class_name = "TestClass"
Object.const_set class_name,Class.new{
include MOduleX
}
#module_x.rb
module ModuleX
def ModuleX.included (klass)
p klass.name #=> nil
end
end
I need to access the name of the class ("TestClass" in this case) inside the module, how can I do it?
You can't, const_set is occuring after Class.new. At the point where ModuleX is included (MOduleX is, I assume, a typo), the class is well and truly nameless.
Not to even mention that a constant can't be called test, as Ruby grammar mandates that constants must start with a capital letter.
However, if your module must know the class name at inclusion time, it's probably doing something wrong. I suggest rethinking and refactoring.
#Amadan has explained why that won't work, but you can get it if you are able to write it like this:
class_name = "Test"
module ModuleX
def self.included(klass)
puts "klass = #{klass}"
end
end
Object.const_set class_name, Class.new do
end.include ModuleX
#=> "klass = Test"
Related
I'm trying to make a DSL like configuration for classes that include a module but to have the configured variable available to both class and instance methods seems to require littering the module with access methods. Is there a more elegant way to do this?
module DogMixin
class << self
def included(base)
base.extend ClassMethods
end
end
module ClassMethods
def breed(value)
#dog_breed = value
end
def dog_breed
#dog_breed
end
end
end
class Foo
include DogMixin
breed :havanese
end
puts Foo.dog_breed
# not implemented but should be able to do this as well
f = Foo.new
f.dog_breed
Your example is a bit weird I think :)
Anyway, one way to avoid writing the accessors (the assignment - accessor is problematic in my eyes - especially in the given example) is to define constants, as in the example below. If however you need runtime-assignments, please edit your question (and thus render this answer invalid :) except you want to mess with runtime constant assignment, which is possible but messy).
module DogMixin
# **include** DogMixin to get `Class.dog_breed`
class << self
def included(base)
def base.dog_breed
self::DOG_BREED || "pug"
end
end
end
# **extend** DogMixin to get `instance.dog_breed`
def dog_breed
self.class.const_get(:DOG_BREED) || "pug"
end
end
class Foomer
DOG_BREED = 'foomer'
extend DogMixin
include DogMixin
end
f = Foomer.new
puts Foomer.dog_breed
puts f.dog_breed
# If I understand you correctly, this is the most important (?):
f.dog_breed == Foomer.dog_breed #=> true
It took some reading of (In Ruby) allowing mixed-in class methods access to class constants to get the Instance-And-Class Constant lookup from a module, but it works. I am not sure if I really like the solution though. Good question, although you could add a little detail.
I want to initialize my_attr_reader. Changing attr_reader to cattr_reader doesn't help because there is such a method cattr_reader for some reason.
How can I do that?
module Mod1
def method1
puts "method1 from Mod1"
end
end
MyClass = Object.new
class << MyClass
include Mod1
attr_reader :my_attr_reader
my_attr_reader = "111" # doesn't get initialized
def initialize
self.my_attr_reader = "123" # doesn't get initialized
end
def my_class1_method1
puts "MyClass method1"
end
end
MyClass.my_class1_method1
MyClass.method1
p MyClass.my_attr_reader # nil
P.S. Why does include work here, whereas extend doesn't, even so it should be exactly the opposite?
You have a few problems here, so I'll split this up into sections.
A note about cattr_reader
cattr_reader would probably be useful for you, but it is a part of Rails, not Ruby. You will not be able to use this in Ruby code without first including the right parts of Rails.
How to use attr_reader
Your main problem here is that attr_reader and cattr_reader create instance and class variables respectively, but you are using local variables instead. Instance variables start with #, and class variables start with ##. Class variables have odd and confusing behaviors, and cattr_reader isn't built into Ruby as I mentioned above, so I would recommend using attr_reader on the class level.
Why does include work here, whereas extend doesn't, even so it should be exactly the opposite?
extend adds in class-level methods, while include includes instance methods. You are defining method as an instance method of Mod1, so you should be using include.
I would like to access a class' name in its superclass MySuperclass' self.inherited method. It works fine for concrete classes as defined by class Foo < MySuperclass; end but it fails when using anonymous classes. I tend to avoid creating (class-)constants in tests; I would like it to work with anonymous classes.
