Solve the following Caliban problem, translating each clue
'loyally' into Prolog, i.e. as loyally as possible.
As a simple exercise in abstraction suppose that four meaningless
symbols a, b, c, and d correspond in one order or another to the
equally meaningless symbols w, x, y, and z, and suppose further that
If a is not x, then c is not y.
If b is either y or z, then a is x.
If c is not w, then b is z.
If d is y, then b is not x.
If d is not x, then b is x.
In what order do the two sets of symbols correspond?
I tried the following code:
vban(L) :-
L=[[a,C1],[b,C2],[c,C3],[d,C4]],
( member(C1,[w,y,z]) -> member(C3,[w,x,z])),
( member(C2,[y,z]) -> member(C1,[x])),
( member(C3,[x,y,z]) -> member(C2,[z])),
( member(C4,[y]) -> member(C2,[w,y,z])),
( member(C4,[w,y,z]) -> member(C2,[x])).
But it shows fail.Any help would be appreciated.
Using CLP(B) in SICStus Prolog or SWI:
:- use_module(library(clpb)).
:- use_module(library(lists)).
:- use_module(library(clpfd)).
corresponding(Matrix) :-
Matrix = [[ _,AX, _, _],
[ _,BX,BY,BZ],
[CW, _,CY, _],
[ _,DX,DY, _]],
maplist(card1, Matrix),
transpose(Matrix, TMatrix),
maplist(card1, TMatrix),
sat(~AX =< ~CY),
sat(BY + BZ =< AX),
sat(~CW =< BZ),
sat(DY =< ~BX),
sat(~DX =< BX).
card1(Vs) :- sat(card([1], Vs)).
Example query:
?- corresponding(Vs),
pairs_keys_values(Pairs, [t,a,b,c,d], [[w,x,y,z]|Vs]),
maplist(writeln, Pairs).
Yielding (1 denotes corresponding elements):
t-[w,x,y,z]
a-[0,0,1,0]
b-[0,1,0,0]
c-[1,0,0,0]
d-[0,0,0,1]
and bindings for Vs and Pairs.
Direct translation of the problem statement to ECLiPSe Prolog with ic_symbolic constraint programming library:
:- lib(ic).
:- lib(ic_symbolic).
:- local domain(symbol(w,x,y,z)).
russel(A, B, C, D) :-
[A, B, C, D] &:: symbol,
(A &\= x) => (C &\= y),
(B &= y or B &= z) => (A &= x),
(C &\= w) => (B &= z),
(D &= y) => (B &\= x),
(D &\= x) => (B &= x),
ic_symbolic:alldifferent([A, B, C, D]),
ic_symbolic:indomain(A),
ic_symbolic:indomain(B),
ic_symbolic:indomain(C),
ic_symbolic:indomain(D).
Solution:
[eclipse]: russel(A,B,C,D).
A = y
B = x
C = w
D = z
Yes
I like Mat's solution, but to solve the problem, we can write logical expressions with "and" and "or".
a, b, c et d can be symbolised with [0,0], [0,1], [1,0] and [1,1].
Two numbers M and N are equals if (M1 = N1 and M2 = N2)
Two numbers are differents if (M1 \= N1) or (M2 \= N2) (or not(equals) )
Implication u => v is translated in not(u) or v
So we get :
:- use_module(library(clpb)).
:- use_module(library(lambda)).
or(A,B,A+B).
and(A,B,A*B).
% two numbers are equal
equal(A, B, Eq) :-
foldl(\X^Y^Z^T^and(Z, (X =:= Y), T), A, B, 1, Eq).
% two numbers are different
different(A, B, Diff) :-
equal(A,B,Eq),
Diff = ~Eq.
% foldl(\X^Y^Z^T^or(Z, (X =\= Y), T), A, B, 0, Diff).
puzzle :-
A = [0,0],
B = [0,1],
C = [1,0],
D = [1,1],
W = [_,_],
X = [_,_],
Y = [_,_],
Z = [_,_],
% If a is not x, then c is not y.
% (a is x) or (c is not y)
equal(A, X, Eq1),
different(C, Y, Di1),
or(Eq1, Di1, P1),
% If b is either y or z, then a is x.
