Integer8, Unsigned8, Integer16 values in SNMPv2 MIB - snmp

I want to define a MIB containing integer-valued OIDs that are 1 or 2 octets long to keep down the size of my TRAP messages - they're going over a mobile data network so we pay by the byte, and transmission times go up with bigger data types as well.
The SNMPv2-SMI only defines Integer32 and Unsigned32, and SNMPv2-TC doesn't extend these to smaller packing sizes. Is there already a standard definition out there for Unsigned8, Integer16 etc? If so, where?
Alternatively, if I define my object type as something like "Integer32(-1..99)", will the MIB compiler etc do the right thing and pack the value into a single byte? We're using SNMP4J on the Agent and Net-SNMP on the Manager.
If you hadn't already guessed I'm a bit of a noob at this so please be tolerant if this is a dumb question :-)

Take a look at SNMP4J javadoc for OctetString e.g. for 1 or 2 bytes ...
OCTET STRING (SIZE(1))
OCTET STRING (SIZE(2))
Quoting http://www.snmpsharpnet.com/?page_id=66 :
Octet String is an SMI data type used to process arrays of Byte
values. Unlike what the name suggests, this data type is not limited
to string values but can store any byte based data type (including
binary data).

I've done a bit of digging in the encoding rules used by SNMP (see en.wikipedia.org/wiki/X.690) and it looks like my question is irrelevant if the code packing the PDU has a bit of intelligence. The Basic Encoding Rules employed by SNMP record an integer value as a triple "tag-length-value" where the "tag" identifies the data type), the length gives the number of bytes holding the value and the value is, well, the value. So if the application is sending the value "1" from a 32-bit integer then there's no need to encode it in 32 bits, simply encode it as 0x02 0x01 0x01.
So it depends on whether the packing library has that intelligence.

Related

how to add signature to protobuf messges?

Is there a common way to sign protobuf messages? what I can imagine is to Add a data field and a signature field in a message, and use SerializeToArray(in cpp) or ToByteArray(in c#) to get raw bytes, and then use md5 or sha256 .. etc to calculate the hash value, then assign the hash value to the field 'sign'. Bue I don't know if there is any different with the raw bytes between different languages, or in proto2 and proto3?
The approach you discuss for signing is fine for integrity validation purposes, as long as your hashing algorithm is strong enough. If it is for anything stronger than an integrity checksum, you should probably use a true cryptographic hash (with public+private keys), as anyone can otherwise sign their own arbitrary payload, defeating the point.
You also seen to discuss determinism. The raw bytes in protobuf are not entirely deterministic. There are multiple valid ways of representing the same payload in protobuf, including:
reordering fields (numerical order is a "should", not a "must")
including or omitting zeros (different between proto2 and proto3)
packed vs sequential "repeated" encoding
the reality that "map" is usually backed by some platform-specific inbuilt map/dictionary type, which commonly do not define order, so in theory it can vary every time
not really an issue in reality, but in theory you can encode a varint with an arbitrary length (up to 10 bytes) simply by including unnecessary groups of zero bytes; similar to in text (JSON, etc) saying that 42, 042, 0042 and 0000000042 all represent the same integer; nobody does that, but: it would be valid

When to use fixed value protobuf type? Or under what scenarios?