Given the following code:
class MySuperclass
def self.inherited(subclass)
super
# work with subclass' name
end
end
klass = Class.new(MySuperclass) do
def self.name
'FooBar'
end
end
klass#name will still be nil when MySuperclass.inherited is called as that will be before Class.new yields to its block and defines its methods.
I understand a class gets its name when it's assigned to a constant, but is there a way to set Class#name "early" without creating a constant?
I prepared a more verbose code example with failing tests to illustrate what's expected.
Probably #yield has taken place after the ::inherited is called, I saw the similar behaviour with class definition. However, you can avoid it by using ::klass singleton method instead of ::inherited callback.
def self.klass
#klass ||= (self.name || self.to_s).gsub(/Builder\z/, '')
end
I am trying to understand the benefit of being able to refer to an anonymous class by a name you have assigned to it after it has been created. I thought I might be able to move the conversation along by providing some code that you could look at and then tell us what you'd like to do differently:
class MySuperclass
def self.inherited(subclass)
# Create a class method for the subclass
subclass.instance_eval do
def sub_class() puts "sub_class here" end
end
# Create an instance method for the subclass
subclass.class_eval do
def sub_instance() puts "sub_instance here" end
end
end
end
klass = Class.new(MySuperclass) do
def self.name=(name)
#name = Object.const_set(name, self)
end
def self.name
#name
end
end
klass.sub_class #=> "sub_class here"
klass.new.sub_instance #=> "sub_instance here"
klass.name = 'Fido' #=> "Fido"
kn = klass.name #=> Fido
kn.sub_class #=> "sub_class here"
kn.new.sub_instance #=> "sub_instance here"
klass.name = 'Woof' #=> "Woof"
kn = klass.name #=> Fido (cannot change)
There is no way in pure Ruby to set a class name without assigning it to a constant.
If you're using MRI and want to write yourself a very small C extension, it would look something like this:
VALUE
force_class_name (VALUE klass, VALUE symbol_name)
{
rb_name_class(klass, SYM2ID(symbol_name));
return klass;
}
void
Init_my_extension ()
{
rb_define_method(rb_cClass, "force_class_name", force_class_name, 1);
}
This is a very heavy approach to the problem. Even if it works it won't be guaranteed to work across various versions of ruby, since it relies on the non-API C function rb_name_class. I'm also not sure what the behavior will be once Ruby gets around to running its own class-naming hooks afterward.
The code snippet for your use case would look like this:
require 'my_extension'
class MySuperclass
def self.inherited(subclass)
super
subclass.force_class_name(:FooBar)
# work with subclass' name
end
end
I have to add methods to Class in execution time.
class ExtendableClass
end
The methods to add are declared in independent Classes.
module ExtensionClassOne
def method_one
end
end
module ExtensionClassTwo
def method_two
end
end
I'm looking for an (elegant) mechanism to add all the extension class methods into the ExtendableClass.
Approach 1
I'm thinking in explicily include the extension classes like:
ExtendableClass.send( :include, ExtensionClassOne )
ExtendableClass.send( :include, ExtensionClassTwo )
but it looks a little forced to have to call this private method every time I define a new extension class.
Approach 2
So I was looking for an automatic way to include this methods into my ExtendableClass class.
I'm thinking in declare an specific ancestor for this extension classes:
class ExtensionClassOne < Extension
def method_one
end
end
and then I'd need a mechanism to know all the childs of a class... something like the oposite of ancestors.
Once I have this list I can easily ExtendableClass.include all the list of classes. Even if I have to call to the private method here.
Approach 3
Also inheriting from the Extension class and detect in declaration time when this class is used as ancestor. In the way that the ActiveSupport.included method works, like an event binding. Then make the include there.
Any solution for implement approach 2 or approach 3? Do you recommend approach 1? New approachs?
