Intuition behind this solution for "Maximising XOR" - algorithm

Here is the problem statement:
Given two integers: L and R,
find the maximal values of A xor B given, L ≤ A ≤ B ≤ R
Input Format:
The input contains two lines, L is present in the first line.
R in the second line.
Constraints :
1 ≤ L ≤ R ≤ 1000
Output Format
The maximal value as mentioned in the problem statement.
Source:
Maximising XOR
Here is one unique solution to the above:
def maxXOR(L,R):
P = L^R
ret = 1
while(P): # this one takes (m+1) = O(logR) steps
ret <<= 1
P >>= 1
return (ret - 1)
print(maxXOR(int(input()),int(input())))
Could you please explain the intuition behind this solution?
Thank you.

There is one simple way using which you can solve the problem in O(1).
Let's start:
Do the bit-wise XOR of L and R and store it in a variable say xored.
Then take the MSB in the xored which is set and make all the bits from that MSB -----> LSB as 1 and that is the answer.
Following example which will make things clear.
L = 10111 --> (23)
R = 11100 --> (28)
_X___ <-- that's most significant differing bit
01111 <-- here's our final answer i.e. (15).
To set all the bits from MSB to LSB, first calculate the 2^n - 1 where n = number of bits required to represent L^R and then do L^R | (2^(n) - 1).
Solution in Python:
import math
def main():
xored = int(input().strip()) ^ int(input().strip())
print("{}".format(xored | ((1 << (1 + int(math.log2(xored)))) - 1)))
if __name__ == "__main__":
main()
NOTE: You can refer to solution in C and C++ here!.

Related

geting maximum number in a set with special conditions

I encountered a problem recently I have a hard time finding the answer.
This is the question:
Consider a set of numbers.There are tree kinds of input:
1 x
2 x
3
The first command adds integer x to the set.
The second one means for every element y in list, put:
y = y xor x
and The last command prints the biggest number in the set. for instance:
10
3
1 7
3
2 4
2 8
2 3
1 10
1 3
3
2 1
results:
0
7
15
if n is the number of commands in input:
and:
also there is a 1 second execution time limit!
My solution so far:
lets call the set S and have an integer m which initially is 0.as you know:
number = number xor x xor x
meaning that if we apply xor twice on something then the its effect is reversed and the original number doesn't change. That being said if we every time we insert a number(command 1) we do the following:
y = y xor m
add y to S
and every time we want to get a number from the set:
find y
y = y xor m
return y
and if command two comes to the following:
m = m xor x
then the problem is almost solved, since initially save the XORed version of the numbers and when needed we do the revers!
But the problem here is to find the largest number in the set( pay attention that the numbers in the set are different from original numbers) so command 3 works right. I don't know how to do this in an efficient time.but I have an idea here:
if we save the binary representation of the numbers in the set in a trie data structure at first the maybe we can quickly find the biggest number. I don't really know how but this idea occurred to me.
so to sum up these are my issues:
problem 1:
how to find the biggest number in the revised list
problem 2:
is this trie idea good?
problem 3:
how can I implement it in code(the language is not very important here) so that it works time find?
also what is the time complexity needed to solve this problem in the first place?
Thanks for reading my question.
Yes your idea is correct, it can be solved in O(N log 10^9) using binary trie data structure.
The idea is to store numbers in binary notation yet putting biggest bits first, so while traversing the trie we can choose a branch that leads to greatest answer.
For determining which branch to choose we can determine this bit by bit, if from some trie node we have 2 branches with values 0 and 1 we choose the one which gives better result after xoring with m
Sample code (C++):
#include <bits/stdc++.h>
using namespace std;
int Trie[4000005][2];
int nxt = 2;
void Add(int x)
{
bitset<32>b(x);
int c = 1;
for(int j=31; j>=0; j--)
if(Trie[c][b[j]])c=Trie[c][b[j]];
else c = Trie[c][b[j]] = nxt++;
}
int Get(int x)
{
bitset<32>b(x),res(0);
int c = 1;
for(int j=31; j>=0; j--)
if(Trie[c][!b[j]])c=Trie[c][!b[j]],res[j]=!b[j];
else c = Trie[c][b[j]], res[j]=b[j];
return res.to_ullong()^x;
}
int main()
{
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
int q,m=0;
cin>>q;
Add(0);
while(q--)
{
int type;
cin>>type;
if(type==1)
{
int x;
cin>>x;
Add(x^m);
}
else if(type==2)
{
int x;
cin>>x;
m^=x;
}
else cout<<Get(m)<<"\n";
}
}
This is very similar to this problem and should be solvable in O(n), because the number of bits for x is constant (for 10^9 you will have to look at the 30 lowest bits).
At start m = 0, each time you encounter the 2nd command you do m ^= x (m = m xor x).
Use a binary tree. Unlike for the linked question the amount of numbers in a bucket doesn't matter, you just need to be able to tell if there is a number that has a certain bit which is one or zero. E.g. for 3-bit numbers 1, 4 and 5 the tree could look like this (left means bit is 0, right means bit is 1):
*
/ \
1 1 there are numbers with highest bit 0 and 1
/ /
1 1 of the numbers with 1st bit 0, there is a number with 2nd bit 0 and ...
\ / \
1 1 1 of the numbers with 1st and 2nd bit 0, there is a number with 3rd bit 1,...
1 4 5 (the numbers just to clarify)
So adding a number just means adding some edges and nodes.
To get the highest number in the set you go down the tree and through the bits of m and calculate the max x as follows:
Initialize node n as the root of the tree, i = 29 the bit of m we are looking at and the solution x = 0.
mi = (m & (1 << i)) >> i (1 if the bit in m is 1, 0 otherwise).
If we look at n and there is only an edge denoting a 0 or if mi == 1 and we have a 0-edge: n becomes the node connected by that edge, x = 2 * x + mi (or more fancy: x = (x << 1) | mi).
Otherwise n becomes the node connected by the 1-edge and x = 2 * x + 1 - mi
If i > 0: decrease i by 1 and continue with step 2.
An example for 3-bit numbers m = 6 (110) and the numbers 1 (001), 4 (100) and 5 (101) in the set, the answer should be 7 (111), i.e. 1 xor 6: First step we go left and x = 1, then we can only go left and x = 3, then we can only go right and x = 7.

