Let us say the space = [0, 100] and there are a number of intervals given.
These intervals are fragments of the space, and possibly overlap.
[0, 30], [0, 20], [10, 40], [30, 50], [50, 90], [70, 100]
is a set of intervals.
An example of a set of intervals that span the entire space chosen from the above set is:
[0, 30], [10, 40], [30, 50], [50, 90], [70, 100]
Another example is
[0, 30], [30, 50], [50, 90], [70, 100]
which is the set in the previous example without [10, 40].
I want to find all combinations of such sets of intervals to calculate cost for each interval and find the one with the lowest cost.
from operator import itemgetter
import collections
tmp = [(0, 30), (0, 20), (10, 40), (30, 50), (50, 90), (70, 100), ]
aa = sorted(tmp, key=itemgetter(1)) # sort with respect to 1st elem
a = set(aa)
space = 100
d_conn = 15
RTT = d_conn*2
bandwidth = 10
def get_marginal_cost(fragment):
return RTT + (fragment[1] - fragment[0])/bandwidth
def dfs(a, start, path=None):
if path is None:
path = [start, ]
if start[1] == space:
yield path
for frgmt in a - set(path):
l = frgmt[0]
r = frgmt[1]
if start[0] < l <= start[1] <= r:
# if l <= start[1] <= r:
yield dfs(a, frgmt, path + [frgmt, ])
for z in a:
if z[0] == 0:
for output in list(dfs(a, z)):
for outpu in list(output):
for outp in list(outpu):
for out in list(outp):
for ou in list(out):
print list(ou)
This is my attempt so far, but I could not finish.
Particularly, I am looking to finish this without use of yield functionality in Python, because I am not familiar with it and I probably want to implement this in C++.
Can anyone help me write a working program that solves this problem?
Thank you.
Is it really necessary to build a tree just to find the minimum cost?
Probably not (assuming that your currently unspecified cost function displays optimal substructure).
For a linear cost function, the following classic algorithm runs in time O(n log n), where n is the number of intervals. Initialize a sorted map from mid to the cost of covering [0, mid]. Initially, this map has one entry, 0 -> 0. Sort the intervals by right endpoint and process them in order as follows. To process [a, b], find the map entry mid -> cost such that mid >= a is as small as possible. (If no such entry exists, then just continue.) Let cost' = cost + Cost([a, b]), where Cost([a, b]) is unspecified but always positive. While the last entry in the map has cost greater than or equal to cost', delete it. Insert b -> cost'. To finish, look up the successor of end, where [0, end] is the space to be covered.
Even if your cost function is not linear, since it's a (presumably monotone) function of the total interval length and the number of intervals, we can get an O(n^2)-time algorithm that, instead of remembering just one cost for each midpoint, remembers for each integer between 0 and n the cost for a solution that uses the specified number of intervals.
You don't have to explicitly build the tree - you could use a recursive depth first search to achieve the same effect.
At each point in the recursive depth first search you will have built a set of intervals covering [0,x] and you will want to extend this. To do this you need to find all of the intervals which intersect with x and end after x. As you recurse down the tree you will want to do the same search for y > x and so on.
One way to speed this up would be to put the start and end points of the intervals into an array and sort them. You keep a pointer into the array which marks the position x and a set of intervals that cover x, perhaps stored as a hash set. When you advance the position x you move the pointer along the list, deleting intervals from the set when you see their right hand points, and adding intervals to the set when you see their left hand points. You can back up in a very similar way.
This should allow you to keep track of what intervals you can use to extend the covering [0,x] at each point without searching through every possible interval.
This should allow you to enumerate the list of all possible coverings reasonably efficiently. To find the cheapest covering without enumerating all possible coverings we would need to know more about the cost function than you have put in the question.
I am pretty sure this can be optimised, but below is a working version. Will try to optimize it and update again:
from operator import itemgetter
import collections
import random
def generate_sample_input(space):
# This method generates a set of tuples, each tuple consisting of 2 nos
low, high = space
init = (low, random.randint(low + 1, (low + high)/2))
last = (random.randint((low + high)/2 + 1, high), high)
mid = random.randint(init[1] + 1, last[0] - 1)
ranges = [init, (init[1] - 1, mid + 1), (mid - 1, last[0] + 1), last]
nums = {i for tup in ranges for i in tup}
for _ in range(random.randint(0, 20)):
low = random.randint(space[0], space[1] - 1)
high = random.randint(low, space[1])
if all(i not in nums for i in (low, high)):
nums |= {low, high}
ranges.append((low, high))
return sorted(set(ranges), key = lambda x: x[0])
class Node(object):
def __init__(self, tup):
assert len(tup) == 2 and all(type(x) == int for x in tup)
self.low, self.high = tup
self.visitable_nodes = []
self.piggybacker_nodes = []
def __repr__(self):
return "(%s, %s)" % (self.low, self.high)
def set_visitable(self, node):
assert type(node) == Node
if self.low < node.low and node.high < self.high:
self.piggybacker_nodes.append(node)
elif self.low < node.low < self.high:
self.visitable_nodes.append(node)
class Graph(object):
def __init__(self):
self.sources, self.sinks, self.nodes = [], [], []
def add(self, node, is_sink=False, is_source=False):
assert type(node) == Node and not (is_sink and is_source)
for old_node in self.nodes:
old_node.set_visitable(node)
node.set_visitable(old_node)
self.nodes.append(node)
if is_sink:
self.sinks.append(node)
elif is_source:
self.sources.append(node)
def create_graph(self, ranges=[], space=[]):
for tup in ranges:
self.add(Node(tup), is_source=tup[0]==space[0],
is_sink=tup[1]==space[1])
def dfs(stack=[], nodes=[], sinks=[], level=0):
for node in nodes:
if node in sinks:
print stack + [node]
dfs(stack + [node], node.visitable_nodes, sinks, level + 1)
def main():
space = (0, 100)
ranges = generate_sample_input(space)
graph = Graph()
graph.create_graph(space=space, ranges=ranges)
print ranges
dfs([], nodes=graph.sources, sinks=graph.sinks)
if __name__ == "__main__":
main()
Related
I'm trying to figure out how to solve a problem that seems a tricky variation of a common algorithmic problem but require additional logic to handle specific requirements.
