer.py
import sys
def do_reduce(word, values):
return word, sum(values)
prev_key = None
values = []
for line in sys.stdin:
key, value = line.split("\t")
if key != prev_key and prev_key is not None:
result_key, result_value = do_reduce(prev_key, values)
print(result_key + "\t" + str(result_value))
values = []
prev_key = key
values.append(int(value))
if prev_key is not None:
result_key, result_value = do_reduce(prev_key, values)
print(result_key + "\t" + str(result_value))
I run my task this is command:
yarn jar hadoop-streaming.jar -input lenta_articles -output lenta_wordcount -file mapper.py -file reducer.py -mapper "python mapper.py" -reducer "python reducer.py"
log of run command:
15/11/17 10:14:27 WARN streaming.StreamJob: -file option is deprecated, please use generic option -files instead.
packageJobJar: [mapper.py, reducer.py] [/opt/cloudera/parcels/CDH-5.4.8-1.cdh5.4.8.p0.4/jars/hadoop-streaming-2.6.0-cdh5.4.8.jar] /tmp/streamjob8334226755199432389.jar tmpDir=null
15/11/17 10:14:29 INFO client.RMProxy: Connecting to ResourceManager at manager/10.128.181.136:8032
15/11/17 10:14:29 INFO client.RMProxy: Connecting to ResourceManager at manager/10.128.181.136:8032
15/11/17 10:14:31 INFO mapred.FileInputFormat: Total input paths to process : 909
15/11/17 10:14:32 INFO mapreduce.JobSubmitter: number of splits:909
15/11/17 10:14:32 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1447762910705_0010
15/11/17 10:14:32 INFO impl.YarnClientImpl: Submitted application application_1447762910705_0010
15/11/17 10:14:32 INFO mapreduce.Job: The url to track the job: http://manager:8088/proxy/application_1447762910705_0010/
15/11/17 10:14:32 INFO mapreduce.Job: Running job: job_1447762910705_0010
15/11/17 10:14:49 INFO mapreduce.Job: Job job_1447762910705_0010 running in uber mode : false
15/11/17 10:14:49 INFO mapreduce.Job: map 0% reduce 0%
15/11/17 10:16:04 INFO mapreduce.Job: map 1% reduce 0%
size of lenta_wordcount folder 2.5 mb. It consists of 909 files. Аverage file size 3КБ.
Ask questions if there is something you need to learn or perform any command
What am i doing wrong?
Hadoop is not efficient in handling large number of small files but it is efficient in processing small number of large files.
Since you have already using Cloudera, have a look at alternatives to improve performance with large number of small files with Hadoop as quoted in Cloudera article
Main reason for slow processing
Reading through small files normally causes lots of seeks and lots of hopping from datanode to datanode to retrieve each small file, all of which is an inefficient data access pattern.
If you have more number of files, you need more number of Mappers to read & process data. Thousands of Mappers processing small files & passing the output to Reducers over the Network will degrade the performance.
Passing input as sequential files with LZO compressions is one of the best alternatives to handle large number of small files. Have a look at SE Question 1 and Other Alternative
There are some other alternatives (some are not related to phtyon) but you should look at this article
Change the ingestion process/interval
Batch file consolidation
Sequence files
HBase
S3DistCp (If using Amazon EMR)
Using a CombineFileInputFormat
Hive configuration settings
Using Hadoop’s append capabilities

"Doesn't exist in RM" backend error in Pig

I'm getting an error in the Cloudera QuickStart VM I downloaded from http://www.cloudera.com/content/cloudera-content/cloudera-docs/DemoVMs/Cloudera-QuickStart-VM/cloudera_quickstart_vm.html.
I am trying a toy example from Tom White's Hadoop: The Definitive Guide book called map_temp.pig, which "finds the maximum temperature by year".
I created a file called temps.txt that contains (year, temperature, quality) entries on each line:
1950 0 1
1950 22 1
1950 -11 1
1949 111 1
Using the example code in the book, I typed the following Pig code into the Grunt terminal:
records = LOAD '/home/cloudera/Desktop/temps.txt'
AS (year:chararray, temperature:int, quality:int);
DUMP records;
After I typed DUMP records;, I got the error:
2014-05-22 11:33:34,286 [main] ERROR org.apache.pig.tools.grunt.Grunt - ERROR 1066: Unable to open iterator for alias records. Backend error : org.apache.hadoop.yarn.exceptions.ApplicationNotFoundException: Application with id 'application_1400775973236_0006' doesn't exist in RM.
