Segment tree time complexity analysis - data-structures

How can we prove that the update and query operations on a segment tree (http://letuskode.blogspot.in/2013/01/segtrees.html) (not to be confused with an interval tree) are O(log n)?
I thought of a way which goes like this - At every node, we make at most two recursive calls on the left and right sub-trees. If we could prove that one of these calls terminates fairly quickly, the time complexity would be logarithmically bounded. But how do we prove this?

Lemma: at most 2 nodes are used at each level of the tree(a level is set of nodes with a fixed distance from the root).
Proof: Let's assume that at the level h at least 3 nodes were used(let's call them L, M and R). It means that the entire interval from the left bound of the L node to the right bound of the R node lies inside the query range. That's why M is fully covered by a node(let's call it UP) from the h - 1 level that fully lies inside the query range. But it implies that M could not be visited at all because the traversal would stop in the UP node or higher. Here are some pictures to clarify this step of the proof:
h - 1: UP UP UP
/\ /\ /\
h: L M R L M R L M R
That's why at most two nodes at each level are used. There are only log N levels in a segment tree so at most 2 * log N are used in total.

The claim is that there are at most 2 nodes which are expanded at each level. We will prove this by contradiction.
Consider the segment tree given below.
Let's say that there are 3 nodes that are expanded in this tree. This means that the range is from the left most colored node to the right most colored node. But notice that if the range extends to the right most node, then the full range of the middle node is covered. Thus, this node will immediately return the value and won't be expanded. Thus, we prove that at each level, we expand at most 2 nodes and since there are log⁡n levels, the nodes that are expanded are 2⋅logn=Θ(logn)

If we prove that there at most N nodes to visit on each level and knowing that Binary segment tree has max logN height - we can say that query operatioin has is O(LogN) complexity. Other answers tell you that there at most 2 nodes to visit on each level but i assume that there at most 4 nodes to visit 4 nodes are visited on the level. You can find the same statement without proof in other sources like Geek for Geeks
Other answers show you too small segment tree. Consider this example: Segment tree with leaf nodes size - 16, indexes start from zero. You are looking for the range [0-14]
See example: Crossed are nodes that we are visiting

At each level (L) of tree there would be at max 2 nodes which could have partial overlap. (If unable to prove - why ?, please mention)
So, at level (L+1) we have to explore at max 4 nodes. and total height/levels in the tree is O(log(N)) (where N is number of nodes). Hence time complexity is O(4*Log(N)) ~ O(Log(N)).
PS: Please refer diagram attached by #Oleksandr Papchenko to get better understanding.

I will try to give simple mathematical explanation.
Look at the code below . As per the segment tree implementation for range_query
int query(int node, int st, int end, int l, int r)
{
/*if range lies inside the query range*/
if(l <= st && end <= r )
{
return tree[node];
}
/*If range is totally outside the query range*/
if(st>r || end<l)
return INT_MAX;
/*If query range intersects both the children*/
int mid = (st+end)/2;
int ans1 = query(2*node, st, mid, l, r);
int ans2 = query(2*node+1, mid+1, end, l, r);
return min(ans1, ans2);
}
you go left and right and if its range then you return value.
So at each level 2 nodes are selected let's call LeftMost and rightMost. If say some other node is selected in between called mid one, then their least common ancestor must have been same and that range would have been included. thus
thus , For segment tree with logN levels.
Search at each level = 2
Total search = (search at each level ) * (number of levels) = (2logN)
Therefore search complexity = O(2logN) ~ O(logN).
P.S for space complexity (https://codeforces.com/blog/entry/49939 )

Related

Why solving a range minimum query with segment tree time complexity is O(Log n)?