Number of Paths in a Triangle

I recently encountered a much more difficult variation of this problem, but realized I couldn't generate a solution for this very simple case. I searched Stack Overflow but couldn't find a resource that previously answered this.
You are given a triangle ABC, and you must compute the number of paths of certain length that start at and end at 'A'. Say our function f(3) is called, it must return the number of paths of length 3 that start and end at A: 2 (ABA,ACA).
I'm having trouble formulating an elegant solution. Right now, I've written a solution that generates all possible paths, but for larger lengths, the program is just too slow. I know there must be a nice dynamic programming solution that reuses sequences that we've previously computed but I can't quite figure it out. All help greatly appreciated.
My dumb code:
def paths(n,sequence):
t = ['A','B','C']
if len(sequence) < n:
for node in set(t) - set(sequence[-1]):
paths(n,sequence+node)
else:
if sequence[0] == 'A' and sequence[-1] == 'A':
print sequence
Let PA(n) be the number of paths from A back to A in exactly n steps.
Let P!A(n) be the number of paths from B (or C) to A in exactly n steps.
Then:
PA(1) = 1
PA(n) = 2 * P!A(n - 1)
P!A(1) = 0
P!A(2) = 1
P!A(n) = P!A(n - 1) + PA(n - 1)
= P!A(n - 1) + 2 * P!A(n - 2) (for n > 2) (substituting for PA(n-1))
We can solve the difference equations for P!A analytically, as we do for Fibonacci, by noting that (-1)^n and 2^n are both solutions of the difference equation, and then finding coefficients a, b such that P!A(n) = a*2^n + b*(-1)^n.
We end up with the equation P!A(n) = 2^n/6 + (-1)^n/3, and PA(n) being 2^(n-1)/3 - 2(-1)^n/3.
This gives us code:
def PA(n):
return (pow(2, n-1) + 2*pow(-1, n-1)) / 3
for n in xrange(1, 30):
print n, PA(n)
Which gives output:
1 1
2 0
3 2
4 2
5 6
6 10
7 22
8 42
9 86
10 170
11 342
12 682
13 1366
14 2730
15 5462
16 10922
17 21846
18 43690
19 87382
20 174762
21 349526
22 699050
23 1398102
24 2796202
25 5592406
26 11184810
27 22369622
28 44739242
29 89478486
The trick is not to try to generate all possible sequences. The number of them increases exponentially so the memory required would be too great.
Instead, let f(n) be the number of sequences of length n beginning and ending A, and let g(n) be the number of sequences of length n beginning with A but ending with B. To get things started, clearly f(1) = 1 and g(1) = 0. For n > 1 we have f(n) = 2g(n - 1), because the penultimate letter will be B or C and there are equal numbers of each. We also have g(n) = f(n - 1) + g(n - 1) because if a sequence ends begins A and ends B the penultimate letter is either A or C.
These rules allows you to compute the numbers really quickly using memoization.
My method is like this:
Define DP(l, end) = # of paths end at end and having length l
Then DP(l,'A') = DP(l-1, 'B') + DP(l-1,'C'), similar for DP(l,'B') and DP(l,'C')
Then for base case i.e. l = 1 I check if the end is not 'A', then I return 0, otherwise return 1, so that all bigger states only counts those starts at 'A'
Answer is simply calling DP(n, 'A') where n is the length
Below is a sample code in C++, you can call it with 3 which gives you 2 as answer; call it with 5 which gives you 6 as answer:
ABCBA, ACBCA, ABABA, ACACA, ABACA, ACABA
#include <bits/stdc++.h>
using namespace std;
int dp[500][500], n;
int DP(int l, int end){
if(l<=0) return 0;
if(l==1){
if(end != 'A') return 0;
return 1;
}
if(dp[l][end] != -1) return dp[l][end];
if(end == 'A') return dp[l][end] = DP(l-1, 'B') + DP(l-1, 'C');
else if(end == 'B') return dp[l][end] = DP(l-1, 'A') + DP(l-1, 'C');
else return dp[l][end] = DP(l-1, 'A') + DP(l-1, 'B');
}
int main() {
memset(dp,-1,sizeof(dp));
scanf("%d", &n);
printf("%d\n", DP(n, 'A'));
return 0;
}
EDITED
To answer OP's comment below:
Firstly, DP(dynamic programming) is always about state.