…
Details at logfile: /home/cloudera/Desktop/pig_1400782722689.log
I attempted to find out what was causing the error through a Google search: https://www.google.com/search?q=%22application+with+id%22+%22doesn%27t+exist+in+RM%22.
The results there weren't helpful. For example, http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-troubleshoot-error-vpc.html mentioned this bug and said "To solve this problem, you must configure a VPC that includes a DHCP Options Set whose parameters are set to the following values..."
Amazon's suggested fix doesn't seem to be the problem because I'm not using using AWS.
EDIT:
I think the HDFS file path is correct.
[cloudera#localhost Desktop]$ ls
Eclipse.desktop gnome-terminal.desktop max_temp.pig temps.txt
[cloudera#localhost Desktop]$ pwd
/home/cloudera/Desktop
there's another exception before your error :
org.apache.pig.backend.executionengine.ExecException: ERROR 2118: Input path does not exist: hdfs://localhost.localdomain:8020/home/cloudera/Desktop/temps.txt
at org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.PigInputFormat.getSplits(PigInputFormat.java:288)
Is your file in HDFS? Have you checked the file path?
I was able to solve this problem by doing pig -x local to start the Grunt interpreter instead of just pig.
I should have used local mode because I did not have access to a Hadoop cluster.
This gave me the errors:
2014-05-22 11:33:34,286 [main] ERROR org.apache.pig.tools.grunt.Grunt - ERROR 1066: Unable to open iterator for alias records. Backend error : org.apache.hadoop.yarn.exceptions.ApplicationNotFoundException: Application with id 'application_1400775973236_0006' doesn't exist in RM.
2014-05-22 11:33:28,799 [JobControl] WARN org.apache.hadoop.security.UserGroupInformation - PriviledgedActionException as:cloudera (auth:SIMPLE) cause:org.apache.pig.backend.executionengine.ExecException: ERROR 2118: Input path does not exist: hdfs://localhost.localdomain:8020/home/cloudera/Desktop/temps.txt
From http://pig.apache.org/docs/r0.9.1/start.html:
Pig has two execution modes or exectypes:
Local Mode - To run Pig in local mode, you need access to a single machine; all files are installed and run using your local host and file system. Specify local mode using the -x flag (pig -x local).
Mapreduce Mode - To run Pig in mapreduce mode, you need access to a Hadoop cluster and HDFS installation. Mapreduce mode is the default mode; you can, but don't need to, specify it using the -x flag (pig OR pig -x mapreduce).
You can run Pig in either mode using the "pig" command (the bin/pig Perl script) or the "java" command (java -cp pig.jar ...).
Running the toy example from Tom White's Hadoop: The Definitive Guide book:
-- max_temp.pig: Finds the maximum temperature by year
records = LOAD 'temps.txt' AS (year:chararray, temperature:int, quality:int);
filtered_records = FILTER records BY temperature != 9999 AND
(quality == 0 OR quality == 1 OR quality == 4 OR quality == 5 OR quality == 9);
grouped_records = GROUP filtered_records BY year;
max_temp = FOREACH grouped_records GENERATE group,
MAX(filtered_records.temperature);
DUMP max_temp;
against the following data set in temps.txt (remember that Pig's default input is tab-delimited files):
1950 0 1
1950 22 1
1950 -11 1
1949 111 1
gives this:
grunt> [cloudera#localhost Desktop]$ pig -x local -f max_temp.pig 2>log
(1949,111)
(1950,22)

Is there an apache pig equivalent of "SHOW TABLES"?

I have a Hadoop data store I'm accessing in Pig and not a lot of documentation on it, plus I'm new to Pig, so I am looking for the Pig equivalent of "SHOW TABLES". When I have a connection to a MySQL db I can do this and get a general sense of what data is in there; I have found several tutorials but nothing on point. If not, is there some other way to orient myself to a Hadoop data store I know nothing about?
ETA: This would be when running Pig in interactive mode, rather than loading a script. Probably obvious, but I thought I should mention it.
The closest thing I can see to 'show tables' is the 'history' command, which effectively lists all aliases created.
grunt> history
1 a = LOAD 'iris.csv' USING PigStorage (',') AS
(sl:double,sw:double,pl:double,pw:double,spec:int);
2 b = FILTER a BY spec==1;
3 c = GROUP b BY pw;
4 d = FOREACH c GENERATE COUNT(b);
Pig doesn't have a concept of tables. It can read any file that is on your HDFS filesystem and stores the parsed result in a relation.