Given a list of coins and an amount, I need to count the total number of possible ways to extract the given amount using an unlimited supply of available coins (and this is a classical change making problem https://en.wikipedia.org/wiki/Change-making_problem easily solved using dynamic programming) that also satisfy some additional requirements:
extracted coins are splittable into two sets of equal size (but not necessarily of equal sum)
the order of elements inside the set doesn't matter but the order of set does.
Examples
Amount of 6 euros and coins [1, 2]: solutions are 4
[(1,1), (2,2)]
[(1,1,1), (1,1,1)]
[(2,2), (1,1)]
[(1,2), (1,2)]
Amount of 8 euros and coins [1, 2, 6]: solutions are 7
[(1,1,2), (1,1,2)]
[(1,2,2), (1,1,1)]
[(1,1,1,1), (1,1,1,1)]
[(2), (6)]
[(1,1,1), (1,2,2)]
[(2,2), (2,2)]
[(6), (2)]
By now I tried different approaches but the only way I found was to collect all the possible solution (using dynamic programming) and then filter non-splittable solution (with an odd number of coins) and duplicates. I'm quite sure there is a combinatorial way to calculate the total number of duplication but I can't figure out how.
(The following method first enumerates partitions. My other answer generates the assignments in a bottom-up fashion.) If you'd like to count splits of the coin exchange according to coin count, and exclude redundant assignments of coins to each party (for example, where splitting 1 + 2 + 2 + 1 into two parts of equal cardinality is only either (1,1) | (2,2), (2,2) | (1,1) or (1,2) | (1,2) and element order in each part does not matter), we could rely on enumeration of partitions where order is disregarded.
However, we would need to know the multiset of elements in each partition (or an aggregate of similar ones) in order to count the possibilities of dividing them in two. For example, to count the ways to split 1 + 2 + 2 + 1, we would first count how many of each coin we have:
Python code:
def partitions_with_even_number_of_parts_as_multiset(n, coins):
results = []
def C(m, n, s, p):
if n < 0 or m <= 0:
return
if n == 0:
if not p:
results.append(s)
return
C(m - 1, n, s, p)
_s = s[:]
_s[m - 1] += 1
C(m, n - coins[m - 1], _s, not p)
C(len(coins), n, [0] * len(coins), False)
return results
Output:
=> partitions_with_even_number_of_parts_as_multiset(6, [1,2,6])
=> [[6, 0, 0], [2, 2, 0]]
^ ^ ^ ^ this one represents two 1's and two 2's
Now since we are counting the ways to choose half of these, we need to find the coefficient of x^2 in the polynomial multiplication
(x^2 + x + 1) * (x^2 + x + 1) = ... 3x^2 ...
which represents the three ways to choose two from the multiset count [2,2]:
2,0 => 1,1
0,2 => 2,2
1,1 => 1,2
In Python, we can use numpy.polymul to multiply polynomial coefficients. Then we lookup the appropriate coefficient in the result.
For example:
import numpy
def count_split_partitions_by_multiset_count(multiset):
coefficients = (multiset[0] + 1) * [1]
for i in xrange(1, len(multiset)):
coefficients = numpy.polymul(coefficients, (multiset[i] + 1) * [1])
return coefficients[ sum(multiset) / 2 ]
Output:
=> count_split_partitions_by_multiset_count([2,2,0])
=> 3
(Posted a similar answer here.)
Here is a table implementation and a little elaboration on algrid's beautiful answer. This produces an answer for f(500, [1, 2, 6, 12, 24, 48, 60]) in about 2 seconds.
The simple declaration of C(n, k, S) = sum(C(n - s_i, k - 1, S[i:])) means adding all the ways to get to the current sum, n using k coins. Then if we split n into all ways it can be partitioned in two, we can just add all the ways each of those parts can be made from the same number, k, of coins.
The beauty of fixing the subset of coins we choose from to a diminishing list means that any arbitrary combination of coins will only be counted once - it will be counted in the calculation where the leftmost coin in the combination is the first coin in our diminishing subset (assuming we order them in the same way). For example, the arbitrary subset [6, 24, 48], taken from [1, 2, 6, 12, 24, 48, 60], would only be counted in the summation for the subset [6, 12, 24, 48, 60] since the next subset, [12, 24, 48, 60] would not include 6 and the previous subset [2, 6, 12, 24, 48, 60] has at least one 2 coin.