#fguillen, you are right that the "explicit way is the cleanest approach". Since that is so, why don't you use the most "explicit" code which could be imagined:
class Extendable
end
class Extendable
def method_one
puts "method one"
end
end
class Extendable
def method_two
puts "method two"
end
end
...In other words, if you are defining a module which will be automatically included in a class as soon as it is defined, why bother with the module at all? Just add your "extension" methods directly to the class!
Approach 4 would be to define a macro on class level in Object
class Object
def self.enable_extension
include InstanceExtension
extend ClassExtension
end
end
and calling this macro in all your classes you want to be extended.
class Bacon
enable_extension
end
Car.enable_extension
This way,
you don't have to use #send to circumvent encapsulation (Approach 1)
you can inherit from any Class you want, because everything inherits from Object anyway (except 1.9's BasicObject)
the usage of your extension is declarative and not hidden in some hook
Downside: you monkeypatch build-in Classes and may break the world. Choose long and decriptive names.
Edit: Given your answer to my comment on the question I suppose this is not what you wanted. I see no problem with your "Approach 1" in this case; it's what I'd do. Alternatively, instead of using send to bypass the private method, just re-open the class:
class ExtendableClass
include ExtensionOne
end
Assuming I understand what you want, I'd do this:
module DelayedExtension
def later_include( *modules )
(#later_include||=[]).concat( modules )
end
def later_extend( *modules )
(#later_extend||=[]).concat( modules )
end
def realize_extensions # better name needed
include *#later_include unless !#later_include || #later_include.empty?
extend *#later_extend unless !#later_extend || #later_extend.empty?
end
end
module ExtensionOne
end
module ExtensionTwo
def self.included(klass)
klass.extend ClassMethods
end
module ClassMethods
def class_can_do_it!; end
end
end
class ExtendableClass
extend DelayedExtension
later_include ExtensionOne, ExtensionTwo
end
original_methods = ExtendableClass.methods
p ExtendableClass.ancestors
#=> [ExtendableClass, Object, Kernel, BasicObject]
ExtendableClass.realize_extensions
p ExtendableClass.ancestors
#=> [ExtendableClass, ExtensionOne, ExtensionTwo, Object, Kernel, BasicObject]
p ExtendableClass.methods - original_methods
#=> [:class_can_do_it!]
The included method is actually a hook. It is called whenever you are inherited from:
module Extensions
def someFunctionality()
puts "Doing work..."
end
end
class Foo
def self.inherited(klass)
klass.send(:include, Extensions) #Replace self with a different module if you want
end
end
class Bar < Foo
end
Bar.new.someFunctionality #=> "Doing work..."
There is also the included hook, which is called when you are included:
module Baz
def self.included(klass)
puts "Baz was included into #{klass}"
end
end
class Bork
include Baz
end
Output:
Baz was included into Bork
A very tricky solution, I think too much over-engineering, would be to take the inherited hook that #Linux_iOS.rb.cpp.c.lisp.m.sh has commented and keep all and every child class in a Set and combined it with the #Mikey Hogarth proposition of method_missing to look for all this child class methods every time I call a method in the Extendable class. Something like this:
# code simplified and no tested
# extendable.rb
class Extendable
##delegators = []
def self.inherited( klass )
##delegators << klass
end
def self.method_missing
# ... searching in all ##delegators methods
end
end
# extensions/extension_one.rb
class ExtensionOne < Extendable
def method_one
end
end
But the logic of the method_missing (and respond_to?) is gonna be very complicate and dirty.
I don't like this solution, just let it here to study it like a possibility.
After a very interesting propositions you have done I have realized that the explicit way is the cleanest approach. If we add a few recommendations taking from your answers I think I'm gonna go for this:
# extendable.rb
class Extendable
def self.plug( _module )
include( _module )
end
end
# extensions/extension_one.rb
module ExtensionOne
def method_one
puts "method one"
end
end
Extendable.plug( ExtensionOne )
# extensions/extension_two.rb
module ExtensionTwo
def method_two
puts "method two"
end
end
Extendable.plug( ExtensionTwo )
# result
Extendable.new.method_one # => "method one"
Extendable.new.method_two # => "method two"
Background:
I have a module which declares a number of instance methods
module UsefulThings
def get_file; ...
def delete_file; ...
def format_text(x); ...
end
And I want to call some of these methods from within a class. How you normally do this in ruby is like this:
class UsefulWorker
include UsefulThings
def do_work
format_text("abc")
...
end
end
Problem
include UsefulThings brings in all of the methods from UsefulThings. In this case I only want format_text and explicitly do not want get_file and delete_file.