% (b is not y) and (b is not z) or (a is x)
different(B, Y, Di2),
different(B, Z, Di3),
equal(A, X, Eq2),
and(Di2, Di3, P2),
or(Eq2, P2, P3),
% If c is not w, then b is z.
% (c is w) or (b is z)
equal(C, W, Eq3),
equal(B, Z, Eq4),
or(Eq3, Eq4, P4),
% If d is y, then b is not x.
% (d is not y) or (b is not x)
different(D, Y, Di4),
different(B, X, Di5),
or(Di4, Di5, P5),
% If d is not x, then b is x.
%(d is x) or (b is x)
equal(D, X, Eq5),
equal(B, X, Eq6),
or(Eq5, Eq6, P6),
% we must express that W,X,Y,Z are differents
% W is different from X, Y, Z
foldl(W +\R^S^T^(different(W, R, U),
and(S, U, T)),
[X,Y,Z], 1, Dif1),
% X is different from Y, Z
foldl(X +\R^S^T^(different(X, R, U),
and(S, U, T)),
[Y,Z], 1, Dif2),
% Y is different from Z
different(Y, Z, Dif3),
% now we join all these expressions with an and
Expr = *([P1,P3,P4,P5,P6, Dif1,Dif2, Dif3]),
% we ask Prolog to count the number of solutions
sat_count(Expr, N),
writeln(N : ' solution(s)'),
% we ask Prolog to satisfy the expr
sat(Expr),
maplist(writeln, [A, B, C, D]), nl,
maplist(writeln, [W, X, Y, Z]).
We get :
?- puzzle.
1: solution(s)
[0,0]
[0,1]
[1,0]
[1,1]
[1,0]
[0,1]
[0,0]
[1,1]
true.
Related
I just can't seem to get the correct output - I am supposed to get -
?- dfs([a], X).
X = [a, f, i] ;
false.
But I get -
?- dfs([a], X).
X = [a|f] ;
% Representation of a tree
% choose initial state a
arc(a, b).
arc(a, f).
arc(b, c).
arc(b, d).
arc(b, e).
arc(f, g).
arc(f, i).
arc(i, j).
arc(i, k).
% the goal
goal(i).
dfs([Node|_], [Node|X]) :-
goal(X).
dfs([Node|_], [Node|X]) :-
expands([Node|_], NewNode),
append([Node|_], NewNode, appendedN),
dfs(appendedN, X).
% expands(+Path, ?NewNode).
% -- Path: is a list of nodes of the form Path=[Node|Nodes], where
% Node is the node we want to expand and Nodes is a list
% of remaining nodes already expanded and containing the root.
% -- NewNode: is a constant representing the node we want to go to,
% as there is an link to it from where we are currently.
%
expands([Node|_], NewNode):-
arc(Node, NewNode).
Your program matches the first clause, dfs([Node|_], [Node|X]), and nothing else, producing X = [a|i] .
Here's a working version.
% Representation of a tree
% choose initial state a
arc(a, b).
arc(a, f).
arc(b, c).
arc(b, d).
arc(b, e).
arc(f, g).
arc(f, i).
arc(i, j).
arc(i, k).
% the goal
goal(i).
% You can expand a starting symbol S to a list L if G is your goal, S expands
% to G in list L1, and you append the two lists.
dfs([S], L) :-
goal(G),
expands(S, G, L1),
append([S], L1, L).
% X expands to Y in list [Y] if there's a direct arc from X to Y (base case).
expands(X, Y, [Y]) :-
arc(X, Y).
% X expands to Z in list [Y|L] if there's a direct arc from X to Y and Y
% expands to Z in list L (recursive case).
expands(X, Z, [Y|L]) :-
arc(X, Y),
expands(Y, Z, L).
In this version, expands() produces all of the lists that start with a:
?- expands(a, X, L).
X = b,
L = [b] ;
X = f,
L = [f] ;
X = c,
L = [b, c] ;
X = d,
L = [b, d] ;
X = e,
L = [b, e] ;
X = g,
L = [f, g] ;
X = i,
L = [f, i] ;
X = j,
L = [f, i, j] ;
X = k,
L = [f, i, k] ;
false.