Note that you can also run HDFS filesystem commands from the grunt shell
It's probably best you familiarise yourself with HDFS first and make sure you can comfortably navigate the filesystem first so you can find what data you want to process with Pig.
We had also came across similar situation and applied all solutions of stackoverflow but none had solved my issue . Now solution of these problem is that , you should use store command of pig and also provide dedicated folder for it .
Now the set up which we prefer is ,
grunt> fs -mkdir /user/hduser/AllPigTableStructures/
grunt> fs -chmod 777 /user/hduser/AllPigTableStructures/
Now we will store all table informations into these folder named "AllPigTableStructures".
Then you should use "store" function as below code,
grunt> store extract_details into '/user/hduser/AllPigTableStructures/SchemaTwit' using PigStorage('\t', '-schema');
the last line of these code should be
/*2017-09-18 02:13:56,566 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher - Success!
*/
Now you should see a folder with named SchemaTwit like these,
grunt> fs -ls /user/hduser/AllPigTableStructures
Found 12 items
drwxr-xr-x - hduser supergroup 0 2017-09-18 02:13 /user/hduser/AllPigTableStructures/SchemaTwit
and at last if you will see content of SchemaTwit directory then it will contain your schema of your table and all details about your table below is command for it and part-m-xxx kind of file will contains your data part.
grunt> fs -ls /user/hduser/AllPigTableStructures/SchemaTwit
Found 4 items
-rw-r--r-- 2 hduser supergroup 8 2017-09-18 02:26 /user/hduser/AllPigTableStructures/SchemaTwit/.pig_header
-rw-r--r-- 2 hduser supergroup 239 2017-09-18 02:26 /user/hduser/AllPigTableStructures/SchemaTwit/.pig_schema
-rw-r--r-- 2 hduser supergroup 0 2017-09-18 02:26 /user/hduser/AllPigTableStructures/SchemaTwit/_SUCCESS
-rw-r--r-- 2 hduser supergroup 140 2017-09-18 02:26 /user/hduser/AllPigTableStructures/SchemaTwit/part-m-00000
Now you can use below cat command on schema file to see schema of your table of part-m-xxx for browsing your data part
grunt> fs -cat /user/hduser/AllPigTableStructures/SchemaTwit/.pig_schema
{"fields":[{"name":"id","type":50,"description":"autogenerated from Pig Field Schema","schema":null},{"name":"text","type":50,"description":"autogenerated from Pig Field Schema","schema":null}],"version":0,"sortKeys":[],"sortKeyOrders":[]}
Now for loading your table with schema these command help,
WithSchema = LOAD '/user/hduser/AllPigTableStructures/SchemaTwit';
PS: We are running our pig into mapreduce mode .
Looks like you have mistaken Pig. As #seedhead has specified, you handle files with Pig. Folks quite often mistake it as a a database(like Hbase) or a warehouse(like Hive), which it is not. And, as far as visualizing the data is concerned, you could list the files and directories through Pig shell. And if you need to see how many records(or lines) a particular files has, you could do something like this :
Records = LOAD '/path_of_the_file';
Records_Group= GROUP Records ALL;
Records_Count = FOREACH Records_Group GENERATE COUNT(Records);

Setting the number of map tasks and reduce tasks

I am currently running a job I fixed the number of map task to 20 but and getting a higher number. I also set the reduce task to zero but I am still getting a number other than zero. The total time for the MapReduce job to complete is also not display. Can someone tell me what I am doing wrong.