i was trying to solve how to find in a given array and two indexes the minimum value between these two indexes in O(Log(n)).
i saw the solution of using a segment-tree but couldn't understand why the time complexity for this solution is O(Logn) because it doesnt seems like this because if your range is not exactly within the nod's range you need to start spliting the search.
First proof:
The claim is that there are at most 2 nodes which are expanded at each level. We will prove this by contradiction.
Consider the segment tree given below.
Let's say that there are 3 nodes that are expanded in this tree. This means that the range is from the left most colored node to the right most colored node. But notice that if the range extends to the right most node, then the full range of the middle node is covered. Thus, this node will immediately return the value and won't be expanded. Thus, we prove that at each level, we expand at most 2 nodes and since there are logn levels, the nodes that are expanded are 2⋅logn=Θ(logn).
Source
Second proof:
There are four cases when query the interval (x,y)
FIND(R,x,y) //R is the node
% Case 1
if R.first = x and R.last = y
return {R}
% Case 2
if y <= R.middle
return FIND(R.leftChild, x, y)
% Case 3
if x >= R.middle + 1
return FIND(R.rightChild, x, y)
% Case 4
P = FIND(R.leftChild, x, R.middle)
Q = FIND(R.rightChild, R.middle + 1, y)
return P union Q.
Intuitively, first three cases reduce the level of tree height by 1, since the tree has height log n, if only first three cases happen, the running time is O(log n).
For the last case, FIND() divide the problem into two subproblems. However, we assert that this can only happen at most once. After we called FIND(R.leftChild, x, R.middle), we are querying R.leftChild for the interval [x, R.middle]. R.middle is the same as R.leftChild.last. If x > R.leftChild.middle, then it is Case 1; if x <= R.leftChild, then we will call
FIND ( R.leftChild.leftChild, x, R.leftChild.middle );
FIND ( R.leftChild.rightChild, R.leftChild.middle + 1, , R.leftChild.last );
However, the second FIND() returns R.leftChild.rightChild.sum and therefore takes constant time, and the problem will not be separate into two subproblems (strictly speaking, the problem is separated, though one subproblem takes O(1) time to solve).
Since the same analysis holds on the rightChild of R, we conclude that after case4 happens the first time, the running time T(h) (h is the remaining level of the tree) would be
T(h) <= T(h-1) + c (c is a constant)
T(1) = c
which yields:
T(h) <= c * h = O(h) = O(log n) (since h is the height of the tree)
Hence we end the proof.
Source

Counting p-cousins on a directed tree

We're given a directed tree to work with. We define the concepts of p-ancestor and p-cousin as follows
p-ancestor: A node is an 1-ancestor of another if it is the parent of it. It is the p-ancestor of a node, if it is the parent of the (p-1)-th ancestor.
p-cousin: A node is the p-cousin of another, if they share the same p-ancestor.
For example, consider the tree below.
4 has three 1-cousins i,e, 3, 4 and 5 since they all share the common
1-ancestor, which is 1
For a particular tree, the problem is as follows. You are given multiple pairs of (node,p) and are supposed to count (and output) the number of p-cousins of the corresponding nodes.
A slow algorithm would be to crawl up to the p-ancestor and run a BFS for each node.
What is the (asymptotically) fastest way to solve the problem?
If an off-line solution is acceptable, two Depth first searches can do the job.
Assume that we can index all of those n queries (node, p) from 0 to n - 1
We can convert each query (node, p) into another type of query (ancestor , p) as follow:
Answer for query (node, p), with node has level a (distance from root to this node is a), is the number of descendants level a of the ancestor at level a - p. So, for each queries, we can find who is that ancestor:
Pseudo code
dfs(int node, int level, int[]path, int[] ancestorForQuery, List<Query>[]data){
path[level] = node;
visit all child node;
for(Query query : data[node])
if(query.p <= level)
ancestorForQuery[query.index] = path[level - p];
}
Now, after the first DFS, instead of the original query, we have a new type of query (ancestor, p)