Remember here our state is DP(l,end), represents the # of paths having length l and ends at end. So to implement states using programming, we usually use array, so DP[500][500] is nothing special but the space to store the states DP(l,end) for all possible l and end (That's why I said if you need a bigger length, change the size of array)
But then you may ask, I understand the first dimension which is for l, 500 means l can be as large as 500, but how about the second dimension? I only need 'A', 'B', 'C', why using 500 then?
Here is another trick (of C/C++), the char type indeed can be used as an int type by default, which value is equal to its ASCII number. And I do not remember the ASCII table of course, but I know that around 300 will be enough to represent all the ASCII characters, including A(65), B(66), C(67)
So I just declare any size large enough to represent 'A','B','C' in the second dimension (that means actually 100 is more than enough, but I just do not think that much and declare 500 as they are almost the same, in terms of order)
so you asked what DP[3][1] means, it means nothing as the I do not need / calculate the second dimension when it is 1. (Or one can think that the state dp(3,1) does not have any physical meaning in our problem)
In fact, I always using 65, 66, 67.
so DP[3][65] means the # of paths of length 3 and ends at char(65) = 'A'
You can do better than the dynamic programming/recursion solution others have posted, for the given triangle and more general graphs. Whenever you are trying to compute the number of walks in a (possibly directed) graph, you can express this in terms of the entries of powers of a transfer matrix. Let M be a matrix whose entry m[i][j] is the number of paths of length 1 from vertex i to vertex j. For a triangle, the transfer matrix is
0 1 1
1 0 1.
1 1 0
Then M^n is a matrix whose i,j entry is the number of paths of length n from vertex i to vertex j. If A corresponds to vertex 1, you want the 1,1 entry of M^n.
Dynamic programming and recursion for the counts of paths of length n in terms of the paths of length n-1 are equivalent to computing M^n with n multiplications, M * M * M * ... * M, which can be fast enough. However, if you want to compute M^100, instead of doing 100 multiplies, you can use repeated squaring: Compute M, M^2, M^4, M^8, M^16, M^32, M^64, and then M^64 * M^32 * M^4. For larger exponents, the number of multiplies is about c log_2(exponent).
Instead of using that a path of length n is made up of a path of length n-1 and then a step of length 1, this uses that a path of length n is made up of a path of length k and then a path of length n-k.
We can solve this with a for loop, although Anonymous described a closed form for it.
function f(n){
var as = 0, abcs = 1;
for (n=n-3; n>0; n--){
as = abcs - as;
abcs *= 2;
}
return 2*(abcs - as);
}
Here's why:
Look at one strand of the decision tree (the other one is symmetrical):
A
B C...
A C
B C A B
A C A B B C A C
B C A B B C A C A C A B B C A B
Num A's Num ABC's (starting with first B on the left)
0 1
1 (1-0) 2
1 (2-1) 4
3 (4-1) 8
5 (8-3) 16
11 (16-5) 32
Cleary, we can't use the strands that end with the A's...
You can write a recursive brute force solution and then memoize it (aka top down dynamic programming). Recursive solutions are more intuitive and easy to come up with. Here is my version:
# search space (we have triangle with nodes)
nodes = ["A", "B", "C"]
#cache # memoize!
def recurse(length, steps):
# if length of the path is n and the last node is "A", then it's
# a valid path and we can count it.
if length == n and ((steps-1)%3 == 0 or (steps+1)%3 == 0):
return 1
# we don't want paths having len > n.
if length > n:
return 0
# from each position, we have two possibilities, either go to next
# node or previous node. Total paths will be sum of both the
# possibilities. We do this recursively.
return recurse(length+1, steps+1) + recurse(length+1, steps-1)