I can see several possible solutions to this:
Somehow invoke the method directly on the module without including it anywhere
I don't know how/if this can be done. (Hence this question)
Somehow include Usefulthings and only bring in some of it's methods
I also don't know how/if this can be done
Create a proxy class, include UsefulThings in that, then delegate format_text to that proxy instance
This would work, but anonymous proxy classes are a hack. Yuck.
Split up the module into 2 or more smaller modules
This would also work, and is probably the best solution I can think of, but I'd prefer to avoid it as I'd end up with a proliferation of dozens and dozens of modules - managing this would be burdensome
Why are there lots of unrelated functions in a single module? It's ApplicationHelper from a rails app, which our team has de-facto decided on as the dumping ground for anything not specific enough to belong anywhere else. Mostly standalone utility methods that get used everywhere. I could break it up into seperate helpers, but there'd be 30 of them, all with 1 method each... this seems unproductive
I think the shortest way to do just throw-away single call (without altering existing modules or creating new ones) would be as follows:
Class.new.extend(UsefulThings).get_file
If a method on a module is turned into a module function you can simply call it off of Mods as if it had been declared as
module Mods
def self.foo
puts "Mods.foo(self)"
end
end
The module_function approach below will avoid breaking any classes which include all of Mods.
module Mods
def foo
puts "Mods.foo"
end
end
class Includer
include Mods
end
Includer.new.foo
Mods.module_eval do
module_function(:foo)
public :foo
end
Includer.new.foo # this would break without public :foo above
class Thing
def bar
Mods.foo
end
end
Thing.new.bar
However, I'm curious why a set of unrelated functions are all contained within the same module in the first place?
Edited to show that includes still work if public :foo is called after module_function :foo
Another way to do it if you "own" the module is to use module_function.
module UsefulThings
def a
puts "aaay"
end
module_function :a
def b
puts "beee"
end
end
def test
UsefulThings.a
UsefulThings.b # Fails! Not a module method
end
test
If you want to call these methods without including module in another class then you need to define them as module methods:
module UsefulThings
def self.get_file; ...
def self.delete_file; ...
def self.format_text(x); ...
end
and then you can call them with
UsefulThings.format_text("xxx")
or
UsefulThings::format_text("xxx")
But anyway I would recommend that you put just related methods in one module or in one class. If you have problem that you want to include just one method from module then it sounds like a bad code smell and it is not good Ruby style to put unrelated methods together.
To invoke a module instance method without including the module (and without creating intermediary objects):
class UsefulWorker
def do_work
UsefulThings.instance_method(:format_text).bind(self).call("abc")
...
end
end
Not sure if someone still needs it after 10 years but I solved it using eigenclass.
module UsefulThings
def useful_thing_1
"thing_1"
end
class << self
include UsefulThings
end
end
class A
include UsefulThings
end
class B
extend UsefulThings
end
UsefulThings.useful_thing_1 # => "thing_1"
A.new.useful_thing_1 # => "thing_1"
B.useful_thing_1 # => "thing_1"
Firstly, I'd recommend breaking the module up into the useful things you need. But you can always create a class extending that for your invocation:
module UsefulThings
def a
puts "aaay"
end
def b
puts "beee"
end
end
def test
ob = Class.new.send(:include, UsefulThings).new
ob.a
end
test
A. In case you, always want to call them in a "qualified", standalone way (UsefulThings.get_file), then just make them static as others pointed out,
module UsefulThings
def self.get_file; ...
def self.delete_file; ...
def self.format_text(x); ...
