Passing lambda as argument is not working properly - c++11

I am learning about lambdas and I don't understand why passing the lambda as a Predicate below is not working.
class Foo2{
public:
bool operator()(const int& n) const {return n%2 == 0;}
};
template<typename Container, typename Predicate>
unsigned int my_count_if(const Container& c, Predicate p)
{
unsigned int cnt = 0;
for(const auto& x : c){
cnt += p(x) ? 1 : 0;
std::cout << "x = " << x << std::endl; // for debug
std::cout << "p(x) = " << p(x) << std::endl; // for debug
}
return cnt;
}
bool test_func(const int& n)
{
return n%2 == 0;
}
int main()
{
std::vector<int> v {1,2,3,4,5,6};
std::cout << my_count_if(v, [] (const int& n) -> bool {n%2 == 0;}); // not working
std::cout << my_count_if(v, test_func) << std::endl; // works
std::cout << my_count_if(v, Foo2()); // works
return 0;
}
The line in which the lambda is used as the predicate does not work. p(x) = 248 for all values of x, but the second version with the function object does work. Am I missing something concerning the passing of lambdas as function arguments? In this post (in the accepted answer) Pass lambda expression to lambda argument c++11 I read that
where there is no state being captured, the language allows for a conversion from the lambda type to a pointer to function with the signature of the operator() (minus the this part), so the lambda >above can be implicitly converted to a pointer
Thank you for any help!

Related

c++11 how to check template parameter pack has N args before calling function with N args

Following on from this extracting a template parameter pack with different types into a vector of doubles produces warnings and cigien's answer.
I have the following code:
enum class p_type {p1, p2, p3};
class testerx
{
public:
void process1(double a)
{
std::cout << "1" << a << std::endl;
};
void process2(double a, double b)
{
std::cout << "2" << a << " " << b << std::endl;
};
void process3(double a, double b, double c)
{
std::cout << "3" << a << " " << b << " " << c << std::endl;
};
};
// The template type
template<typename TESTER, typename... ARGS>
class tester_templatex
{
public:
explicit tester_templatex(p_type type) : m_type(type) {};
void process(ARGS... args)
{
// Create a vector to put the args into. use double since that can hold all of the types
// that I am using
size_t param_count = sizeof...(args);
std::cout << "PARAM COUNT X " << param_count << std::endl;
std::vector<double> args_vect = {static_cast<double>(args)...};
for (auto arg : args_vect)
{
std::cout << "arg: " << arg << std::endl;
}
// Now call the tester
std::cout << "running tester: ";
switch (m_type)
{
case p_type::p1:
if constexpr (sizeof...(args) == 1)
m_tester.process1(args...);
break;
case p_type::p2:
if constexpr (sizeof...(args) == 2)
m_tester.process2(args...);
break;
case p_type::p3:
if constexpr (sizeof...(args) == 3)
m_tester.process3(args...);
break;
}
std::cout << std::endl;
};
p_type m_type;
TESTER m_tester;
};
main:
int main() {
tester_templatex<testerx, int> templatex1(p_type::p1);
tester_templatex<testerx, int, double> templatex2(p_type::p2);
tester_templatex<testerx, int, double, int> templatex3(p_type::p3);
templatex1.process(4);
templatex2.process(4, 5.123);
templatex3.process(4, 5.123, 6);
return 0;
}
Here I have test class with 3 different functions. I have a template class which picks the function to call based on the p_type (bad name - dont ask!).
This works for c++17 compiled code. But I only have c++11 where I need to run this code. c++11 does not support if constexpr:
case p_type::p3:
if constexpr (sizeof...(args) == 3)
m_tester.process3(args...);
break;
Without the if constexpr I get errors that the m_tester.process1/2/3 functions that don't match the parameter pack because they don't have the right number of parameters.
How can I fix this for c++11? - is it possible with a similar method?
Is there another way to extract N arguments from a parameter pack in c++11? - or some sort of type traits check?
For each of your functions have an overload that does nothing:
template<typename... ARGS>
void process3(ARGS&...) { }
and then just call the function without testing for the size of the pack:
case p_type::p3:
m_tester.process3(args...);
break;
This should pick the non-templated function when there are suitably many arguments, and the function template in other cases.