Non-restoring division algorithm

Does anyone know the steps for dividing unsigned binary integers using non-restoring division?
It's hard to find any good sources online.
i.e if A = 101110 and B = 010111
how do we find A divided by B in non-restoring division? What do the registers look like in each step?
Thanks!
(My answer is a little late-reply. But I hope it will be useful for future visitors)
Algorithm for Non-restoring division is given in below image :
In this problem, Dividend (A) = 101110, ie 46, and Divisor (B) = 010111, ie 23.
Initialization :
Set Register A = Dividend = 000000
Set Register Q = Dividend = 101110
( So AQ = 000000 101110 , Q0 = LSB of Q = 0 )
Set M = Divisor = 010111, M' = 2's complement of M = 101001
Set Count = 6, since 6 digits operation is being done here.
After this we start the algorithm, which I have shown in a table below :
In table, SHL(AQ) denotes shift left AQ by one position leaving Q0 blank.
Similarly, a square symbol in Q0 position denote, it is to be calculated later
Hope all the steps are clear from the table !!!
1) Set the value of register A as 0 (N bits)
2) Set the value of register M as Divisor (N bits)
3) Set the value of register Q as Dividend (N bits)
4) Concatenate A with Q {A,Q}
5) Repeat the following “N” number of times (here N is no. of bits in divisor):
  If the sign bit of A equals 0,
   shift A and Q combined left by 1 bit and
subtract M from A,
  else shift A and Q combined left by 1 bit and add M to A
  Now if sign bit of A equals 0, then set Q[0] as 1, else set Q[0] as 0
6) Finally if the sign bit of A equals 1 then add M to A.
7) Assign A as remainder and Q as quotient.

