Queue-based Bellman-Ford algorithm - algorithm

i'm trying to understand how this algorithm works.
given a question to search the paths from a source s to all the vertices in the graph ,
I thought that i have to proceed as follows:
if no cycle in the graph:
topological sort of the graph
one iteration to calculate the shortest path
else if there is a cycle in the graph:
put s in the queue
v=q.deque
while q is not empty
relax v
My question are :
Is my proceeding good or i have to change it.
When i must check that there is a negative cycle?
Thank you

Your code for the acyclic one seems correct but depends on what do you mean by one iteration to calculate the shortest path.. If the graph is acyclic (i.e., a DAG) then topological sort will allow us to visit each vertex v once (after examining all of its predecessors) and update dist[v] to its minimum distance. This is done in linear time O(V+E). So your DAG algorithm should look somehow similar to this
DAG_CASE:
topological sort of V
for each u\in V following the topological sorting
for each edge (u,v)
relax(u,v)
For the code of directed cyclic graphs (with no negative cycles), you are not relaxing an edge and not updating/checking its end points.. I am not familiar with the queued version of the BF algorithm. All I can say is that you need to make sure that a vertex v is in the queue whenever you realize that one of its predecessors (i.e. u) is not done yet. So your code should enqueue and dequeue some vertices under certain conditions (while relaxing the edges). I think you already know the non-queued version of the algorithm which is obvious.
When i must check that there is a negative cycle?
BF algorithm over a source s returns either the shortest paths from s to every other vertex or a failure indicating that there is a negative cycle. Following execution, If there is an edge that is not relaxed then there is a negative cycle.

I don't remember details of Bellman-Ford, but basically, assume you have n edges and m vertex,
for e = 1 to n-1
iterate tru each vertex and apply the formula
This part can be found on the internet easily.
Related to When i must check that there is a negative cycle?, you will do one more iteration and if any value in the last array(the array after n-1-th iteration) changes, you will say there is negative cycle, if nothing changes, it indicates there is no negative cycle.
This youtube link explains Bellman-Ford well with an example.

Related

Find all cyclic paths in a directed graph

The title is self explanatory. Here's a solution that I found in the internet that can help do this. Here's the link
I don't understand why not visiting a vertex having weight below the given threshold will solve the problem.
Additionally, I have no idea how to solve this using/not using this.
Let's restrict this to simple cycles - those which contain no subcycles. For each node in the graph, begin a depth-first search for that node. record each branch of the recursion tree which results in a match. While searching, never cross over nodes already traversed in the branch.
Consider the complete directed graph on n vertices. There are n(n-1) arcs and n! simple cycles of length n. The algorithm above isn't much worse than this at all. Simply constructing a new copy of the answer would take nearly as much time as running the above algorithm to do it, in the worst case at least.
If you want to find cycles in a directed (or even undirected) graph there is an intuitive way to do it:
For each edge (u, v) in the graph
1. Temporarily ignore the edge (u, v) in step 2
2. Run an algorithm to find all paths from v to u (using a backtrackig algorithm)
3. Output the computed paths in step 2 along with the edge (u, v) as cycles in the graph
Note that you will get duplicate cycles this way since a cycle of length k will be found k times.
You can play with this idea to find cycles with specific properties, as well. For example, if you are aiming to find the shortest weighted cycle in the graph instead of finding all cycles. You can use a Dijkstra in step 2, and take the minimum over all the cycles you find. If you wanna finding the cycle with the least number of edges you can use a BFS in step 2.
If you are more struggling with finding all paths in a graph, this question might help you. Although it's for a slightly different problem.
Counting/finding paths with backtracking