Assume that we have an array count, which at index i stores the number of node which has level i. Assume that, node a at level x , we need to count number of p descendants, so, the result for this query is:
query result = count[x + p] after we visit a - count[x + p] before we visit a
Pseudo code
dfs2(int node, int level, int[] result, int[]count, List<TransformedQuery>[]data){
count[level] ++;
for(TransformedQuery query : data[node]){
result[query.index] -= count[level + query.p];
}
visit all child node;
for(TransformedQuery query : data[node]){
result[query.index] += count[level + query.p];
}
}
Result of each query is stored in result array.
If p is fixed, I suggest the following algorithm:
Let's say that count[v] is number of p-children of v. Initially all count[v] are set to 0. And pparent[v] is p-parent of v.
Let's now run a dfs on the tree and keep the stack of visited nodes, i.e. when we visit some v, we put it into the stack. Once we leave v, we pop.
Suppose we've come to some node v in our dfs. Let's do count[stack[size - p]]++, indicating that we are a p-child of v. Also pparent[v] = stack[size-p]
Once your dfs is finished, you can calculate the desired number of p-cousins of v like this:
count[pparent[v]]
The complexity of this is O(n + m) for dfs and O(1) for each query
First I'll describe a fairly simple way to answer each query in O(p) time that uses O(n) preprocessing time and space, and then mention a way that query times can be sped up to O(log p) time for a factor of just O(log n) extra preprocessing time and space.
O(p)-time query algorithm
The basic idea is that if we write out the sequence of nodes visited during a DFS traversal of the tree in such a way that every node is written out at a vertical position corresponding to its level in the tree, then the set of p-cousins of a node form a horizontal interval in this diagram. Note that this "writing out" looks very much like a typical tree diagram, except without lines connecting nodes, and (if a postorder traversal is used; preorder would be just as good) parent nodes always appearing to the right of their children. So given a query (v, p), what we will do is essentially:
Find the p-th ancestor u of the given node v. Naively this takes O(p) time.
Find the p-th left-descendant l of u -- that is, the node you reach after repeating the process of visiting the leftmost child of the current node, p times. Naively this takes O(p) time.
Find the p-th right-descendant r of u (defined similarly). Naively this takes O(p) time.
Return the value x[r] - x[l] + 1, where x[i] is a precalculated value that records the number of nodes in the sequence described above that are at the same level as, and at or to the left of, node i. This takes constant time.
The preprocessing step is where we calculate x[i], for each 1 <= i <= n. This is accomplished by performing a DFS that builds up a second array y[] that records the number y[d] of nodes visited so far at depth d. Specifically, y[d] is initially 0 for each d; during the DFS, when we visit a node v at depth d, we simply increment y[d] and then set x[v] = y[d].
O(log p)-time query algorithm
The above algorithm should already be fast enough if the tree is fairly balanced -- but in the worst case, when each node has just a single child, O(p) = O(n). Notice that it is navigating up and down the tree in the first 3 of the above 4 steps that force O(p) time -- the last step takes constant time.
To fix this, we can add some extra pointers to make navigating up and down the tree faster. A simple and flexible way uses "pointer doubling": For each node v, we will store log2(depth(v)) pointers to successively higher ancestors. To populate these pointers, we perform log2(maxDepth) DFS iterations, where on the i-th iteration we set each node v's i-th ancestor pointer to its (i-1)-th ancestor's (i-1)-th ancestor: this takes just two pointer lookups per node per DFS. With these pointers, moving any distance p up the tree always takes at most log(p) jumps, because the distance can be reduced by at least half on each jump. The exact same procedure can be used to populate corresponding lists of pointers for "left-descendants" and "right-descendants" to speed up steps 2 and 3, respectively, to O(log p) time.