Number equal to the sum of powers of its digits

I've got another interesing programming/mathematical problem.
For a given natural number q from interval [2; 10000] find the number n
which is equal to sum of q-th powers of its digits modulo 2^64.
for example: for q=3, n=153; for q=5, n=4150.
I wasn't sure if this problem fits more to math.se or stackoverflow, but this was a programming task which my friend told me quite a long time ago. Now I remembered that and would like to know how such things can be done. How to approach this?
There are two key points,
the range of possible solutions is bounded,
any group of numbers whose digits are the same up to permutation con contain at most one solution.
Let us take a closer look at the case q = 2. If a d-digit number n is equal to the sum of the squares of its digits, then
n >= 10^(d-1) // because it's a d-digit number
n <= d*9^2 // because each digit is at most 9
and the condition 10^(d-1) <= d*81 is easily translated to d <= 3 or n < 1000. That's not many numbers to check, a brute-force for those is fast. For q = 3, the condition 10^(d-1) <= d*729 yields d <= 4, still not many numbers to check. We could find smaller bounds by analysing further, for q = 2, the sum of the squares of at most three digits is at most 243, so a solution must be less than 244. The maximal sum of squares of digits in that range is reached for 199: 1² + 9² + 9² = 163, continuing, one can easily find that a solution must be less than 100. (The only solution for q = 2 is 1.) For q = 3, the maximal sum of four cubes of digits is 4*729 = 2916, continuing, we can see that all solutions for q = 3 are less than 1000. But that sort of improvement of the bound is only useful for small exponents due to the modulus requirement. When the sum of the powers of the digits can exceed the modulus, it breaks down. Therefore I stop at finding the maximal possible number of digits.
Now, without the modulus, for the sum of the q-th powers of the digits, the bound would be approximately
q - (q/20) + 1
so for larger q, the range of possible solutions obtained from that is huge.
But two points come to the rescue here, first the modulus, which limits the solution space to 2 <= n < 2^64, at most 20 digits, and second, the permutation-invariance of the (modular) digital power sum.
The permutation invariance means that we only need to construct monotonous sequences of d digits, calculate the sum of the q-th powers and check whether the number thus obtained has the correct digits.
Since the number of monotonous d-digit sequences is comparably small, a brute-force using that becomes feasible. In particular if we ignore digits not contributing to the sum (0 for all exponents, 8 for q >= 22, also 4 for q >= 32, all even digits for q >= 64).
The number of monotonous sequences of length d using s symbols is
binom(s+d-1, d)
s is for us at most 9, d <= 20, summing from d = 1 to d = 20, there are at most 10015004 sequences to consider for each exponent. That's not too much.
Still, doing that for all q under consideration amounts to a long time, but if we take into account that for q >= 64, for all even digits x^q % 2^64 == 0, we need only consider sequences composed of odd digits, and the total number of monotonous sequences of length at most 20 using 5 symbols is binom(20+5,20) - 1 = 53129. Now, that looks good.
Summary
We consider a function f mapping digits to natural numbers and are looking for solutions of the equation
n == (sum [f(d) | d <- digits(n)] `mod` 2^64)
where digits maps n to the list of its digits.
From f, we build a function F from lists of digits to natural numbers,
F(list) = sum [f(d) | d <- list] `mod` 2^64
Then we are looking for fixed points of G = F ∘ digits. Now n is a fixed point of G if and only if digits(n) is a fixed point of H = digits ∘ F. Hence we may equivalently look for fixed points of H.
But F is permutation-invariant, so we can restrict ourselves to sorted lists and consider K = sort ∘ digits ∘ F.
Fixed points of H and of K are in one-to-one correspondence. If list is a fixed point of H, then sort(list) is a fixed point of K, and if sortedList is a fixed point of K, then H(sortedList) is a permutation of sortedList, hence H(H(sortedList)) = H(sortedList), in other words, H(sortedList) is a fixed point of K, and sort resp. H are bijections between the set of fixed points of H and K.
A further improvement is possible if some f(d) are 0 (modulo 264). Let compress be a function that removes digits with f(d) mod 2^64 == 0 from a list of digits and consider the function L = compress ∘ K.