# Or.. make all of the "static"
class << self
def write_file; ...
def commit_file; ...
end
end
B. If you still want to keep the mixin approach in same cases, as well the one-off standalone invocation, you can have a one-liner module that extends itself with the mixin:
module UsefulThingsMixin
def get_file; ...
def delete_file; ...
def format_text(x); ...
end
module UsefulThings
extend UsefulThingsMixin
end
So both works then:
UsefulThings.get_file() # one off
class MyUser
include UsefulThingsMixin
def f
format_text # all useful things available directly
end
end
IMHO it's cleaner than module_function for every single method - in case want all of them.
As I understand the question, you want to mix some of a module's instance methods into a class.
Let's begin by considering how Module#include works. Suppose we have a module UsefulThings that contains two instance methods:
module UsefulThings
def add1
self + 1
end
def add3
self + 3
end
end
UsefulThings.instance_methods
#=> [:add1, :add3]
and Fixnum includes that module:
class Fixnum
def add2
puts "cat"
end
def add3
puts "dog"
end
include UsefulThings
end
We see that:
Fixnum.instance_methods.select { |m| m.to_s.start_with? "add" }
#=> [:add2, :add3, :add1]
1.add1
2
1.add2
cat
1.add3
dog
Were you expecting UsefulThings#add3 to override Fixnum#add3, so that 1.add3 would return 4? Consider this:
Fixnum.ancestors
#=> [Fixnum, UsefulThings, Integer, Numeric, Comparable,
# Object, Kernel, BasicObject]
When the class includes the module, the module becomes the class' superclass. So, because of how inheritance works, sending add3 to an instance of Fixnum will cause Fixnum#add3 to be invoked, returning dog.
Now let's add a method :add2 to UsefulThings:
module UsefulThings
def add1
self + 1
end
def add2
self + 2
end
def add3
self + 3
end
end
We now wish Fixnum to include only the methods add1 and add3. Is so doing, we expect to get the same results as above.
Suppose, as above, we execute:
class Fixnum
def add2
puts "cat"
end
def add3
puts "dog"
end
include UsefulThings
end
What is the result? The unwanted method :add2 is added to Fixnum, :add1 is added and, for reasons I explained above, :add3 is not added. So all we have to do is undef :add2. We can do that with a simple helper method:
module Helpers
def self.include_some(mod, klass, *args)
klass.send(:include, mod)
(mod.instance_methods - args - klass.instance_methods).each do |m|
klass.send(:undef_method, m)
end
end
end
which we invoke like this:
class Fixnum
def add2
puts "cat"
end
def add3
puts "dog"
end
Helpers.include_some(UsefulThings, self, :add1, :add3)
end
Then:
Fixnum.instance_methods.select { |m| m.to_s.start_with? "add" }
#=> [:add2, :add3, :add1]
1.add1
2
1.add2
cat
1.add3
dog
which is the result we want.
After almost 9 years here's a generic solution:
module CreateModuleFunctions
def self.included(base)
base.instance_methods.each do |method|
base.module_eval do
module_function(method)
public(method)
end
end
end
end
RSpec.describe CreateModuleFunctions do
context "when included into a Module" do
it "makes the Module's methods invokable via the Module" do
module ModuleIncluded
def instance_method_1;end
def instance_method_2;end
include CreateModuleFunctions
end
expect { ModuleIncluded.instance_method_1 }.to_not raise_error
end
end
end
The unfortunate trick you need to apply is to include the module after the methods have been defined. Alternatively you may also include it after the context is defined as ModuleIncluded.send(:include, CreateModuleFunctions).
Or you can use it via the reflection_utils gem.
spec.add_dependency "reflection_utils", ">= 0.3.0"
require 'reflection_utils'
include ReflectionUtils::CreateModuleFunctions
This old question comes to me today when I am studing Ruby and found interesting so I want to answer with my new knowlege.
Assume that you have the module
module MyModule
def say
'I say'
end
def cheer
'I cheer'
end
end
then with the class so call Animal I can take cheer method from MyModule as following
class Animal
define_method(:happy, MyModule.method(:cheer))
end
This is so called unbound method, so you can take a callable object and bind it to another place(s).
From this point, you can use the method as usual, such as
my_dog = Animal.new
my_dog.happy # => "I cheer"
Hope this help as I also learned something new today.
To learn further, you can use irb and take a look at Method object.