Then dfs() confirms that the goal i has been reached and adds the start symbol a to the head of the list:
?- dfs([a], X).
X = [a, f, i] ;
false.
I'm trying to code a program in prolog that says true if all the paths from a to b are the same size. Example : we have a path from a to b and another from a to c to b, here it's false because there are two paths from a to b with different sizes, the first is 1 and the other is 2. They all must be the same size otherwise it's false.
I started doing this to get the length of each path, but I'm stuck here, I just need to compare if there are two same paths or not, if yes then we compare the two results if they are the same length then true otherwise false, but I don't know how to do it in Prolog :
chemin1(X, Y):-
arete(X,Y).
chemin1(X, Y):-
arete(X,Z),
chemin1(Z,Y).
chemin2(X, Y, N):-
arete(X, Y),
N is 1.
chemin2(X, Y, N):-
arete(X, Z),
N1 is 1,
chemin2(Z, Y, N2),
N is N1+N2.
I'm assuming you have an acyclic directed graph and that a path is represented by a vertex list.
% b
% / \
% a d
% \ / \
% c---e
arete(a, b).
arete(a, c).
arete(b, d).
arete(c, d).
arete(c, e).
arete(d, e).
chemin(X, X, [X]).
chemin(X, Z, [X|Xs]):- arete(X, Y), chemin(Y, Z, Xs).
Examples:
?- chemin(a, d, C).
C = [a, b, d] ;
C = [a, c, d] ;
false.
?- chemin(a, e, C).
C = [a, b, d, e] ;
C = [a, c, d, e] ;
C = [a, c, e] ;
false.
Then, all paths between two vertices X and Y are of the same size, if there are no two paths between vertices X and Y that are of different sizes.
% all_same_size(+X, +Y)
all_same_size(X, Y) :-
not( ( chemin(X, Y, Xs),
chemin(X, Y, Ys),
not( same_size(Xs, Ys) ) ) ).
same_size([], []).
same_size([_|Xs], [_|Ys]) :- same_size(Xs, Ys).
Examples:
?- all_same_size(a, d).
true.
?- all_same_size(a, e).
false.
chemin2(X0,X, N) :-
path(arete, Path, X0,X),
length(Path, N).
allequallength(X0, X) :-
setof(N, chemin2(X0,X, N), [_]).
Using path/4.
With this definition you can also ask a more general question using the facts you indicated:
arete(a, b).
arete(b, d).
arete(b, c).
arete(a, c).
?- allequallength(X0,X).
X0 = X
; X0 = a, X = b
; X0 = a, X = d
; X0 = b, X = c
; X0 = b, X = d.
I am trying to implement exponentiation with the code below, but a simple query like 2^1 (ex(s(s(0)), s(0), Z).) hangs forever.
nat(0).
nat(s(X)) :- nat(X).
su(0, X, X) :- nat(X).
su(s(X), Y, s(Z)) :- su(X, Y, Z).
mu(0, _, 0).
mu(s(X), Y, Z) :- su(Y, A, Z), mu(X, Y, A).
ex(_, 0, s(0)).
ex(X, s(Y), Z) :- mu(X, A, Z), ex(X, Y, A).
As far as I can see, it is not efficient, because the mu/3 is called with two free variables. Indeed:
ex(X, s(Y), Z) :- mu(X, A, Z), ex(X, Y, A).
Both A and Z are unknown at that moment (I have put them in boldface).
Now your mu/2 is not capable of handling this properly. If we query mu/3 with mu(s(0), A, Z), we get:
?- mu(s(0), A, Z).
A = Z, Z = 0 ;
ERROR: Out of global stack
So it got stuck in infinite recursion as well.
This is due to the fact that it will tak the second clause of mu/3, and:
mu(s(X), Y, Z) :- su(Y, A, Z), mu(X, Y, A).
So su/3 is called with three unknown variables. The effect of this is that su/3 can keep proposing values "until the end of times":
?- su(A, B, C).