What does String do that I'm not doing? c++11

I am still new to c++, so bear with me.
I was trying to learn more about how std::move works and I saw an example where they used std::move to move the string to a different function and then showed using std::cout that no string remained. I thought cool, let's see if I can make my own class and do the same:
#include <iostream>
#include <string>
class integer
{
private:
int *m_i;
public:
integer(int i=0) : m_i(new int{i})
{
std::cout << "Calling Constructor\n";
}
~integer()
{
if(m_i != nullptr) {
std::cout << "Deleting integer\n";
delete m_i;
m_i = nullptr;
}
}
integer(integer&& i) : m_i(nullptr) // move constructor
{
std::cout << "Move Constructor\n";
m_i = i.m_i;
i.m_i = nullptr;
}
integer(const integer& i) : m_i(new int) { // copy constructor
std::cout << "Copy Constructor\n";
*m_i = *(i.m_i);
}
//*
integer& operator=(integer&& i) { // move assignment
std::cout << "Move Assignment\n";
if(&i != this) {
delete m_i;
m_i = i.m_i;
i.m_i = nullptr;
}
return *this;
}
integer& operator=(const integer &i) { // copy assignment
std::cout << "Copy Assignment\n";
if(&i != this) {
m_i = new int;
*m_i = *(i.m_i);
}
return *this;
}
int& operator*() const { return *m_i; }
int* operator->() const { return m_i; }
bool empty() const noexcept {
if(m_i == nullptr) return true;
return false;
}
friend std::ostream& operator<<(std::ostream &out, const integer i) {
if(i.empty()) {
std::cout << "During overload, i is empty\n";
return out;
}
out << *(i.m_i);
return out;
}
};
void g(integer i) { std::cout << "G-wiz - "; std::cout << "The g value is " << i << '\n'; }
void g(std::string s) { std::cout << "The g value is " << s << '\n'; }
int main()
{
std::string s("Hello");
std::cout << "Now for string\n";
g(std::move(s));
if(s.empty()) std::cout << "s is empty\n";
g(s);
std::cout << "\nNow for integer\n";
integer i = 77;
if(!i.empty()) std::cout << "i is " << i << '\n';
else std::cout << "i is empty\n";
g(i);
std::cout << "Move it\n";
g(std::move(i)); // rvalue ref called
if(!i.empty()) std::cout << "i is " << i << '\n';
else std::cout << "i is empty\n";
g(i);
return 0;
}
And this is my output:
Now for string
The g value is Hello
s is empty
The g value is
Now for integer
Calling Constructor
Copy Constructor
i is 77
Deleting integer
Copy Constructor
G-wiz - Copy Constructor
The g value is 77
Deleting integer
Deleting integer
Move it
Move Constructor
G-wiz - Copy Constructor
The g value is 77
Deleting integer
Deleting integer
i is empty
Copy Constructor
Process returned 255 (0xFF) execution time : 7.633 s
Press any key to continue.
As you can see, it crashes when it enters g the second time, never even getting to the operator<<() function. How is it that the empty std::string s can be passed to g where my empty integer i crashes the program?
Edit: Fixed new int vs. new int[] error. Thanks n.m.
Your "empty integer" crashes the program because it contains a null pointer. You are trying to dereference it when you use it at the right hand side of the assignment.
An empty string is a normal usable string. There are no unchecked null pointer dereferences in the std::string code.
You have to ensure that the empty state of your object is a usable one. Start with defining a default constructor. Does it make sense for your class? If not, then move semantic probably doesn't either. If yes, a moved-from object in the move constructor should probably end up in the same state as a default-constructed object. A move assignment can act as a swap operation, so there the right-hand-side may end up either empty or not.
If you don't want to define a usable empty state for your class, and still want move semantics, you simply cannot use an object after it has been moved from. You still need to make sure that an empty object is destructible.

