Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
Say you were given a black box that solves a clique problem in constant time.
You give the black box an undirected graph G with a bound k and it outputs either "Yes" or "No" that the graph G has a clique with at least k vertices.
How would you use this black box to find the vertices of a maximum clique in polynomial time?
As a hint, think about what happens if you choose a node from the graph, delete it, and then check whether there's still a k-clique. The black box will either say that there is or that there isn't. What do you learn if there still is a k-clique? What do you learn if there isn't?
Hope this helps!
Related
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
So, I have an assignment that I have to represent both adjacent and incidence matrixes statically and then, use a greedy algorithm to find the shortest path (I guess that it can be lowest cost as well, not sure) that goes through all vertices having 1 as origin.
Here's an image of the graph:
I'm kinda lost on how to do it, could somebody please give me some tips?
Greedy Algorithm:
While (Not at node 1)
{
if already visited current node, fail.
look at all current node's exit costs and choose the lowest as next destination.
go to next location.
}
success.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
I know there is alot of shortest path Algorithms but i want to ask if there any modifications can be done , to make some Algorithms like a* or Dijkstra chose the shortest path but without the diagonally moves so up and
down and right and left are the allowed moves
The algorithm you probably want is A* (if you want a short path over a large map with some coherent obstacles), though you might just need Dijkstra's (if you must have the mathematically shortest path, or if the map doesn't have any real relation to anything physical). You simply disallow diagonal moves and you might get better results if you use Manhattan distance as your heuristic for A*. For Dijkstra's, the graph has no diagonal links.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 7 years ago.
Improve this question
in directed graph, each edge has a color C(e)ϵ{1,2,…k}
Found an algorithm that returns all nodes that are on circle traversal
Containing at least one edge of each color.
i think it related to SCC algorithm, but i didnt know how to start
any ideas that can help me?
Perform DFS to find cycles, and check each cycle found to see if it contains edges of all the colors.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
N-numbers , d1,d2,d3..dn are given.
How do we check if it is possible to construct a undirected graph with vertices v1,v2,v3,...vn with degress d1,d2,...dn respectively.
Graph should not contain multiple edges between the same pair of nodes, or "loop" edges
(where both end vertices are the same node).
Also, what is the running time of the algorithm ?
This is what Wikipedia calls the graph realization problem, solvable by the Havel--Hakimi algorithm. Start with a graph having n vertices, v1..vn, and 0 edges. Define the deficit of a vertex vk to be the difference between dk and the current degree of vk. Repeatedly choose the vertex vk with the largest deficit D and connect it to the D other vertices having the D largest deficits. If a vertex would have negative deficit, then the instance is unsolvable. Otherwise, we terminate with a solution. I'll leave the running time as an exercise.
Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 10 years ago.
Improve this question
I was trying to solve a basic clique problem but i have stucked at some following points:
what is is the minimum size of the largest clique in any graph with N nodes and M edges
To Find the largest clique in a graph
Please tell me difference between above two statement.
The first is a question about the set of all graphs with N nodes and M edges. The second question appears to be about a particular graph (although it seems to be out of context).
It might be better to ask this on https://math.stackexchange.com/