Since F ∘ compress = F, if list is a fixed point of K, then compress(list) is a fixed point of L. Conversely, if clist is a fixed point of L, then K(clist) is a fixed point of K, and compress resp. K are bijections between the sets of fixed points of L resp. K. (And H(clist) is a fixed point of H, and compress ∘ sort resp. H are bijections between the sets of fixed points of L resp. H.)
The space of compressed sorted lists of at most d digits is small enough to brute-force for the functions f under consideration, namely power functions.
So the strategy is:
Find the maximal number d of digits to consider (bounded by 20 due to the modulus, smaller for small q).
Generate the compressed monotonic sequences of up to d digits.
Check whether the sequence is a fixed point of L, if it is, F(sequence) is a fixed point of G, i.e. a solution of the problem.
Code
Fortunately, you haven't specified a language, so I went for the option of simplest code, i.e. Haskell:
{-# LANGUAGE CPP #-}
module Main (main) where
import Data.List
import Data.Array.Unboxed
import Data.Word
import Text.Printf
#include "MachDeps.h"
#if WORD_SIZE_IN_BITS == 64
type UINT64 = Word
#else
type UINT64 = Word64
#endif
maxDigits :: UINT64 -> Int
maxDigits mx = min 20 $ go d0 (10^(d0-1)) start
where
d0 = floor (log (fromIntegral mx) / log 10) + 1
mxi :: Integer
mxi = fromIntegral mx
start = mxi * fromIntegral d0
go d p10 mmx
| p10 > mmx = d-1
| otherwise = go (d+1) (p10*10) (mmx+mxi)
sortedDigits :: UINT64 -> [UINT64]
sortedDigits = sort . digs
where
digs 0 = []
digs n = case n `quotRem` 10 of
(q,r) -> r : digs q
generateSequences :: Int -> [a] -> [[a]]
generateSequences 0 _
= [[]]
generateSequences d [x]
= [replicate d x]
generateSequences d (x:xs)
= [replicate k x ++ tl | k <- [d,d-1 .. 0], tl <- generateSequences (d-k) xs]
generateSequences _ _ = []
fixedPoints :: (UINT64 -> UINT64) -> [UINT64]
fixedPoints digFun = sort . map listNum . filter okSeq $
[ds | d <- [1 .. mxdigs], ds <- generateSequences d contDigs]
where
funArr :: UArray UINT64 UINT64
funArr = array (0,9) [(i,digFun i) | i <- [0 .. 9]]
mxval = maximum (elems funArr)
contDigs = filter ((/= 0) . (funArr !)) [0 .. 9]
mxdigs = maxDigits mxval
listNum = sum . map (funArr !)
numFun = listNum . sortedDigits
listFun = inter . sortedDigits . listNum
inter = go contDigs
where
go cds#(c:cs) dds#(d:ds)
| c < d = go cs dds
| c == d = c : go cds ds
| otherwise = go cds ds
go _ _ = []
okSeq ds = ds == listFun ds
solve :: Int -> IO ()
solve q = do
printf "%d:\n " q
print (fixedPoints (^q))
main :: IO ()
main = mapM_ solve [2 .. 10000]
It's not optimised, but as is, it finds all solutions for 2 <= q <= 10000 in a little below 50 minutes on my box, starting with
2:
[1]
3:
[1,153,370,371,407]
4:
[1,1634,8208,9474]
5:
[1,4150,4151,54748,92727,93084,194979]
6:
[1,548834]
7:
[1,1741725,4210818,9800817,9926315,14459929]
8:
[1,24678050,24678051,88593477]
9:
[1,146511208,472335975,534494836,912985153]
10:
[1,4679307774]
11:
[1,32164049650,32164049651,40028394225,42678290603,44708635679,49388550606,82693916578,94204591914]
And ending with
9990:
[1,12937422361297403387,15382453639294074274]
9991:
[1,16950879977792502812]
9992:
[1,2034101383512968938]
9993:
[1]
9994:
[1,9204092726570951194,10131851145684339988]
9995:
[1]
9996:
[1,10606560191089577674,17895866689572679819]
9997:
[1,8809232686506786849]
9998:
[1]
9999:
[1]
10000:
[1,11792005616768216715]
The exponents from about 10 to 63 take longest (individually, not cumulative), there's a remarkable speedup from exponent 64 on due to the reduced search space.
Here is a brute force solution that will solve for all such n, including 1 and any other n greater than the first within whatever range you choose (in this case I chose base^q as my range limit). You could modify to ignore the special case of 1 and also to return after the first result. It's in C#, but might look nicer in a language with a ** exponentiation operator. You could also pass in your q and base as parameters.
int q = 5;
int radix = 10;
for (int input = 1; input < (int)Math.Pow(radix, q); input++)
{
int sum = 0;
for (int i = 1; i < (int)Math.Pow(radix, q); i *= radix)
{
int x = input / i % radix; //get current digit
sum += (int)Math.Pow(x, q); //x**q;
}
if (sum == input)
{
Console.WriteLine("Hooray: {0}", input);
}
}
So, for q = 5 the results are:
Hooray: 1
Hooray: 4150
Hooray: 4151
Hooray: 54748
Hooray: 92727
Hooray: 93084