I want to transfer a serialized protobuf message over TCP and I've tried to use the first field to indicate the total length of the serialized message.
I know that the int32 will change the length after encoding. So, maybe a fixed32 is a good choice.
But at last of the Encoding chapter, I found that I can't depend on it even if I use a fixed32 with field_num #1. Because Field Order said that the order may change.
My question is when do I use fixed value types? Are there any example scenarios?
"My question is when do I use fixed value types?"
When it comes to serializing values, there's always a tradeoff. If we look at the Protobuf-documentation, we see we have a few options when it comes to 32-bit integers:
int32: Uses variable-length encoding. Inefficient for encoding negative numbers – if your field is likely to have negative values, use sint32 instead.
uint32: Uses variable-length encoding.
sint32: Uses variable-length encoding. Signed int value. These more efficiently encode negative numbers than regular int32s.
fixed32: Always four bytes. More efficient than uint32 if values are often greater than 2^28.
sfixed32: Always four bytes.
int32 is a variable-length data-type. Any information that is not specified in the type itself, needs to be expressed somehow. To deserialize a variable-length number, we need to know what the length is. That is contained in the serialized message as well, which requires additional storage space. The same goes for an optional negative sign. The resulting message may be smaller because of this, but may be larger as well.
Say we have a lot of integers between 0 and 255 to encode. It would be cheaper to send this information as a two bytes (one byte with that actual value, and one byte to indicate that we just have one byte), than to send a full 32-bit (4 bytes) integer [fictional values, actual implementation may differ]. On the other hand, if we want to serialize a large value, that can only fit in 4 bytes the result may be larger (4 bytes and an additional byte to indicate that the value is 4 bytes; a total of 5 bytes). In this case it will be more efficient to use a fixed32. We simply know a fixed32 is 4 bytes; we don't need to serialize that fixed32 is a 4-byte number.
And if we look at fixed32 it actually mentions that the tradeoff point is around 2^28 (for unsigned integers).
So some types are good [as in, more efficient in terms of storage space] for large values, some for small values, some for positive/negative values. It all depends on what the actual values represent.
"Are there any example scenarios?"
32-bit hashes (ie: CRC-32), IPv4 addresses/masks. A predictable message sizes could be relevant.

maximum field number in protobuf message

The official document for protocol buffers https://developers.google.com/protocol-buffers/docs/proto3 says the maximum field number for fields in protobuf message is 2^29-1. But why is this limit?
Please anyone can explain in some detail? I am newbie to this.
I read answers to the this question at why 2^29-1 is the biggest key in protocol buffers.
But I am not clarified
Each field in an encoded protocol buffer has a header (called key or tag) prefixed to the actual encoded value. The encoding spec defines this key:
Each key in the streamed message is a varint with the value (field_number << 3) | wire_type – in other words, the last three bits of the number store the wire type.
Here the spec says the tag is a varint where the first 3 bits are used to encode the wire type. A varint could encode a 64 bit value, thus just by going on this definition the limit would be 2^61-1.
In addition to this, the Language Guide narrows this down to a 32 bit value at max.
The smallest field number you can specify is 1, and the largest is 2^29 - 1, or 536,870,911.
The reasons for this are not given. I can only speculate for the reasons behind this:
Artificial limit as no one is expecting a message to have that many fields. Just think about fitting a message with that many fields into memory.
As the key is a varint, it isn't simply the next 4 bytes in the raw buffer, rather a variable length of bytes (Java code reading a varint32). Each byte has 7 bit of actual data and 1 bit indicating if the end is reached. It cloud be that for performance reasons it was deemed to be better to limit the range.
Since proto3 is the 3rd version of protocol buffers, it could be that either proto1 or proto2 defined the tag to be a varint32. To keep backwards compatibility this limit is still true in proto3 today.
Because of this line:
#define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE) \
static_cast<uint32>((static_cast<uint32>(FIELD_NUMBER) << 3) | (TYPE))
this line create a "tag", which left only 29 (32 - 3) bits to save field indice.
Don't know why google use uint32 instead of uint64 though, since field number is a varint, may be they think 2^29-1 fields is large enough for a single message declaration.
I suspect this is simply so that a field-header (wire-type and tag-number) can be decoded and handled as a 32-bit value. The wire-type is always the 3 least significant bits, leaving 29 bits for the tag number. Technically "varint" should support 64 bits, but it makes sense to limit it to reasonable numbers, not least because "varint" encoding means that larger numbers take more bytes to encode.
Edit: I realise now that this is similar to the linked post, but... it remain true! Each field in protobuf is prefixed by a "varint" that expresses what field (tag-number) follows, and what data type it is (wire-type). The latter is important especially so that unexpected fields (version differences) can be stored or skipped correctly. It is convenient for that field-header to be trivially processed by most frameworks, and most frameworks are fine with 32-bit integers.
this is another question rather a comment, in the document it says,
Field numbers in the range 16 through 2047 take two bytes. So you
should reserve the numbers 1 through 15 for very frequently occurring
message elements. Remember to leave some room for frequently occurring
elements that might be added in the future.
Because for the first byte, top 5 bits are used for field number, and bottom 3 bits for field type, isn't it that field number from 31 (because zero is not used) to 2047 take two bytes? (and I also guess the second bytes' lower 3 bits are used also for field type.. I'm in the middle of reading it, so I'll fix it when I know it)