Python code (see it here; confirm here):
import time
def f(n, coins):
t0 = time.time()
min_coins = min(coins)
m = [[[0] * len(coins) for k in xrange(n / min_coins + 1)] for _n in xrange(n + 1)]
# Initialize base case
for i in xrange(len(coins)):
m[0][0][i] = 1
for i in xrange(len(coins)):
for _i in xrange(i + 1):
for _n in xrange(coins[_i], n + 1):
for k in xrange(1, _n / min_coins + 1):
m[_n][k][i] += m[_n - coins[_i]][k - 1][_i]
result = 0
for a in xrange(1, n + 1):
b = n - a
for k in xrange(1, n / min_coins + 1):
result = result + m[a][k][len(coins) - 1] * m[b][k][len(coins) - 1]
total_time = time.time() - t0
return (result, total_time)
print f(500, [1, 2, 6, 12, 24, 48, 60])
I have an n-tuple, x = (x[0], .., x[n-1]) where each member of the tuple comes from a distinct, ordered set S[i] such that x[i] \in S[i]. The sets S[i] all have different cardinalities N[i]. I want to know how to generate the next tuple in lexical order given the sets S[i].
Example:
S[0] = {0,1,2}
S[1] = {1,2,3,4}
S[2] = {8,9,7}
x = {2,2,7}
xnext = {2,3,8}
xnextnext = {2,3,9}
etc
This doesn't have to be very efficient, just closed form in terms of the current tuple elements and the sets. If it's easier, it would be equivalent to think of the n-tuple as indices in the sets.
For a given tuple, you can map the elements of the tuple to their respective indices in each set of S, then try to "increment" the mixed-radix number represented by this tuple of indices. Then, take the incremented "number" and map it back to a tuple of elements. Here's a proof-of-concept in Python:
def next_tuple(x, S):
assert len(x) == len(S)
assert all(element in set_ for element, set_ in zip(x, S))
# compute the bases for our mixed-radix system
lengths = [len(set_) for set_ in S]
# convert tuple `x` to a mixed-radix number
indices = [set_.index(element) for element, set_ in zip(x, S)]
# try to increment, starting from the right
for k in reversed(range(len(indices))):
indices[k] += 1
if indices[k] == lengths[k]:
# case 1: we have a carry, rollover this index and continue
indices[k] = 0
else:
# case 2: no carry, map indices back to actual elements and return
return [set_[index] for index, set_ in zip(indices, S)]
# we have gone through each position and still have a carry.
# this means the "increment" operation overflowed, and there
# is no "next" tuple.
return None
S = [[0, 1, 2], [1, 2, 3, 4], [8, 9, 7]]
print("next tuple after {} is {}".format([2, 2, 7], next_tuple([2, 2, 7], S)))
print("all tuples in order:")
x = [0, 1, 8]
while x is not None:
print(x)
x = next_tuple(x, S)
As a final note, if you need to enumerate the entire cartesian product in order, it's simpler to use a direct algorithm rather than repeatedly using next_tuple which has to recompute indices every time.
I got it to work using this pseudocode:
# x = [2,2,7]
sets = [[0,1,2], [1,2,3,4], [8,9,7]]
def next_tuple(x):
for i, el in enumerate(x):
if(i < len(sets[i]) - 1):
x[i] = sets[i, sets[i].index(x[i])+1] // requires lists to have unique elements
return x
else :
x[i] = sets[i,0]
Basically you scan in a character from the tuple, and if it can be incremented, increment it. If not, set it to 0 and go to the next character.
I have an array of non-negative values. I want to build an array of values who's sum is 20 so that they are proportional to the first array.
This would be an easy problem, except that I want the proportional array to sum to exactly
20, compensating for any rounding error.
For example, the array
input = [400, 400, 0, 0, 100, 50, 50]
would yield
output = [8, 8, 0, 0, 2, 1, 1]
sum(output) = 20
However, most cases are going to have a lot of rounding errors, like
input = [3, 3, 3, 3, 3, 3, 18]
naively yields
output = [1, 1, 1, 1, 1, 1, 10]
sum(output) = 16 (ouch)
Is there a good way to apportion the output array so that it adds up to 20 every time?
There's a very simple answer to this question: I've done it many times. After each assignment into the new array, you reduce the values you're working with as follows:
Call the first array A, and the new, proportional array B (which starts out empty).
Call the sum of A elements T
Call the desired sum S.
For each element of the array (i) do the following:
a. B[i] = round(A[i] / T * S). (rounding to nearest integer, penny or whatever is required)
b. T = T - A[i]
c. S = S - B[i]
That's it! Easy to implement in any programming language or in a spreadsheet.
The solution is optimal in that the resulting array's elements will never be more than 1 away from their ideal, non-rounded values. Let's demonstrate with your example:
T = 36, S = 20. B[1] = round(A[1] / T * S) = 2. (ideally, 1.666....)
T = 33, S = 18. B[2] = round(A[2] / T * S) = 2. (ideally, 1.666....)
T = 30, S = 16. B[3] = round(A[3] / T * S) = 2. (ideally, 1.666....)
T = 27, S = 14. B[4] = round(A[4] / T * S) = 2. (ideally, 1.666....)
T = 24, S = 12. B[5] = round(A[5] / T * S) = 2. (ideally, 1.666....)
T = 21, S = 10. B[6] = round(A[6] / T * S) = 1. (ideally, 1.666....)
T = 18, S = 9. B[7] = round(A[7] / T * S) = 9. (ideally, 10)
Notice that comparing every value in B with it's ideal value in parentheses, the difference is never more than 1.
It's also interesting to note that rearranging the elements in the array can result in different corresponding values in the resulting array. I've found that arranging the elements in ascending order is best, because it results in the smallest average percentage difference between actual and ideal.