Find the minimum number of operations required to compute a number using a specified range of numbers

Let me start with an example -
I have a range of numbers from 1 to 9. And let's say the target number that I want is 29.
In this case the minimum number of operations that are required would be (9*3)+2 = 2 operations. Similarly for 18 the minimum number of operations is 1 (9*2=18).
I can use any of the 4 arithmetic operators - +, -, / and *.
How can I programmatically find out the minimum number of operations required?
Thanks in advance for any help provided.
clarification: integers only, no decimals allowed mid-calculation. i.e. the following is not valid (from comments below): ((9/2) + 1) * 4 == 22
I must admit I didn't think about this thoroughly, but for my purpose it doesn't matter if decimal numbers appear mid-calculation. ((9/2) + 1) * 4 == 22 is valid. Sorry for the confusion.
For the special case where set Y = [1..9] and n > 0:
n <= 9 : 0 operations
n <=18 : 1 operation (+)
otherwise : Remove any divisor found in Y. If this is not enough, do a recursion on the remainder for all offsets -9 .. +9. Offset 0 can be skipped as it has already been tried.
Notice how division is not needed in this case. For other Y this does not hold.
This algorithm is exponential in log(n). The exact analysis is a job for somebody with more knowledge about algebra than I.
For more speed, add pruning to eliminate some of the search for larger numbers.
Sample code:
def findop(n, maxlen=9999):
# Return a short postfix list of numbers and operations
# Simple solution to small numbers
if n<=9: return [n]
if n<=18: return [9,n-9,'+']
# Find direct multiply
x = divlist(n)
if len(x) > 1:
mults = len(x)-1
x[-1:] = findop(x[-1], maxlen-2*mults)
x.extend(['*'] * mults)
return x
shortest = 0
for o in range(1,10) + range(-1,-10,-1):
x = divlist(n-o)
if len(x) == 1: continue
mults = len(x)-1
# We spent len(divlist) + mults + 2 fields for offset.
# The last number is expanded by the recursion, so it doesn't count.
recursion_maxlen = maxlen - len(x) - mults - 2 + 1
if recursion_maxlen < 1: continue
x[-1:] = findop(x[-1], recursion_maxlen)
x.extend(['*'] * mults)
if o > 0:
x.extend([o, '+'])
else:
x.extend([-o, '-'])
if shortest == 0 or len(x) < shortest:
shortest = len(x)
maxlen = shortest - 1
solution = x[:]
if shortest == 0:
# Fake solution, it will be discarded
return '#' * (maxlen+1)
return solution
def divlist(n):
l = []
for d in range(9,1,-1):
while n%d == 0:
l.append(d)
n = n/d
if n>1: l.append(n)
return l
The basic idea is to test all possibilities with k operations, for k starting from 0. Imagine you create a tree of height k that branches for every possible new operation with operand (4*9 branches per level). You need to traverse and evaluate the leaves of the tree for each k before moving to the next k.
I didn't test this pseudo-code:
for every k from 0 to infinity
for every n from 1 to 9
if compute(n,0,k):
return k
boolean compute(n,j,k):
if (j == k):
return (n == target)
else:
for each operator in {+,-,*,/}:
for every i from 1 to 9:
if compute((n operator i),j+1,k):
return true
return false
It doesn't take into account arithmetic operators precedence and braces, that would require some rework.
Really cool question :)
Notice that you can start from the end! From your example (9*3)+2 = 29 is equivalent to saying (29-2)/3=9. That way we can avoid the double loop in cyborg's answer. This suggests the following algorithm for set Y and result r:
nextleaves = {r}
nops = 0
while(true):
nops = nops+1
leaves = nextleaves
nextleaves = {}
for leaf in leaves:
for y in Y:
if (leaf+y) or (leaf-y) or (leaf*y) or (leaf/y) is in X:
return(nops)
else:
add (leaf+y) and (leaf-y) and (leaf*y) and (leaf/y) to nextleaves
This is the basic idea, performance can be certainly be improved, for instance by avoiding "backtracks", such as r+a-a or r*a*b/a.
I guess my idea is similar to the one of Peer Sommerlund:
For big numbers, you advance fast, by multiplication with big ciphers.
Is Y=29 prime? If not, divide it by the maximum divider of (2 to 9).
Else you could subtract a number, to reach a dividable number. 27 is fine, since it is dividable by 9, so
(29-2)/9=3 =>
3*9+2 = 29
So maybe - I didn't think about this to the end: Search the next divisible by 9 number below Y. If you don't reach a number which is a digit, repeat.
The formula is the steps reversed.
(I'll try it for some numbers. :) )
I tried with 2551, which is
echo $((((3*9+4)*9+4)*9+4))
But I didn't test every intermediate result whether it is prime.
But
echo $((8*8*8*5-9))
is 2 operations less. Maybe I can investigate this later.

Resources