Time analysis of a Binary Search Tree in-order traversal algorithm

Below is an iterative algorithm to traverse a Binary Search Tree in in-order fashion (first left child , then the parent , finally right child) without using a Stack :
(Idea : the whole idea is to find the left-most child of a tree and find the successor of the node at hand each time and print its value , until there's no more node left.)
void In-Order-Traverse(Node root){
Min-Tree(root); //finding left-most child
Node current = root;
while (current != null){
print-on-screen(current.key);
current = Successor(current);
}
return;
}
Node Min-Tree(Node root){ // find the leftmost child
Node current = root;
while (current.leftChild != null)
current = current.leftChild;
return current;
}
Node Successor(Node root){
if (root.rightChild != null) // if root has a right child ,find the leftmost child of the right sub-tree
return Min-Tree(root.rightChild);
else{
current = root;
while (current.parent != null && current.parent.leftChild != current)
current = current.parent;
return current.parrent;
}
}
It's been claimed that the time complexity of this algorithm is Theta(n) assuming there are n nodes in the BST , which is for sure correct . However I cannot convince myself as I guess some of the nodes are traversed more than constant number of times which depends on the number of nodes in their sub-trees and summing up all these number of visits wouldn't result time complexity of Theta(n)
Any idea or intuition on how to prove it ?
It is easier to reason with edges rather than nodes. Let us reason based on the code of Successor function.
Case 1 (then branch)
For all nodes with a right child, we will visit the right subtree once ("right-turn" edge), then always visit the left subtree ("left-turn" edges) with Min-Tree function. We can prove that such traversal will create a path whose edges are unique - the edges will not be repeated in any traversal made from any other node with a right child, since the traversal ensures that you never visit any "right-turn" edge of other nodes on the tree. (Proof by construction).
Case 2 (else branch)
For all nodes without a right child (else branch), we will visit the ancestors by following "right-turn" edges until you have to make a "left-turn" edge or encounter the root of the binary tree. Again, the edges in the path generated are unique - will never be repeated in any other traversal made from any other node without a right child. This is because:
Except for the starting node and the node reached by following "left-turn" edge, all other nodes in between has a right child (which means those are excluded from else branch). The starting node of course does not have a right child.
Each node has a unique parent (only the root node does not have parent), and the path to parent is either "left-turn" or "right-turn" (the node is a left child or a right child). Given any node (ignoring the right child condition), there is only one path that creates the pattern: many "right-turn" then a "left-turn".
Since the nodes in between have a right child, there is no way for an edge to appear in 2 traversal starting at different nodes. (Since we are currently considering nodes without a right child).
(The proof here is quite hand-waving, but I think it can be formally proven by contradiction).
Since the edges are unique, the total number of edges traversed in case 1 only (or case 2 only) will be O(n) (since the number of edges in a tree is equal to the number of vertices - 1). Therefore, after summing the 2 cases up, In-Order Traversal will be O(n).
Note that I only know each edge is visited at most once - I don't know whether all edges are visited or not from the proof, but the number of edges is bounded by the number of vertices, which is just right.
We can easily see that it is also Omega(n) (each node is visited once), so we can conclude that it is Theta(n).
The given program runs in Θ(N) time. Θ(N) doesn't mean that each node is visited exactly once. Remember there is a constant factor. So Θ(N) could actually be limited by 5 N or 10 N or even a 1000 N. So as such it doesn't give you an exact count on the number of times a node is visited.
The Time complexity of in-order iterative traversal of Binary Search Tree can be analyzed as follows,
Consider a Tree with N nodes,
Let the execution time be denoted by the complexity function T(N).
Let the left sub tree and right sub tree contain X and N-X-1 nodes respectively,
Then the time complexity T(N) = T(X) + T(N-X-1) + c,
Now consider the two extreme cases of a BST,
CASE 1: A BST which is perfectly balanced, i.e. both the sub trees have equal number of nodes. For example consider the BST shown below,
10
/ \
5 14
/ \ / \
1 6 11 16
For such a Tree the complexity function is,
T(N) = 2 T(⌊N/2⌋) + c
Master Theorem gives us a complexity of Θ(N) in this case.
CASE 2: A fully unbalanced BST, i.e. either the left sub tree or right sub tree is empty. There for X = 0. For example consider the BST shown below,
10
/
9
/
8
/
7
Now T(N) = T(0) + T(N-1) + c,
T(N) = T(N-1) + c
T(N) = T(N-2) + c + c
T(N) = T(N-3) + c + c + c
.
.
.
T(N) = T(0) + N c
Since T(N) = K, where K is a constant,
T(N) = K + N c
There for T(N) = Θ(N).
Thus the complexity is Θ(N) for all the cases.
We focus on edges instead of nodes.
( to have a better intuition look at this picture : http://i.stack.imgur.com/WlK5O.png)
We claim that in this algorithm every edge is visited at most twice, (actually it's visited exactly twice);
First time when it's traversed downward and and the second time when it's traversed upward.
To visit an edge more than twice , we have to traverse that edge it downward again : down , up , down , ....
We prove that it's not possible to have a second downward visit of an edge.
Let's assume that we traverse an edge (u , v) downward for the second time , this means that one of the ancestors of u has a successor which is a decedent of u.
This is not possible :
We know that when we are traversing an edge upward , we are looking for a left-turn edge to find a successor , so while u is on the left side of the the successor, successor of this successor is on the right side of it , by moving to the right side of a successor (to find its successor) reaching u again and therefore edge (u,v) again is impossible. (to find a successor we either move to the right or to the up but not to the left)

How to find largest common sub-tree in the given two binary search trees?