Your problem is similar to a proportional representation where you want to share N seats (in your case 20) among parties proportionnaly to the votes they obtain, in your case [3, 3, 3, 3, 3, 3, 18]
There are several methods used in different countries to handle the rounding problem. My code below uses the Hagenbach-Bischoff quota method used in Switzerland, which basically allocates the seats remaining after an integer division by (N+1) to parties which have the highest remainder:
def proportional(nseats,votes):
"""assign n seats proportionaly to votes using Hagenbach-Bischoff quota
:param nseats: int number of seats to assign
:param votes: iterable of int or float weighting each party
:result: list of ints seats allocated to each party
"""
quota=sum(votes)/(1.+nseats) #force float
frac=[vote/quota for vote in votes]
res=[int(f) for f in frac]
n=nseats-sum(res) #number of seats remaining to allocate
if n==0: return res #done
if n<0: return [min(x,nseats) for x in res] # see siamii's comment
#give the remaining seats to the n parties with the largest remainder
remainders=[ai-bi for ai,bi in zip(frac,res)]
limit=sorted(remainders,reverse=True)[n-1]
#n parties with remainter larger than limit get an extra seat
for i,r in enumerate(remainders):
if r>=limit:
res[i]+=1
n-=1 # attempt to handle perfect equality
if n==0: return res #done
raise #should never happen
However this method doesn't always give the same number of seats to parties with perfect equality as in your case:
proportional(20,[3, 3, 3, 3, 3, 3, 18])
[2,2,2,2,1,1,10]
You have set 3 incompatible requirements. An integer-valued array proportional to [1,1,1] cannot be made to sum to exactly 20. You must choose to break one of the "sum to exactly 20", "proportional to input", and "integer values" requirements.
If you choose to break the requirement for integer values, then use floating point or rational numbers. If you choose to break the exact sum requirement, then you've already solved the problem. Choosing to break proportionality is a little trickier. One approach you might take is to figure out how far off your sum is, and then distribute corrections randomly through the output array. For example, if your input is:
[1, 1, 1]
then you could first make it sum as well as possible while still being proportional:
[7, 7, 7]
and since 20 - (7+7+7) = -1, choose one element to decrement at random:
[7, 6, 7]
If the error was 4, you would choose four elements to increment.
A naïve solution that doesn't perform well, but will provide the right result...
Write an iterator that given an array with eight integers (candidate) and the input array, output the index of the element that is farthest away from being proportional to the others (pseudocode):
function next_index(candidate, input)
// Calculate weights
for i in 1 .. 8
w[i] = candidate[i] / input[i]
end for
// find the smallest weight
min = 0
min_index = 0
for i in 1 .. 8
if w[i] < min then
min = w[i]
min_index = i
end if
end for
return min_index
end function
Then just do this
result = [0, 0, 0, 0, 0, 0, 0, 0]
result[next_index(result, input)]++ for 1 .. 20
If there is no optimal solution, it'll skew towards the beginning of the array.
Using the approach above, you can reduce the number of iterations by rounding down (as you did in your example) and then just use the approach above to add what has been left out due to rounding errors:
result = <<approach using rounding down>>
while sum(result) < 20
result[next_index(result, input)]++
So the answers and comments above were helpful... particularly the decreasing sum comment from #Frederik.
The solution I came up with takes advantage of the fact that for an input array v, sum(v_i * 20) is divisible by sum(v). So for each value in v, I mulitply by 20 and divide by the sum. I keep the quotient, and accumulate the remainder. Whenever the accumulator is greater than sum(v), I add one to the value. That way I'm guaranteed that all the remainders get rolled into the results.
Is that legible? Here's the implementation in Python:
def proportion(values, total):
# set up by getting the sum of the values and starting
# with an empty result list and accumulator
sum_values = sum(values)
new_values = []
acc = 0
for v in values:
# for each value, find quotient and remainder
q, r = divmod(v * total, sum_values)
if acc + r < sum_values:
# if the accumlator plus remainder is too small, just add and move on
acc += r
else:
# we've accumulated enough to go over sum(values), so add 1 to result
if acc > r:
# add to previous
new_values[-1] += 1
else:
# add to current
q += 1
acc -= sum_values - r
# save the new value
new_values.append(q)
# accumulator is guaranteed to be zero at the end
print new_values, sum_values, acc
return new_values
(I added an enhancement that if the accumulator > remainder, I increment the previous value instead of the current value)
You are given the locations of various cars in the same lane on a highway as doubles to a vector, in no particular order. How can you find the largest gap between neighboring cars in O(n) time?
It seems like a simple solution would be to sort then check, but of course this isn't linear.
Divide the vector in n+1 equally sized buckets. For each such buckets, store the maximum and the minimum value, all other values can be discarded. Because of the pigeonhole principle, at least one of those parts is empty, so the non-minimum/non-maximum values in either parts don't have an influence for the result.
Then, go over the buckets and calculate the distance to the next and the previous non-empty bucket, and take the maximum; this is the final result.
An example with n=5 and values 5,2,20,17,3. Minimum is 2, maximum is 20 => bucket size is (20-2)/5 = 4.
Bucket: 2 6 10 14 18 20
Min/Max: 2-5 - - 17,17 20,20
Differences: 2-5, 5-17, 17-20.
Maximum is 5-17.