Dijkstra with Parallel edges and self-loop

If I have a weighted undirected Graph with no negative weights, but can contain multiple edges between vertex and self-loops, Can I run Dijkstra algorithm without problem to find the minimum path between a source and a destination or exists a counterexample?
My guess is that there is not problem, but I want to be sure.
If you're going to run Dijkstra's algorithm without making any changes to he graph, there's a chance that you'll not get the shortest path between source and destination.
For example, consider S and O. Now, finding the shortest path really depends on which edge is being being traversed when you want to push O to the queue. If your code picks edge with weight 1, you're fine. But if your code picks the edge with weight 8, then your algorithm is going to give you the wrong answer.
This means that the algorithm's correctness is now dependent on the order of edges entered in the adjacency list of the source node.
You can trivially transform your graph to one without single-edge loops and parallel edges.
With single-edge loops you need to check whether their weight is negative or non-negative. If the weight is negative, there obviously is no shortest path, as you can keep spinning in place and reduce your path length beyond any limit. If however the weight is positive, you can throw that edge away, as no shortest path can go through that edge.
A zero-weight edge would create a similar problem than any zero-weight loop: there will be not one but an infinite number of shortest paths, going through the same loop over and over again. In these cases the sensible thing is again to remove the edge from the graph.
Out of the parallel edges you can throw away all but the one with the lowest weight. The reasoning for this is equally simple: if there was a shortest path going through an edge A that has a parallel edge B with lower weight, you could construct an even shorter path by simply replacing A with B. Therefore no shortest path can go through A.
It just needs a minor variation. If there are multiple edges directed from u to v and each edge has a different weight, you can either:
Pick the weight with least edge for relaxation; or
Run relaxation for each edge.
Both of the above will have the same complexity although the constant factors in #2 will have higher values.
In any case you'll need to make sure that you evaluate all edges between u and v before moving to the next adjacent node of u.
I don't think it will create any kind of problem.As the dijkstra algorithm will use priority queue ,so offcourse minimum value will get update first.

Can I use Dijkstra's shortest path algorithm in my graph?

I have a directed graph that has all non-negative edges except the edge(s) that leave the source (S). There are no edges from any other vertices to the source. To find the shortest distance from source (S) to a vertex (T) in the graph, can I use Dijkstra's shortest path algorithm even though the edges leaving the source is negative?
Assuming only source-adjecent edges can have negative weights and there is no path back to the source from any of the source-adjecent nodes (as mentioned in the comment), you can just add a constant C onto all edges leaving the source to make them all non-negative. Then subtract C from the final result.
On a more general note, Dijkstra can be used to solve shortest-path in any graph with negative edge weights (but no negative cycles) after applying Johnson's reweighting algorithm (which is essentially Bellman-Ford, but needs to be performed only once).
Yes, you can use Dijkstra on that type of directed graph.
If you use already finished alghoritm for Dijsktra and it cannot use negative values, it can be good practise to find the lowest negative edge and add that number to all starting edges, therefore there is no-negative number at all. You substract that number after finishing.
If you code it yourself (which is acutally pretty easy and I recommend it to you), you almost does not change anything, just start with lowest value (as usual for Dijkstra) and allow it, that lowest value can be negative. It will work in your case.
The reason you generally can't use Dijkstra's algorithm for (directed) graphs with negative links is that Dijkstra's algorithm is greedy. It assumes that once you pick a vertex with minimum distance, there is no way it can later be reached by a smaller paths.
In your particular graph, after the very first step, you traverse all possible negative edges and Dijkstra's assumption actually holds from now on. Regardless of the fact that those vertices directly connected to start now have negative values, once you identify which has the minimum distance, it can never be reached again with a smaller distance (since all edges you would traverse from this point on would have a positive distance).
If you think about the conditions that dijkstra's algorithm puts upon the edges for the algorithm to work it is only that they are never decreasing after initialisation.
Thus, it actually doesn't matter if the first step is negative as from those several points onwards the function is constantly increasing and thus the correct output will be found (provided there is no way to get back to the start square.).

What modifications could you make to a graph to allow Dijkstra's algorithm to work on it?

So I've been thinking, without resorting to another algorithm, what modifications could you make to a graph to allow Dijkstra's algorithm to work on it, and still get the correct answer at the end of the day? If it's even possible at all?
I first thought of adding a constant equal to the most negative weight to all weights, but I found that that will mess up everthing and change the original single source path.
Then, I thought of traversing through the graph, putting all weights that are less than zero into an array or somwthing of the sort and then multiplying it by -1. I think his would work (disregarding running time constraints) but maybe I'm looking at the wrong way.
EDIT:
Another idea. How about permanently setting all negative weights to infinity. that way ensuring that they are ignored?
So I just want to hear some opinions on this; what do you guys think?
Seems you looking for something similar to Johnson's algorithm:
First, a new node q is added to the graph, connected by zero-weight edges to each of the other nodes.
Second, the Bellman–Ford algorithm is used, starting from the new vertex q, to find for each vertex v the minimum weight h(v) of a path
from q to v. If this step detects a negative cycle, the algorithm is
terminated.
Next the edges of the original graph are reweighted using the values computed by the Bellman–Ford algorithm: an edge from u to v,
having length w(u,v), is given the new length w(u,v) + h(u) − h(v).
Finally, q is removed, and Dijkstra's algorithm is used to find the shortest paths from each node s to every other vertex in the
reweighted graph.
By any algorithm, you should check for negative cycles, and if there isn't negative cycle, find the shortest path.
In your case you need to run Dijkstra's algorithm one time. Also note that in Johnson's algorithm semi Bellman–Ford algorithm runs just for new added node. (not all vertices).