iterator over non-existing sequence

I have K objects (K is small, e.g. 2 or 5) and I need to iterate over them N times in random order where N may be large. I need to iterate in a foreach loop and for this I should provide an iterator.
So far I created a std::vector of my K objects copied accordingly, so the size of vector is N and now I use begin() and end() provided by that vector. I use std::shuffle() to randomize the vector and this takes up to 20% of running time. I think it would be better (and more elegant, anyways) to write a custom iterator that returns one of my object in random order without creating the helping vector of size N. But how to do this?
It is obvious that your iterator must:
Store pointer to original vector or array: m_pSource
Store the count of requests (to be able to stop): m_nOutputCount
Use random number generator (see random): m_generator
Some iterator must be treated as end iterator: m_nOutputCount == 0
I've made an example for type int:
#include <iostream>
#include <random>
class RandomIterator: public std::iterator<std::forward_iterator_tag, int>
{
public:
//Creates "end" iterator
RandomIterator() : m_pSource(nullptr), m_nOutputCount(0), m_nCurValue(0) {}
//Creates random "start" iterator
RandomIterator(const std::vector<int> &source, int nOutputCount) :
m_pSource(&source), m_nOutputCount(nOutputCount + 1),
m_distribution(0, source.size() - 1)
{
operator++(); //make new random value
}
int operator* () const
{
return m_nCurValue;
}
RandomIterator operator++()
{
if (m_nOutputCount == 0)
return *this;
--m_nOutputCount;
static std::default_random_engine generator;
static bool bWasGeneratorInitialized = false;
if (!bWasGeneratorInitialized)
{
std::random_device rd; //expensive calls
generator.seed(rd());
bWasGeneratorInitialized = true;
}
m_nCurValue = m_pSource->at(m_distribution(generator));
return *this;
}
RandomIterator operator++(int)
{ //postincrement
RandomIterator tmp = *this;
++*this;
return tmp;
}
int operator== (const RandomIterator& other) const
{
if (other.m_nOutputCount == 0)
return m_nOutputCount == 0; //"end" iterator
return m_pSource == other.m_pSource;
}
int operator!= (const RandomIterator& other) const
{
return !(*this == other);
}
private:
const std::vector<int> *m_pSource;
int m_nOutputCount;
int m_nCurValue;
std::uniform_int_distribution<std::vector<int>::size_type> m_distribution;
};
int main()
{
std::vector<int> arrTest{ 1, 2, 3, 4, 5 };
std::cout << "Original =";
for (auto it = arrTest.cbegin(); it != arrTest.cend(); ++it)
std::cout << " " << *it;
std::cout << std::endl;
RandomIterator rndEnd;
std::cout << "Random =";
for (RandomIterator it(arrTest, 15); it != rndEnd; ++it)
std::cout << " " << *it;
std::cout << std::endl;
}
The output is:
Original = 1 2 3 4 5
Random = 1 4 1 3 2 4 5 4 2 3 4 3 1 3 4
You can easily convert it into a template. And make it to accept any random access iterator.
I just want to increment Dmitriy answer, because reading your question, it seems that you want that every time that you iterate your newly-created-and-shuffled collection the items should not repeat and Dmitryi´s answer does have repetition. So both iterators are useful.
template <typename T>
struct RandomIterator : public std::iterator<std::forward_iterator_tag, typename T::value_type>
{
RandomIterator() : Data(nullptr)
{
}
template <typename G>
RandomIterator(const T &source, G& g) : Data(&source)
{
Order = std::vector<int>(source.size());
std::iota(begin(Order), end(Order), 0);
std::shuffle(begin(Order), end(Order), g);
OrderIterator = begin(Order);
OrderIteratorEnd = end(Order);
}
const typename T::value_type& operator* () const noexcept
{
return (*Data)[*OrderIterator];
}
RandomIterator<T>& operator++() noexcept
{
++OrderIterator;
return *this;
}
int operator== (const RandomIterator<T>& other) const noexcept
{
if (Data == nullptr && other.Data == nullptr)
{
return 1;
}
else if ((OrderIterator == OrderIteratorEnd) && (other.Data == nullptr))
{
return 1;
}
return 0;
}
int operator!= (const RandomIterator<T>& other) const noexcept
{
return !(*this == other);
}
private:
const T *Data;
std::vector<int> Order;
std::vector<int>::iterator OrderIterator;
std::vector<int>::iterator OrderIteratorEnd;
};
template <typename T, typename G>
RandomIterator<T> random_begin(const T& v, G& g) noexcept
{
return RandomIterator<T>(v, g);
}
template <typename T>
RandomIterator<T> random_end(const T& v) noexcept
{
return RandomIterator<T>();
}
whole code at
http://coliru.stacked-crooked.com/a/df6ce482bbcbafcf or
https://github.com/xunilrj/sandbox/blob/master/sources/random_iterator/source/random_iterator.cpp
Implementing custom iterators can be very tricky so I tried to follow some tutorials, but please let me know if something have passed:
http://web.stanford.edu/class/cs107l/handouts/04-Custom-Iterators.pdf
https://codereview.stackexchange.com/questions/74609/custom-iterator-for-a-linked-list-class
Operator overloading
I think that the performance is satisfactory:
On the Coliru:
<size>:<time for 10 iterations>
1:0.000126582
10:3.5179e-05
100:0.000185914
1000:0.00160409
10000:0.0161338
100000:0.180089
1000000:2.28161
Off course it has the price to allocate a whole vector with the orders, that is the same size of the original vector.
An improvement would be to pre-allocate the Order vector if for some reason you have to random iterate very often and allow the iterator to use this pre-allocated vector, or some form of reset() in the iterator.