My Python implementation of ipc's solution:
def maximum_gap(l):
n = len(l)
if n < 2:
return 0
(x_min, x_max) = (min(l), max(l))
if x_min == x_max:
return 0
buckets = [None] * (n + 1)
bucket_size = float(x_max - x_min) / n
for x in l:
k = int((x - x_min) / bucket_size)
if buckets[k] is None:
buckets[k] = (x, x)
else:
buckets[k] = (min(x, buckets[k][0]), max(x, buckets[k][1]))
result = 0
for i in range(n):
if buckets[i + 1] is None:
buckets[i + 1] = buckets[i]
else:
result = max(result, buckets[i + 1][0] - buckets[i][1])
return result
assert maximum_gap([]) == 0
assert maximum_gap([42]) == 0
assert maximum_gap([1, 1, 1, 1]) == 0
assert maximum_gap([1, 2, 3, 4, 6, 8]) == 2
assert maximum_gap([5, 2, 20, 17, 3]) == 12
I use a tuple for bucket's elements, None if empty. In the last part, I eliminate preemptively any remaining empty bucket by assigning it to the previous one (this works, since the first one is guaranteed to be non-empty).
Note the special case when all elements are equal.
Selecting without any weights (equal probabilities) is beautifully described here.
I was wondering if there is a way to convert this approach to a weighted one.
I am also interested in other approaches as well.
Update: Sampling without replacement
If the sampling is with replacement, you can use this algorithm (implemented here in Python):
import random
items = [(10, "low"),
(100, "mid"),
(890, "large")]
def weighted_sample(items, n):
total = float(sum(w for w, v in items))
i = 0
w, v = items[0]
while n:
x = total * (1 - random.random() ** (1.0 / n))
total -= x
while x > w:
x -= w
i += 1
w, v = items[i]
w -= x
yield v
n -= 1
This is O(n + m) where m is the number of items.
Why does this work? It is based on the following algorithm:
def n_random_numbers_decreasing(v, n):
"""Like reversed(sorted(v * random() for i in range(n))),
but faster because we avoid sorting."""
while n:
v *= random.random() ** (1.0 / n)
yield v
n -= 1
The function weighted_sample is just this algorithm fused with a walk of the items list to pick out the items selected by those random numbers.
This in turn works because the probability that n random numbers 0..v will all happen to be less than z is P = (z/v)n. Solve for z, and you get z = vP1/n. Substituting a random number for P picks the largest number with the correct distribution; and we can just repeat the process to select all the other numbers.
If the sampling is without replacement, you can put all the items into a binary heap, where each node caches the total of the weights of all items in that subheap. Building the heap is O(m). Selecting a random item from the heap, respecting the weights, is O(log m). Removing that item and updating the cached totals is also O(log m). So you can pick n items in O(m + n log m) time.
(Note: "weight" here means that every time an element is selected, the remaining possibilities are chosen with probability proportional to their weights. It does not mean that elements appear in the output with a likelihood proportional to their weights.)
Here's an implementation of that, plentifully commented:
import random
class Node:
# Each node in the heap has a weight, value, and total weight.
# The total weight, self.tw, is self.w plus the weight of any children.
__slots__ = ['w', 'v', 'tw']
def __init__(self, w, v, tw):
self.w, self.v, self.tw = w, v, tw
def rws_heap(items):
# h is the heap. It's like a binary tree that lives in an array.
# It has a Node for each pair in `items`. h[1] is the root. Each
# other Node h[i] has a parent at h[i>>1]. Each node has up to 2
# children, h[i<<1] and h[(i<<1)+1]. To get this nice simple
# arithmetic, we have to leave h[0] vacant.
h = [None] # leave h[0] vacant
for w, v in items:
h.append(Node(w, v, w))
for i in range(len(h) - 1, 1, -1): # total up the tws
h[i>>1].tw += h[i].tw # add h[i]'s total to its parent
return h
def rws_heap_pop(h):
gas = h[1].tw * random.random() # start with a random amount of gas
i = 1 # start driving at the root
while gas >= h[i].w: # while we have enough gas to get past node i:
gas -= h[i].w # drive past node i
i <<= 1 # move to first child
if gas >= h[i].tw: # if we have enough gas:
gas -= h[i].tw # drive past first child and descendants
i += 1 # move to second child
w = h[i].w # out of gas! h[i] is the selected node.
v = h[i].v
h[i].w = 0 # make sure this node isn't chosen again
while i: # fix up total weights
h[i].tw -= w
i >>= 1
return v
def random_weighted_sample_no_replacement(items, n):
heap = rws_heap(items) # just make a heap...
for i in range(n):
yield rws_heap_pop(heap) # and pop n items off it.
If the sampling is with replacement, use the roulette-wheel selection technique (often used in genetic algorithms):
sort the weights
compute the cumulative weights
pick a random number in [0,1]*totalWeight
find the interval in which this number falls into
select the elements with the corresponding interval
repeat k times
If the sampling is without replacement, you can adapt the above technique by removing the selected element from the list after each iteration, then re-normalizing the weights so that their sum is 1 (valid probability distribution function)
I know this is a very old question, but I think there's a neat trick to do this in O(n) time if you apply a little math!
The exponential distribution has two very useful properties.
Given n samples from different exponential distributions with different rate parameters, the probability that a given sample is the minimum is equal to its rate parameter divided by the sum of all rate parameters.
It is "memoryless". So if you already know the minimum, then the probability that any of the remaining elements is the 2nd-to-min is the same as the probability that if the true min were removed (and never generated), that element would have been the new min. This seems obvious, but I think because of some conditional probability issues, it might not be true of other distributions.