I am using this command
hadoop jar Test_Parallel_for.jar Test_Parallel_for Matrix/test4.txt Result 3 \ -D mapred.map.tasks = 20 \ -D mapred.reduce.tasks =0
Output:
11/07/30 19:48:56 INFO mapred.JobClient: Job complete: job_201107291018_0164
11/07/30 19:48:56 INFO mapred.JobClient: Counters: 18
11/07/30 19:48:56 INFO mapred.JobClient: Job Counters
11/07/30 19:48:56 INFO mapred.JobClient: Launched reduce tasks=13
11/07/30 19:48:56 INFO mapred.JobClient: Rack-local map tasks=12
11/07/30 19:48:56 INFO mapred.JobClient: Launched map tasks=24
11/07/30 19:48:56 INFO mapred.JobClient: Data-local map tasks=12
11/07/30 19:48:56 INFO mapred.JobClient: FileSystemCounters
11/07/30 19:48:56 INFO mapred.JobClient: FILE_BYTES_READ=4020792636
11/07/30 19:48:56 INFO mapred.JobClient: HDFS_BYTES_READ=1556534680
11/07/30 19:48:56 INFO mapred.JobClient: FILE_BYTES_WRITTEN=6026699058
11/07/30 19:48:56 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=1928893942
11/07/30 19:48:56 INFO mapred.JobClient: Map-Reduce Framework
11/07/30 19:48:56 INFO mapred.JobClient: Reduce input groups=40000000
11/07/30 19:48:56 INFO mapred.JobClient: Combine output records=0
11/07/30 19:48:56 INFO mapred.JobClient: Map input records=40000000
11/07/30 19:48:56 INFO mapred.JobClient: Reduce shuffle bytes=1974162269
11/07/30 19:48:56 INFO mapred.JobClient: Reduce output records=40000000
11/07/30 19:48:56 INFO mapred.JobClient: Spilled Records=120000000
11/07/30 19:48:56 INFO mapred.JobClient: Map output bytes=1928893942
11/07/30 19:48:56 INFO mapred.JobClient: Combine input records=0
11/07/30 19:48:56 INFO mapred.JobClient: Map output records=40000000
11/07/30 19:48:56 INFO mapred.JobClient: Reduce input records=40000000
[hcrc1425n30]s0907855:
The number of map tasks for a given job is driven by the number of input splits and not by the mapred.map.tasks parameter. For each input split a map task is spawned. So, over the lifetime of a mapreduce job the number of map tasks is equal to the number of input splits. mapred.map.tasks is just a hint to the InputFormat for the number of maps.
In your example Hadoop has determined there are 24 input splits and will spawn 24 map tasks in total. But, you can control how many map tasks can be executed in parallel by each of the task tracker.
Also, removing a space after -D might solve the problem for reduce.
For more information on the number of map and reduce tasks, please look at the below url
https://cwiki.apache.org/confluence/display/HADOOP2/HowManyMapsAndReduces
As Praveen mentions above, when using the basic FileInputFormat classes is just the number of input splits that constitute the data. The number of reducers is controlled by mapred.reduce.tasks specified in the way you have it: -D mapred.reduce.tasks=10 would specify 10 reducers. Note that the space after -D is required; if you omit the space, the configuration property is passed along to the relevant JVM, not to Hadoop.
Are you specifying 0 because there is no reduce work to do? In that case, if you're having trouble with the run-time parameter, you can also set the value directly in code. Given a JobConf instance job, call
job.setNumReduceTasks(0);
inside, say, your implementation of Tool.run. That should produce output directly from the mappers. If your job actually produces no output whatsoever (because you're using the framework just for side-effects like network calls or image processing, or if the results are entirely accounted for in Counter values), you can disable output by also calling
job.setOutputFormat(NullOutputFormat.class);
It's important to keep in mind that the MapReduce framework in Hadoop allows us only to
suggest the number of Map tasks for a job
which like Praveen pointed out above will correspond to the number of input splits for the task. Unlike it's behavior for the number of reducers (which is directly related to the number of files output by the MapReduce job) where we can
demand that it provide n reducers.
To explain it with a example:
Assume your hadoop input file size is 2 GB and you set block size as 64 MB so 32 Mappers tasks are set to run while each mapper will process 64 MB block to complete the Mapper Job of your Hadoop Job.
==> Number of mappers set to run are completely dependent on 1) File Size and 2) Block Size
Assume you have running hadoop on a cluster size of 4:
Assume you set mapred.map.tasks and mapred.reduce.tasks parameters in your conf file to the nodes as follows:
Node 1: mapred.map.tasks = 4 and mapred.reduce.tasks = 4
Node 2: mapred.map.tasks = 2 and mapred.reduce.tasks = 2
Node 3: mapred.map.tasks = 4 and mapred.reduce.tasks = 4
Node 4: mapred.map.tasks = 1 and mapred.reduce.tasks = 1
Assume you set the above paramters for 4 of your nodes in this cluster. If you notice Node 2 has set only 2 and 2 respectively because the processing resources of the Node 2 might be less e.g(2 Processors, 2 Cores) and Node 4 is even set lower to just 1 and 1 respectively might be due to processing resources on that node is 1 processor, 2 cores so can't run more than 1 mapper and 1 reducer task.