Is it possible in C++11 to combine functions into a new function?

This is more a kind of theoretical question. Is it possible in C++11 to combine functions into a new function? For example :
auto f = [](int i){return i * 2;};
auto g = [](int i){return i + 10;};
So this works:
auto c = f(g(20)); // = 60
But I want an object that stores the combination, like
auto c = f(g);
std::cout << c(20) << std::endl; //prints 60
Edit:
Additionally what i want to create is a function a, which you can give a function b and an int n, and which returns the n'th combination of the given function b. For example (not compilable)
template<typename T>
auto combine(T b, int i) -> decltype(T)
{
if (i == 0)
return b;
return combine(b, i - 1);
}
auto c = combine(f, 2); //c = f(f(f(int)))
A first attempt:
template<class First, class Second>
auto compose( Second&& second, First&& first ) }
return [second = std::forward<Second>(second), first=std::forward<First>(first)]
(auto&&...args)->decltype(auto) {
return second( first( decltype(args)(args)... ) );
};
}
template<class A, class B, class...Rest>
auto compose(A&& a, B&& b, Rest&&... rest) {
return compose( compose(std::forward<A>(a), std::forward<B>(b)), std::forward<Rest>(rest)... );
}
template<class A>
std::decay_t<A> compose(A&& a) {
return std::forward<A>(a);
}
in C++14. Now, this isn't perfect, as the pattern doesn't work all that well in C++.
To do this perfectly, we'd have to take a look at compositional programming. Here, functions interact with an abstract stack of arguments. Each function pops some number of arguments off the stack, then pops some number back on.
This would allow you do do this:
compose( print_coord, get_x, get_y )
where get_x and get_y consume nothing but return a coordinate, and print_coord takes two coordinates and prints them.
To emulate this in C++, we need some fancy machinery. Functions will return tuples (or tuple-likes?), and those values will be "pushed onto the argument stack" logically.
Functions will also consume things off this argument stack.
At each invocation, we unpack the current tuple of arguments, find the longest collection that the function can be called with, call it, get its return value, unpack it if it is a tuple, and then stick any such returned values back on the argument stack.
For this more advanced compose to compose with itself, it then needs SFINAE checks, and it needs to be able to take a invokable object and a tuple of arguments and find the right number of arguments to call the invokable object with, plus the left-over arguments.
This is a tricky bit of metaprogramming that I won't do here.
The second part, because I missed it the first time, looks like:
template<class F>
auto function_to_the_power( F&& f, unsigned count ) {
return [f=std::forward<F>(f),count](auto&& x)
-> std::decay_t< decltype( f(decltype(x)(x)) ) >
{
if (count == 0) return decltype(x)(x);
auto r = f(decltype(x)(x));
for (unsigned i = 1; i < count; ++i) {
r = f( std::move(r) );
}
return r;
};
}
This uses no type erasure.
Test code:
auto f = [](int x){ return x*3; };
auto fs = std::make_tuple(
function_to_the_power( f, 0 ),
function_to_the_power( f, 1 ),
function_to_the_power( f, 2 ),
function_to_the_power( f, 3 )
);
std::cout << std::get<0>(fs)(2) << "\n";
std::cout << std::get<1>(fs)(2) << "\n";
std::cout << std::get<2>(fs)(2) << "\n";
std::cout << std::get<3>(fs)(2) << "\n";
prints:
2
6
18
54
You can write something along the lines of:
#include <functional>
#include <iostream>
template<class F>
F compose(F f, F g)
{
return [=](int x) { return f(g(x)); };
}
int main()
{
std::function<int (int)> f = [](int i) { return i * 2; };
std::function<int (int)> g = [](int i) { return i + 10; };
auto c = compose(f, g);
std::cout << c(20) << '\n'; // prints 60
}
The code can be simply extended to cover the second half of the question:
template<class F>
F compose(F f, unsigned n)
{
auto g = f;
for (unsigned i = 0; i < n; ++i)
g = compose(g, f);
return g;
}
int main()
{
std::function<int (int)> h = [](int i) { return i * i; };
auto d = compose(h, 1);
auto e = compose(h, 2);
std::cout << d(3) << "\n" // prints 81
<< e(3) << "\n"; // prints 6561
}
NOTE. Here using std::function. It isn't a lambda but wraps a lambda with a performance cost.