Using fact 1, we know that choosing a single element can be done by generating these exponential distribution samples with rate parameter equal to the weight, and then choosing the one with minimum value.
Using fact 2, we know that we don't have to re-generate the exponential samples. Instead, just generate one for each element, and take the k elements with lowest samples.
Finding the lowest k can be done in O(n). Use the Quickselect algorithm to find the k-th element, then simply take another pass through all elements and output all lower than the k-th.
A useful note: if you don't have immediate access to a library to generate exponential distribution samples, it can be easily done by: -ln(rand())/weight
I've done this in Ruby
https://github.com/fl00r/pickup
require 'pickup'
pond = {
"selmon" => 1,
"carp" => 4,
"crucian" => 3,
"herring" => 6,
"sturgeon" => 8,
"gudgeon" => 10,
"minnow" => 20
}
pickup = Pickup.new(pond, uniq: true)
pickup.pick(3)
#=> [ "gudgeon", "herring", "minnow" ]
pickup.pick
#=> "herring"
pickup.pick
#=> "gudgeon"
pickup.pick
#=> "sturgeon"
If you want to generate large arrays of random integers with replacement, you can use piecewise linear interpolation. For example, using NumPy/SciPy:
import numpy
import scipy.interpolate
def weighted_randint(weights, size=None):
"""Given an n-element vector of weights, randomly sample
integers up to n with probabilities proportional to weights"""
n = weights.size
# normalize so that the weights sum to unity
weights = weights / numpy.linalg.norm(weights, 1)
# cumulative sum of weights
cumulative_weights = weights.cumsum()
# piecewise-linear interpolating function whose domain is
# the unit interval and whose range is the integers up to n
f = scipy.interpolate.interp1d(
numpy.hstack((0.0, weights)),
numpy.arange(n + 1), kind='linear')
return f(numpy.random.random(size=size)).astype(int)
This is not effective if you want to sample without replacement.
Here's a Go implementation from geodns:
package foo
import (
"log"
"math/rand"
)
type server struct {
Weight int
data interface{}
}
func foo(servers []server) {
// servers list is already sorted by the Weight attribute
// number of items to pick
max := 4
result := make([]server, max)
sum := 0
for _, r := range servers {
sum += r.Weight
}
for si := 0; si < max; si++ {
n := rand.Intn(sum + 1)
s := 0
for i := range servers {
s += int(servers[i].Weight)
if s >= n {
log.Println("Picked record", i, servers[i])
sum -= servers[i].Weight
result[si] = servers[i]
// remove the server from the list
servers = append(servers[:i], servers[i+1:]...)
break
}
}
}
return result
}
If you want to pick x elements from a weighted set without replacement such that elements are chosen with a probability proportional to their weights:
import random
def weighted_choose_subset(weighted_set, count):
"""Return a random sample of count elements from a weighted set.
weighted_set should be a sequence of tuples of the form
(item, weight), for example: [('a', 1), ('b', 2), ('c', 3)]
Each element from weighted_set shows up at most once in the
result, and the relative likelihood of two particular elements
showing up is equal to the ratio of their weights.
This works as follows:
1.) Line up the items along the number line from [0, the sum
of all weights) such that each item occupies a segment of
length equal to its weight.
2.) Randomly pick a number "start" in the range [0, total
weight / count).
3.) Find all the points "start + n/count" (for all integers n
such that the point is within our segments) and yield the set
containing the items marked by those points.
Note that this implementation may not return each possible
subset. For example, with the input ([('a': 1), ('b': 1),
('c': 1), ('d': 1)], 2), it may only produce the sets ['a',
'c'] and ['b', 'd'], but it will do so such that the weights
are respected.
This implementation only works for nonnegative integral
weights. The highest weight in the input set must be less
than the total weight divided by the count; otherwise it would
be impossible to respect the weights while never returning
that element more than once per invocation.
"""
if count == 0:
return []
total_weight = 0
max_weight = 0
borders = []
for item, weight in weighted_set:
if weight < 0:
raise RuntimeError("All weights must be positive integers")
# Scale up weights so dividing total_weight / count doesn't truncate:
weight *= count
total_weight += weight
borders.append(total_weight)
max_weight = max(max_weight, weight)
step = int(total_weight / count)
if max_weight > step:
raise RuntimeError(
"Each weight must be less than total weight / count")
next_stop = random.randint(0, step - 1)
results = []
current = 0
for i in range(count):
while borders[current] <= next_stop:
current += 1
results.append(weighted_set[current][0])
next_stop += step
return results
In the question you linked to, Kyle's solution would work with a trivial generalization.
Scan the list and sum the total weights. Then the probability to choose an element should be:
1 - (1 - (#needed/(weight left)))/(weight at n). After visiting a node, subtract it's weight from the total. Also, if you need n and have n left, you have to stop explicitly.
You can check that with everything having weight 1, this simplifies to kyle's solution.