A = B, B = C, C = 0 ;
A = 0,
B = C, C = s(0) ;
A = 0,
B = C, C = s(s(0)) ;
A = 0,
...
even if the recursive mu(X, Y, A) rejects all these proposals, su/3 will never stop proposing new solutions.
Therefore it might be better to keep that in mind when we design the predicates for mu/3, and ex/3.
We can for example use an accumulator here that accumulates the values, and returns the end product. The advantage of this, is that we work with real values when we make the su/3 call, like:
mu(A, B, C) :-
mu(A, B, 0, C).
mu(0, _, 0, S, S).
mu(s(X), Y, I, Z) :-
su(Y, I, J),
mu(X, Y, J, Z).
Now if we enter mu/3 with only the first parameter fixed, we see:
?- mu(s(0), X, Y).
X = Y, Y = 0 ;
X = Y, Y = s(0) ;
X = Y, Y = s(s(0)) ;
X = Y, Y = s(s(s(0))) ;
...
?- mu(s(s(0)), X, Y).
X = Y, Y = 0 ;
X = s(0),
Y = s(s(0)) ;
X = s(s(0)),
Y = s(s(s(s(0)))) ;
X = s(s(s(0))),
Y = s(s(s(s(s(s(0)))))) ;
...
...
So that means that we now at least do not get stuck in a loop for mu/3 with only the first parameter fixed.
We can use the same strategy to define an ex/3 predicate:
ex(X, Y, Z) :-
ex(X, Y, s(0), Z).
ex(X, 0, Z, Z).
ex(X, s(Y), I, Z) :-
mu(X, I, J),
ex(X, Y, J, Z).
We then manage to calculate exponents like 21 and 22:
?- ex(s(s(0)), s(0), Z).
Z = s(s(0)) ;
false.
?- ex(s(s(0)), s(s(0)), Z).
Z = s(s(s(s(0)))) ;
false.
Note that the above has still some flaws, for example calculating for which powers the value is 4 will still loop:
?- ex(X, Y, s(s(s(s(0))))).
ERROR: Out of global stack
By rewriting the predicates, we can avoid that as well. But I leave that as an exercise.
I have matrix size [n,n].
I need to find sum
For example
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
sum = 3+4+7+8
I need to find sum of elements of first quadrant matrix
Using library(clpfd), which provides the useful sum/3 and transpose/2:
:- use_module(library(clpfd)).
sum_first_quadrant(M, S) :-
first_quadrant(M, Q),
maplist(sum_, Q, Ss),
sum_(Ss, S).
sum_(L, S) :-
sum(L, #=, S).
first_quadrant(M, Q) :-
transpose(M, T),
reverse(T, RT),
dichotomize(RT, RD),
reverse(RD, D),
transpose(D, TD),
dichotomize(TD, Q).
dichotomize(M, D) :-
length(M, L),
X #= L//2,
dichotomize_(M, X, D).
dichotomize_(_, 0, []).
dichotomize_([H|T], X, [H|T2]) :-
X #> 0,
Y #= X - 1,
dichotomize_(T, Y, T2).
Example:
?- sum_first_quadrant([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]], Z).
Z = 22 ;
false.
Note
You can get rid of the extraneous choice point in dichotomize_ using if_/3 and (=)/3 from library reif:
dichotomize_(L, X, D) :-
X #>= 0,
if_(X = 0,
D = [],
( Y #= X - 1,
L = [H|T],
D = [H|T2],
dichotomize_(T, Y, T2)
)
).
%-matrix
data([[1,2,18,23],
[5,6,10,10],
[9,10,11,12],
[13,14,15,16]]).
%-Sum
main(S):-
data(Ms),
length(Ms,N),
Mdl is N//2,
sum_matr(Ms,1,N,Mdl,0,S).
%+Matrix,+RowCounter,+Length,+Midle,+Acc,-S
sum_matr([R|Rs],I,K,Mdl,Acc,S):-
I=<Mdl, I1 is I+1,
findEnd(R,Mdl,ResList),
sum_row(ResList,Mdl,I,K,0,Srow),
Acc1 is Acc + Srow,
sum_matr(Rs,I1,K,Mdl,Acc1,S).
sum_matr(_,I,_,Mdl,S,S):-
I>Mdl.