Negative weights using Dijkstra's Algorithm

I am trying to understand why Dijkstra's algorithm will not work with negative weights. Reading an example on Shortest Paths, I am trying to figure out the following scenario:
2
A-------B
\ /
3 \ / -2
\ /
C
From the website:
Assuming the edges are all directed from left to right, If we start
with A, Dijkstra's algorithm will choose the edge (A,x) minimizing
d(A,A)+length(edge), namely (A,B). It then sets d(A,B)=2 and chooses
another edge (y,C) minimizing d(A,y)+d(y,C); the only choice is (A,C)
and it sets d(A,C)=3. But it never finds the shortest path from A to
B, via C, with total length 1.
I can not understand why using the following implementation of Dijkstra, d[B] will not be updated to 1 (When the algorithm reaches vertex C, it will run a relax on B, see that the d[B] equals to 2, and therefore update its value to 1).
Dijkstra(G, w, s) {
Initialize-Single-Source(G, s)
S ← Ø
Q ← V[G]//priority queue by d[v]
while Q ≠ Ø do
u ← Extract-Min(Q)
S ← S U {u}
for each vertex v in Adj[u] do
Relax(u, v)
}
Initialize-Single-Source(G, s) {
for each vertex v  V(G)
d[v] ← ∞
π[v] ← NIL
d[s] ← 0
}
Relax(u, v) {
//update only if we found a strictly shortest path
if d[v] > d[u] + w(u,v)
d[v] ← d[u] + w(u,v)
π[v] ← u
Update(Q, v)
}
Thanks,
Meir
The algorithm you have suggested will indeed find the shortest path in this graph, but not all graphs in general. For example, consider this graph:
Let's trace through the execution of your algorithm.
First, you set d(A) to 0 and the other distances to ∞.
You then expand out node A, setting d(B) to 1, d(C) to 0, and d(D) to 99.
Next, you expand out C, with no net changes.
You then expand out B, which has no effect.
Finally, you expand D, which changes d(B) to -201.
Notice that at the end of this, though, that d(C) is still 0, even though the shortest path to C has length -200. This means that your algorithm doesn't compute the correct distances to all the nodes. Moreover, even if you were to store back pointers saying how to get from each node to the start node A, you'd end taking the wrong path back from C to A.
The reason for this is that Dijkstra's algorithm (and your algorithm) are greedy algorithms that assume that once they've computed the distance to some node, the distance found must be the optimal distance. In other words, the algorithm doesn't allow itself to take the distance of a node it has expanded and change what that distance is. In the case of negative edges, your algorithm, and Dijkstra's algorithm, can be "surprised" by seeing a negative-cost edge that would indeed decrease the cost of the best path from the starting node to some other node.
Note, that Dijkstra works even for negative weights, if the Graph has no negative cycles, i.e. cycles whose summed up weight is less than zero.
Of course one might ask, why in the example made by templatetypedef Dijkstra fails even though there are no negative cycles, infact not even cycles. That is because he is using another stop criterion, that holds the algorithm as soon as the target node is reached (or all nodes have been settled once, he did not specify that exactly). In a graph without negative weights this works fine.
If one is using the alternative stop criterion, which stops the algorithm when the priority-queue (heap) runs empty (this stop criterion was also used in the question), then dijkstra will find the correct distance even for graphs with negative weights but without negative cycles.
However, in this case, the asymptotic time bound of dijkstra for graphs without negative cycles is lost. This is because a previously settled node can be reinserted into the heap when a better distance is found due to negative weights. This property is called label correcting.
TL;DR: The answer depends on your implementation. For the pseudo code you posted, it works with negative weights.
Variants of Dijkstra's Algorithm
The key is there are 3 kinds of implementation of Dijkstra's algorithm, but all the answers under this question ignore the differences among these variants.
Using a nested for-loop to relax vertices. This is the easiest way to implement Dijkstra's algorithm. The time complexity is O(V^2).
Priority-queue/heap based implementation + NO re-entrance allowed, where re-entrance means a relaxed vertex can be pushed into the priority-queue again to be relaxed again later.
Priority-queue/heap based implementation + re-entrance allowed.
Version 1 & 2 will fail on graphs with negative weights (if you get the correct answer in such cases, it is just a coincidence), but version 3 still works.
The pseudo code posted under the original problem is the version 3 above, so it works with negative weights.
Here is a good reference from Algorithm (4th edition), which says (and contains the java implementation of version 2 & 3 I mentioned above):
Q. Does Dijkstra's algorithm work with negative weights?