Edited: (had to rethink what twice as likely meant)
This one does exactly that with O(n) and no excess memory usage. I believe this is a clever and efficient solution easy to port to any language. The first two lines are just to populate sample data in Drupal.
function getNrandomGuysWithWeight($numitems){
$q = db_query('SELECT id, weight FROM theTableWithTheData');
$q = $q->fetchAll();
$accum = 0;
foreach($q as $r){
$accum += $r->weight;
$r->weight = $accum;
}
$out = array();
while(count($out) < $numitems && count($q)){
$n = rand(0,$accum);
$lessaccum = NULL;
$prevaccum = 0;
$idxrm = 0;
foreach($q as $i=>$r){
if(($lessaccum == NULL) && ($n <= $r->weight)){
$out[] = $r->id;
$lessaccum = $r->weight- $prevaccum;
$accum -= $lessaccum;
$idxrm = $i;
}else if($lessaccum){
$r->weight -= $lessaccum;
}
$prevaccum = $r->weight;
}
unset($q[$idxrm]);
}
return $out;
}
I putting here a simple solution for picking 1 item, you can easily expand it for k items (Java style):
double random = Math.random();
double sum = 0;
for (int i = 0; i < items.length; i++) {
val = items[i];
sum += val.getValue();
if (sum > random) {
selected = val;
break;
}
}
I have implemented an algorithm similar to Jason Orendorff's idea in Rust here. My version additionally supports bulk operations: insert and remove (when you want to remove a bunch of items given by their ids, not through the weighted selection path) from the data structure in O(m + log n) time where m is the number of items to remove and n the number of items in stored.
Sampling wihout replacement with recursion - elegant and very short solution in c#
//how many ways we can choose 4 out of 60 students, so that every time we choose different 4
class Program
{
static void Main(string[] args)
{
int group = 60;
int studentsToChoose = 4;
Console.WriteLine(FindNumberOfStudents(studentsToChoose, group));
}
private static int FindNumberOfStudents(int studentsToChoose, int group)
{
if (studentsToChoose == group || studentsToChoose == 0)
return 1;
return FindNumberOfStudents(studentsToChoose, group - 1) + FindNumberOfStudents(studentsToChoose - 1, group - 1);
}
}
I just spent a few hours trying to get behind the algorithms underlying sampling without replacement out there and this topic is more complex than I initially thought. That's exciting! For the benefit of a future readers (have a good day!) I document my insights here including a ready to use function which respects the given inclusion probabilities further below. A nice and quick mathematical overview of the various methods can be found here: Tillé: Algorithms of sampling with equal or unequal probabilities. For example Jason's method can be found on page 46. The caveat with his method is that the weights are not proportional to the inclusion probabilities as also noted in the document. Actually, the i-th inclusion probabilities can be recursively computed as follows:
def inclusion_probability(i, weights, k):
"""
Computes the inclusion probability of the i-th element
in a randomly sampled k-tuple using Jason's algorithm
(see https://stackoverflow.com/a/2149533/7729124)
"""
if k <= 0: return 0
cum_p = 0
for j, weight in enumerate(weights):
# compute the probability of j being selected considering the weights
p = weight / sum(weights)
if i == j:
# if this is the target element, we don't have to go deeper,
# since we know that i is included
cum_p += p
else:
# if this is not the target element, than we compute the conditional
# inclusion probability of i under the constraint that j is included
cond_i = i if i < j else i-1
cond_weights = weights[:j] + weights[j+1:]
cond_p = inclusion_probability(cond_i, cond_weights, k-1)
cum_p += p * cond_p
return cum_p
And we can check the validity of the function above by comparing
In : for i in range(3): print(i, inclusion_probability(i, [1,2,3], 2))
0 0.41666666666666663
1 0.7333333333333333
2 0.85
to
In : import collections, itertools
In : sample_tester = lambda f: collections.Counter(itertools.chain(*(f() for _ in range(10000))))
In : sample_tester(lambda: random_weighted_sample_no_replacement([(1,'a'),(2,'b'),(3,'c')],2))
Out: Counter({'a': 4198, 'b': 7268, 'c': 8534})
One way - also suggested in the document above - to specify the inclusion probabilities is to compute the weights from them. The whole complexity of the question at hand stems from the fact that one cannot do that directly since one basically has to invert the recursion formula, symbolically I claim this is impossible. Numerically it can be done using all kind of methods, e.g. Newton's method. However the complexity of inverting the Jacobian using plain Python becomes unbearable quickly, I really recommend looking into numpy.random.choice in this case.
Luckily there is method using plain Python which might or might not be sufficiently performant for your purposes, it works great if there aren't that many different weights. You can find the algorithm on page 75&76. It works by splitting up the sampling process into parts with the same inclusion probabilities, i.e. we can use random.sample again! I am not going to explain the principle here since the basics are nicely presented on page 69. Here is the code with hopefully a sufficient amount of comments:
def sample_no_replacement_exact(items, k, best_effort=False, random_=None, ε=1e-9):
"""
Returns a random sample of k elements from items, where items is a list of
tuples (weight, element). The inclusion probability of an element in the
final sample is given by
k * weight / sum(weights).
Note that the function raises if a inclusion probability cannot be
satisfied, e.g the following call is obviously illegal:
sample_no_replacement_exact([(1,'a'),(2,'b')],2)
Since selecting two elements means selecting both all the time,
'b' cannot be selected twice as often as 'a'. In general it can be hard to
spot if the weights are illegal and the function does *not* always raise
an exception in that case. To remedy the situation you can pass
best_effort=True which redistributes the inclusion probability mass
if necessary. Note that the inclusion probabilities will change
if deemed necessary.