Trouble with Nested Lambdas

I am probably making some elementary mistake here but given:
std::array<int, 3> arr = { 1, 2, 3 };
std::vector<int> vecint;
vecint.push_back(1);
vecint.push_back(2);
This is one obvious way to compare the elements in arr with the ones in vecint.
std::for_each(vecint.begin(), vecint.end(), [&arr](int vecvalue) {
for (auto arritr = arr.begin(); arritr != arr.end(); ++arritr) {
if (vecvalue == *arritr) {
std::cout << "found!!! " << vecvalue << "\n";
}
}
});
However, should I be able to do it like this too?
std::for_each(vecint.begin(), vecint.end(), [&arr](int vecvalue) {
if (std::find(arr.begin(), arr.end(), [=](int arrval) { return vecvalue == arrval; }) != arr.end()) {
std::cout << "found!!! " << vecvalue << "\n";
}
});
The latter fails to compile in VC11 with the following error:
1>c:\program files (x86)\microsoft visual studio 11.0\vc\include\xutility(3186): error C2678: binary '==' : no operator found which takes a left-hand operand of type 'int' (or there is no acceptable conversion)
What am I missing?
cppreference on std::find and std::find_if
std::find takes a value to compare with as the third parameter, whereas std::find_if takes a UnaryPredicate (a function object taking one parameter). You probably just had a typo / wanted to use std::find_if.
Using std::find_if works for me. Live example.
#include <array>
#include <vector>
#include <iostream>
#include <algorithm>
int main()
{
std::array<int, 3> arr = {{ 1, 2, 3 }};
std::vector<int> vecint;
vecint.push_back(1);
vecint.push_back(2);
std::for_each
(
vecint.begin(), vecint.end(),
[&arr](int vecvalue)
{
if (std::find_if(arr.begin(), arr.end(),
[=](int arrval) { return vecvalue == arrval; })
!= arr.end())
{
std::cout << "found!!! " << vecvalue << "\n";
}
}
);
}
A simpler version is of course to use std::find (correctly):
std::for_each
(
vecint.begin(), vecint.end(),
[&arr](int vecvalue)
{
if (std::find(arr.begin(), arr.end(), vecvalue) != arr.end())
{
std::cout << "found!!! " << vecvalue << "\n";
}
}
);
Then, there's of course the range-based-for-loop variant, if your compiler supports it:
for(auto const& ve : vecint)
{
for(auto const& ae : arr)
{
if(ve == ae)
{
std::cout << "found!!! " << ve << "\n";
}
}
}
If your ranges are sorted, there are faster algorithms to get the intersection. Either you write your own loop to invoke an action for each element in the intersection, or you let the Standard Library copy the intersection into a new container:
#include <iterator> // additionally
std::vector<int> result;
std::set_intersection(arr.begin(), arr.end(), vecint.begin(), vecint.end(),
std::back_inserter(result));
for(auto const& e : result)
{
std::cout << e << std::endl;
}
What happens under the hood - why you get that error:
std::find is defined as (from cppreference):
template< class InputIt, class T >
InputIt find( InputIt first, InputIt last, const T& value );
That is, the type of value and the type of the iterators are independent. However, in the implementation of std::find, there has to be a comparison like:
if(*first == value) { return first; }
And at this point, you're comparing an int (type of the expression *first) with a lambda (type of value) more precisely: with a closure type. This is ill-formed (luckily), as there's no conversion from a lambda to an int, and there's no comparison operator declared that's applicable here.

Resources