A. Yes and no. There are two shortest paths algorithms known as Dijkstra's algorithm, depending on whether a vertex can be enqueued on the priority queue more than once. When the weights are nonnegative, the two versions coincide (as no vertex will be enqueued more than once). The version implemented in DijkstraSP.java (which allows a vertex to be enqueued more than once) is correct in the presence of negative edge weights (but no negative cycles) but its running time is exponential in the worst case. (We note that DijkstraSP.java throws an exception if the edge-weighted digraph has an edge with a negative weight, so that a programmer is not surprised by this exponential behavior.) If we modify DijkstraSP.java so that a vertex cannot be enqueued more than once (e.g., using a marked[] array to mark those vertices that have been relaxed), then the algorithm is guaranteed to run in E log V time but it may yield incorrect results when there are edges with negative weights.
For more implementation details and the connection of version 3 with Bellman-Ford algorithm, please see this answer from zhihu. It is also my answer (but in Chinese). Currently I don't have time to translate it into English. I really appreciate it if someone could do this and edit this answer on stackoverflow.
you did not use S anywhere in your algorithm (besides modifying it). the idea of dijkstra is once a vertex is on S, it will not be modified ever again. in this case, once B is inside S, you will not reach it again via C.
this fact ensures the complexity of O(E+VlogV) [otherwise, you will repeat edges more then once, and vertices more then once]
in other words, the algorithm you posted, might not be in O(E+VlogV), as promised by dijkstra's algorithm.
Since Dijkstra is a Greedy approach, once a vertice is marked as visited for this loop, it would never be reevaluated again even if there's another path with less cost to reach it later on. And such issue could only happen when negative edges exist in the graph.
A greedy algorithm, as the name suggests, always makes the choice that seems to be the best at that moment. Assume that you have an objective function that needs to be optimized (either maximized or minimized) at a given point. A Greedy algorithm makes greedy choices at each step to ensure that the objective function is optimized. The Greedy algorithm has only one shot to compute the optimal solution so that it never goes back and reverses the decision.
Consider what happens if you go back and forth between B and C...voila
(relevant only if the graph is not directed)
Edited:
I believe the problem has to do with the fact that the path with AC* can only be better than AB with the existence of negative weight edges, so it doesn't matter where you go after AC, with the assumption of non-negative weight edges it is impossible to find a path better than AB once you chose to reach B after going AC.
"2) Can we use Dijksra’s algorithm for shortest paths for graphs with negative weights – one idea can be, calculate the minimum weight value, add a positive value (equal to absolute value of minimum weight value) to all weights and run the Dijksra’s algorithm for the modified graph. Will this algorithm work?"
This absolutely doesn't work unless all shortest paths have same length. For example given a shortest path of length two edges, and after adding absolute value to each edge, then the total path cost is increased by 2 * |max negative weight|. On the other hand another path of length three edges, so the path cost is increased by 3 * |max negative weight|. Hence, all distinct paths are increased by different amounts.
You can use dijkstra's algorithm with negative edges not including negative cycle, but you must allow a vertex can be visited multiple times and that version will lose it's fast time complexity.
In that case practically I've seen it's better to use SPFA algorithm which have normal queue and can handle negative edges.
I will be just combining all of the comments to give a better understanding of this problem.
There can be two ways of using Dijkstra's algorithms :
Marking the nodes that have already found the minimum distance from the source (faster algorithm since we won't be revisiting nodes whose shortest path have been found already)
Not marking the nodes that have already found the minimum distance from the source (a bit slower than the above)
Now the question arises, what if we don't mark the nodes so that we can find shortest path including those containing negative weights ?
The answer is simple. Consider a case when you only have negative weights in the graph:
)
Now, if you start from the node 0 (Source), you will have steps as (here I'm not marking the nodes):
0->0 as 0, 0->1 as inf , 0->2 as inf in the beginning
0->1 as -1
0->2 as -5
0->0 as -8 (since we are not relaxing nodes)
0->1 as -9 .. and so on
This loop will go on forever, therefore Dijkstra's algorithm fails to find the minimum distance in case of negative weights (considering all the cases).
That's why Bellman Ford Algo is used to find the shortest path in case of negative weights, as it will stop the loop in case of negative cycle.

Resources