The algorithm is based on the splitting procedure on page 75/76 in:
http://www.eustat.eus/productosServicios/52.1_Unequal_prob_sampling.pdf
Additional information can be found here:
https://stackoverflow.com/questions/2140787/
:param items: list of tuples of type weight,element
:param k: length of resulting sample
:param best_effort: fix inclusion probabilities if necessary,
(optional, defaults to False)
:param random_: random module to use (optional, defaults to the
standard random module)
:param ε: fuzziness parameter when testing for zero in the context
of floating point arithmetic (optional, defaults to 1e-9)
:return: random sample set of size k
:exception: throws ValueError in case of bad parameters,
throws AssertionError in case of algorithmic impossibilities
"""
# random_ defaults to the random submodule
if not random_:
random_ = random
# special case empty return set
if k <= 0:
return set()
if k > len(items):
raise ValueError("resulting tuple length exceeds number of elements (k > n)")
# sort items by weight
items = sorted(items, key=lambda item: item[0])
# extract the weights and elements
weights, elements = list(zip(*items))
# compute the inclusion probabilities (short: π) of the elements
scaling_factor = k / sum(weights)
π = [scaling_factor * weight for weight in weights]
# in case of best_effort: if a inclusion probability exceeds 1,
# try to rebalance the probabilities such that:
# a) no probability exceeds 1,
# b) the probabilities still sum to k, and
# c) the probability masses flow from top to bottom:
# [0.2, 0.3, 1.5] -> [0.2, 0.8, 1]
# (remember that π is sorted)
if best_effort and π[-1] > 1 + ε:
# probability mass we still we have to distribute
debt = 0.
for i in reversed(range(len(π))):
if π[i] > 1.:
# an 'offender', take away excess
debt += π[i] - 1.
π[i] = 1.
else:
# case π[i] < 1, i.e. 'save' element
# maximum we can transfer from debt to π[i] and still not
# exceed 1 is computed by the minimum of:
# a) 1 - π[i], and
# b) debt
max_transfer = min(debt, 1. - π[i])
debt -= max_transfer
π[i] += max_transfer
assert debt < ε, "best effort rebalancing failed (impossible)"
# make sure we are talking about probabilities
if any(not (0 - ε <= π_i <= 1 + ε) for π_i in π):
raise ValueError("inclusion probabilities not satisfiable: {}" \
.format(list(zip(π, elements))))
# special case equal probabilities
# (up to fuzziness parameter, remember that π is sorted)
if π[-1] < π[0] + ε:
return set(random_.sample(elements, k))
# compute the two possible lambda values, see formula 7 on page 75
# (remember that π is sorted)
λ1 = π[0] * len(π) / k
λ2 = (1 - π[-1]) * len(π) / (len(π) - k)
λ = min(λ1, λ2)
# there are two cases now, see also page 69
# CASE 1
# with probability λ we are in the equal probability case
# where all elements have the same inclusion probability
if random_.random() < λ:
return set(random_.sample(elements, k))
# CASE 2:
# with probability 1-λ we are in the case of a new sample without
# replacement problem which is strictly simpler,
# it has the following new probabilities (see page 75, π^{(2)}):
new_π = [
(π_i - λ * k / len(π))
/
(1 - λ)
for π_i in π
]
new_items = list(zip(new_π, elements))
# the first few probabilities might be 0, remove them
# NOTE: we make sure that floating point issues do not arise
# by using the fuzziness parameter
while new_items and new_items[0][0] < ε:
new_items = new_items[1:]
# the last few probabilities might be 1, remove them and mark them as selected
# NOTE: we make sure that floating point issues do not arise
# by using the fuzziness parameter
selected_elements = set()
while new_items and new_items[-1][0] > 1 - ε:
selected_elements.add(new_items[-1][1])
new_items = new_items[:-1]
# the algorithm reduces the length of the sample problem,
# it is guaranteed that:
# if λ = λ1: the first item has probability 0
# if λ = λ2: the last item has probability 1
assert len(new_items) < len(items), "problem was not simplified (impossible)"
# recursive call with the simpler sample problem
# NOTE: we have to make sure that the selected elements are included
return sample_no_replacement_exact(
new_items,
k - len(selected_elements),
best_effort=best_effort,
random_=random_,
ε=ε
) | selected_elements
Example:
In : sample_no_replacement_exact([(1,'a'),(2,'b'),(3,'c')],2)
Out: {'b', 'c'}
In : import collections, itertools
In : sample_tester = lambda f: collections.Counter(itertools.chain(*(f() for _ in range(10000))))
In : sample_tester(lambda: sample_no_replacement_exact([(1,'a'),(2,'b'),(3,'c'),(4,'d')],2))
Out: Counter({'a': 2048, 'b': 4051, 'c': 5979, 'd': 7922})
The weights sum up to 10, hence the inclusion probabilities compute to: a → 20%, b → 40%, c → 60%, d → 80%. (Sum: 200% = k.) It works!
Just one word of caution for the productive use of this function, it can be very hard to spot illegal inputs for the weights. An obvious illegal example is
In: sample_no_replacement_exact([(1,'a'),(2,'b')],2)
ValueError: inclusion probabilities not satisfiable: [(0.6666666666666666, 'a'), (1.3333333333333333, 'b')]
b cannot appear twice as often as a since both have to be always be selected. There are more subtle examples. To avoid an exception in production just use best_effort=True, which rebalances the inclusion probability mass such that we have always a valid distribution. Obviously this might change the inclusion probabilities.
I used a associative map (weight,object). for example:
{
(10,"low"),
(100,"mid"),
(10000,"large")
}
total=10110
peek a random number between 0 and 'total' and iterate over the keys until this number fits in a given range.