%+Row,+Counter,+I,+K,+Acc,-Sum
sum_row([X|Xs],C,I,K,Acc,S):-
C<K,
Acc1 is Acc+X,
C1 is C+1,
sum_row(Xs,C1,I,K,Acc1,S).
sum_row(_,C,_,K,S,S):-
C>=K.
%+List, +Position, -End
findEnd(E, 0, E).
findEnd([_|T], N, E):-
N>0,
N1 is N-1,
findEnd(T, N1, E).
So I am relatively new to Prolog, and while this problem is easy in many other languages I am having a lot of trouble with it. I want to generate a List of factors for a number N. I have already built a predicate that tells me if a number is a factor:
% A divides B
% A is a factor of B
divides(A,B) :- A =\= 0, (B mod A) =:= 0.
% special case where 1 // 2 would be 0
factors(1,[1]) :- !.
% general case
factors(N,L):- N > 0, factor_list(1, N, L).
factor_list(S,E,L) :- S =< E // 2, f_list(S,E,L).
f_list(S,E,[]) :- S > E // 2, !.
f_list(S,E,[S|T]) :- divides(S,E), !, S1 is S+1, f_list(S1, E, T).
f_list(S,E,L) :- S1 is S+1, f_list(S1,E,L).
Any help would be appreciated.
EDIT
I pretty much changed my entire solution, but for some reason predicates like factors(9, [1]) return true, when I only want factors(9, [1,3]) to return true. Any thoughts?
Here's why factors(9,[1]) is true: the timing of attempted instantiations (that is to say, unifications) is off:
f_list(S,E,[]) :- S > E // 2, !.
f_list(S,E,[S|T]) :- divides(S,E), !, S1 is S+1, f_list(S1, E, T).
f_list(S,E,L) :- S1 is S+1, f_list(S1,E,L).
%% flist(1,9,[1]) -> (2nd clause) divides(1,9), S1 is 2, f_list(2,9,[]).
%% flist(2,9,[]) -> (3rd clause) S1 is 3, f_list(3,9,[]).
%% ...
%% flist(5,9,[]) -> (1st clause) 5 > 9 // 2, !.
because you pre-specify [1], when it reaches 3 the tail is [] and the match with the 2nd clause is prevented by this, though it would succeed due to divides/2.
The solution is to move the unifications out of clauses' head into the body, and make them only at the appropriate time, not sooner:
f_list(S,E,L) :- S > E // 2, !, L=[].
f_list(S,E,L) :- divides(S,E), !, L=[S|T], S1 is S+1, f_list(S1, E, T).
f_list(S,E,L) :- S1 is S+1, f_list(S1,E,L).
The above usually is written with the if-else construct:
f_list(S,E,L) :-
( S > E // 2 -> L=[]
; divides(S,E) -> L=[S|T], S1 is S+1, f_list(S1, E, T)
; S1 is S+1, f_list(S1, E, L)
).
Also you can simplify the main predicate as
%% is not defined for N =< 0
factors(N,L):-
( N =:= 1 -> L=[1]
; N >= 2 -> f_list(1,N,L)
).
Personally, I use a somewhat simpler looking solution:
factors(1,[1]):- true, !.
factors(X,[Factor1|T]):- X > 0,
between(2,X,Factor1),
NewX is X // Factor1, (X mod Factor1) =:= 0,
factors(NewX,T), !.
This one only accepts an ordered list of the factors.
Here is a simple enumeration based procedure.
factors(M, [1 | L]):- factors(M, 2, L).
factors(M, X, L):-
residue(M, X, M1),
((M==M1, L=L1); (M1 < M, L=[X|L1])),
((M1=1, L1=[]); (M1 > X, X1 is X+1, factors(M1, X1, L1))).
residue(M, X, M1):-
((M < X, M1=M);
(M >=X, MX is M mod X,
(MX=0, MM is M/X, residue(MM, X, M1);
MX > 0, M1=M))).