Most efficient barcode to store a GUID

I have a system that I'm working on at the moment that requires users to log into the system, and the client wants to use a barcode scanner and cards to keep prices down. (Yes username and password cheaper, but she wants a card type solution so she gets one.)
All my data uses GUIDs as key fields, so I'd like to store the GUID directly on the card in the barcode. While its simple enough to code it as 3 of 9 its not going to be the most efficient use of space.
Is there a best practice or most efficient method for storing GUIDs in a barcode? I'd have assumed that since there's a consistent length, and depth to the data there would be a standard, but I can't find it. Would be easy enough to generate my own - control char either end and then binary data between, but would like something that standard readers will know how to interpret.
Any help gratefully received.
There are no open standards for special-purpose data compaction with generic linear barcodes such as Code 39 and Code 128. Most ISO/IEC-standardised 2D barcodes do support a special-purpose data encoding mechanism called Extended Channel Interpretation (ECI) which allows you to specify that data conforms to a certain application standard or encoding regime, for example ECI 298765 for IPv4 address compaction [*]. Unfortunately GUID compaction isn't amongst those that have been registered and even if it were you would nevertheless need to handle this within your application as reader support would be lacking.
That leaves you with having to pre-encode (and subsequently decode) the GUID into a format that can be handled efficiently by some ubiquitous barcode symbology.
An efficient way to store a GUID would be to convert it to a 40-digit[†] decimal representation and store the result in a Code 128 barcode using double-density numeric compression ("Mode C").
For example, consider the GUID:
cd171f7c-560d-4a62-8d65-16b87419a58c
Expressed as a hexadecimal number:
0xCD171F7C560D4A628D6516B87419A58C
Converted to 40 decimal digits:
0272611800569275698104677545117639878028
Encoded within a Code 128 barcode:
Your application would of course need to recognise this input as a decimal-encoded GUID and reverse the above process but I doubt that a significantly more efficient approach exists that doesn't require you to transform the data into an unusual radix and then deal with the complexities of handling ASCII control characters at scan time.
[*] The register of assigned ECI codes is available from the AIM store as "ECI Part 3: Register".
[†] Whilst it is possible to store the entire GUID range within 39 digits a 39-digit Mode C Code 128 symbol is in fact longer than a 40-digit symbol.

Protocol Buffers - Best practice for repeated boolean values

I need to transfer some data over a relative slow (down to only 1Kb/s) connection. I have read that the encoding of Googles protocol buffers is efficient.
Thats true for most of my data, but not for boolean values, especialy if it is a repeated field.
The problem is that I have to transfer, beside other data, a specified number (15) of boolean values every 50 milliseconds. Protobuf is encoding each boolean value into one byte for the field ID and one byte for the boolean value (0x00 or 0x01) which results in 30 bytes of data for 15 boolean values.
So I am searching for a better way of encoding this now. Anybody also had this problem already? What would be the best practice to reach a efficient encoding for this situation?
My idea was to use a numbered data type (uint32) and manual encode the data, for every bool one bit of the integer. Any feedback about this idea?
In Protobuf, your best bet is to use an integer bitfield. If you have more than 64 bits, use a bytes field (and pack the bits manually).
Note that Cap'n Proto will pack boolean values (in both structs and lists) as individual bits, and so may be worth looking at.
However, if you are extremely bandwidth-constrained, it may be best to develop your own custom protocol. Most of these serialization frameworks trade-off a little bit of space for ease of use (especially when it comes to dealing with version skew), but if your case it may be more important to focus solely on size. A custom message format that just contains some bits should be easy enough to maintain and can be packed as tightly as you want.
(Disclosure: I am the author of Cap'n Proto, as well as most of Google's open source Protobuf code.)

Resources