So when you run the job Node 1, Node 2, Node 3, Node 4 are configured to run a max. total of (4+2+4+1)11 mapper tasks simultaneously out of 42 mapper tasks that needs to be completed by the Job. After each Node completes its map tasks it will take the remaining mapper tasks left in 42 mapper tasks.
Now comming to reducers, as you set mapred.reduce.tasks = 0 so we only get mapper output in to 42 files(1 file for each mapper task) and no reducer output.
In the newer version of Hadoop, there are much more granular mapreduce.job.running.map.limit and mapreduce.job.running.reduce.limit which allows you to set the mapper and reducer count irrespective of hdfs file split size. This is helpful if you are under constraint to not take up large resources in the cluster.
JIRA
From your log I understood that you have 12 input files as there are 12 local maps generated. Rack Local maps are spawned for the same file if some of the blocks of that file are in some other data node. How many data nodes you have?
In your example, the -D parts are not picked up:
hadoop jar Test_Parallel_for.jar Test_Parallel_for Matrix/test4.txt Result 3 \ -D mapred.map.tasks = 20 \ -D mapred.reduce.tasks =0
They should come after the classname part like this:
hadoop jar Test_Parallel_for.jar Test_Parallel_for -Dmapred.map.tasks=20 -Dmapred.reduce.tasks=0 Matrix/test4.txt Result 3
A space after -D is allowed though.
Also note that changing the number of mappers is probably a bad idea as other people have mentioned here.
Number of map tasks is directly defined by number of chunks your input is splitted. The size of data chunk (i.e. HDFS block size) is controllable and can be set for an individual file, set of files, directory(-s). So, setting specific number of map tasks in a job is possible but involves setting a corresponding HDFS block size for job's input data. mapred.map.tasks can be used for that too but only if its provided value is greater than number of splits for job's input data.
Controlling number of reducers via mapred.reduce.tasks is correct. However, setting it to zero is a rather special case: the job's output is an concatenation of mappers' outputs (non-sorted). In Matt's answer one can see more ways to set the number of reducers.
One way you can increase the number of mappers is to give your input in the form of split files [you can use linux split command]. Hadoop streaming usually assigns that many mappers as there are input files[if there are a large number of files] if not it will try to split the input into equal sized parts.
Use -D property=value rather than -D property = value (eliminate
extra whitespaces). Thus -D mapred.reduce.tasks=value would work
fine.
Setting number of map tasks doesnt always reflect the value you have
set since it depends on split size and InputFormat used.
Setting the number of reduces will definitely override the number of
reduces set on cluster/client-side configuration.
I agree the number mapp task depends upon the input split but in some of the scenario i could see its little different
case-1 I created a simple mapp task only it creates 2 duplicate out put file (data ia same)
command I gave below
bin/hadoop jar contrib/streaming/hadoop-streaming-1.2.1.jar -D mapred.reduce.tasks=0 -input /home/sample.csv -output /home/sample_csv112.txt -mapper /home/amitav/workpython/readcsv.py
Case-2 So I restrcted the mapp task to 1 the out put came correctly with one output file but one reducer also lunched in the UI screen although I restricted the reducer job. The command is given below.
bin/hadoop jar contrib/streaming/hadoop-streaming-1.2.1.jar -D mapred.map.tasks=1 mapred.reduce.tasks=0 -input /home/sample.csv -output /home/sample_csv115.txt -mapper /home/amitav/workpython/readcsv.py
The first part has already been answered, "just a suggestion"
The second part has also been answered, "remove extra spaces around ="
If both these didnt work, are you sure you have implemented ToolRunner ?
Number of map task depends on File size, If you want n number of Map, divide the file size by n as follows:
conf.set("mapred.max.split.size", "41943040"); // maximum split file size in bytes
conf.set("mapred.min.split.size", "20971520"); // minimum split file size in bytes
Folks from this theory it seems we cannot run map reduce jobs in parallel.
Lets say I configured total 5 mapper jobs to run on particular node.Also I want to use this in such a way that JOB1 can use 3 mappers and JOB2 can use 2 mappers so that job can run in parallel. But above properties are ignored then how can execute jobs in parallel.
From what I understand reading above, it depends on the input files. If Input Files are 100 means - Hadoop will create 100 map tasks.
However, it depends on the Node configuration on How Many can be run at one point of time.
If a node is configured to run 10 map tasks - only 10 map tasks will run in parallel by picking 10 different input files out of the 100 available.
Map tasks will continue to fetch more files as and when it completes processing of a file.

Resources