Two BSTs (Binary Search Trees) are given. How to find largest common sub-tree in the given two binary trees?
EDIT 1:
Here is what I have thought:
Let, r1 = current node of 1st tree
r2 = current node of 2nd tree
There are some of the cases I think we need to consider:
Case 1 : r1.data < r2.data
2 subproblems to solve:
first, check r1 and r2.left
second, check r1.right and r2
Case 2 : r1.data > r2.data
2 subproblems to solve:
- first, check r1.left and r2
- second, check r1 and r2.right
Case 3 : r1.data == r2.data
Again, 2 cases to consider here:
(a) current node is part of largest common BST
compute common subtree size rooted at r1 and r2
(b)current node is NOT part of largest common BST
2 subproblems to solve:
first, solve r1.left and r2.left
second, solve r1.right and r2.right
I can think of the cases we need to check, but I am not able to code it, as of now. And it is NOT a homework problem. Does it look like?
Just hash the children and key of each node and look for duplicates. This would give a linear expected time algorithm. For example, see the following pseudocode, which assumes that there are no hash collisions (dealing with collisions would be straightforward):
ret = -1
// T is a tree node, H is a hash set, and first is a boolean flag
hashTree(T, H, first):
if (T is null):
return 0 // leaf case
h = hash(hashTree(T.left, H, first), hashTree(T.right, H, first), T.key)
if (first):
// store hashes of T1's nodes in the set H
H.insert(h)
else:
// check for hashes of T2's nodes in the set H containing T1's nodes
if H.contains(h):
ret = max(ret, size(T)) // size is recursive and memoized to get O(n) total time
return h
H = {}
hashTree(T1, H, true)
hashTree(T2, H, false)
return ret
Note that this is assuming the standard definition of a subtree of a BST, namely that a subtree consists of a node and all of its descendants.
Assuming there are no duplicate values in the trees:
LargestSubtree(Tree tree1, Tree tree2)
Int bestMatch := 0
Int bestMatchCount := 0
For each Node n in tree1 //should iterate breadth-first
//possible optimization: we can skip every node that is part of each subtree we find
Node n2 := BinarySearch(tree2(n.value))
Int matchCount := CountMatches(n, n2)
If (matchCount > bestMatchCount)
bestMatch := n.value
bestMatchCount := matchCount
End
End
Return ExtractSubtree(BinarySearch(tree1(bestMatch)), BinarySearch(tree2(bestMatch)))
End
CountMatches(Node n1, Node n2)
If (!n1 || !n2 || n1.value != n2.value)
Return 0
End
Return 1 + CountMatches(n1.left, n2.left) + CountMatches(n1.right, n2.right)
End
ExtractSubtree(Node n1, Node n2)
If (!n1 || !n2 || n1.value != n2.value)
Return nil
End
Node result := New Node(n1.value)
result.left := ExtractSubtree(n1.left, n2.left)
result.right := ExtractSubtree(n1.right, n2.right)
Return result
End
To briefly explain, this is a brute-force solution to the problem. It does a breadth-first walk of the first tree. For each node, it performs a BinarySearch of the second tree to locate the corresponding node in that tree. Then using those nodes it evaluates the total size of the common subtree rooted there. If the subtree is larger than any previously found subtree, it remembers it for later so that it can construct and return a copy of the largest subtree when the algorithm completes.
This algorithm does not handle duplicate values. It could be extended to do so by using a BinarySearch implementation that returns a list of all nodes with the given value, instead of just a single node. Then the algorithm could iterate this list and evaluate the subtree for each node and then proceed as normal.
The running time of this algorithm is O(n log m) (it traverses n nodes in the first tree, and performs a log m binary-search operation for each one), putting it on par with most common sorting algorithms. The space complexity is O(1) while running (nothing allocated beyond a few temporary variables), and O(n) when it returns its result (because it creates an explicit copy of the subtree, which may not be required depending upon exactly how the algorithm is supposed to express its result). So even this brute-force approach should perform reasonably well, although as noted by other answers an O(n) solution is possible.
There are also possible optimizations that could be applied to this algorithm, such as skipping over any nodes that were contained in a previously evaluated subtree. Because the tree-walk is breadth-first we know than any node that was part of some prior subtree cannot ever be the root of a larger subtree. This could significantly improve the performance of the algorithm in certain cases, but the worst-case running time (two trees with no common subtrees) would still be O(n log m).
I believe that I have an O(n + m)-time, O(n + m) space algorithm for solving this problem, assuming the trees are of size n and m, respectively. This algorithm assumes that the values in the trees are unique (that is, each element appears in each tree at most once), but they do not need to be binary search trees.
The algorithm is based on dynamic programming and works with the following intution: suppose that we have some tree T with root r and children T1 and T2. Suppose the other tree is S. Now, suppose that we know the maximum common subtree of T1 and S and of T2 and S. Then the maximum subtree of T and S
Is completely contained in T1 and r.
Is completely contained in T2 and r.
Uses both T1, T2, and r.
Therefore, we can compute the maximum common subtree (I'll abbreviate this as MCS) as follows. If MCS(T1, S) or MCS(T2, S) has the roots of T1 or T2 as roots, then the MCS we can get from T and S is given by the larger of MCS(T1, S) and MCS(T2, S). If exactly one of MCS(T1, S) and MCS(T2, S) has the root of T1 or T2 as a root (assume w.l.o.g. that it's T1), then look up r in S. If r has the root of T1 as a child, then we can extend that tree by a node and the MCS is given by the larger of this augmented tree and MCS(T2, S). Otherwise, if both MCS(T1, S) and MCS(T2, S) have the roots of T1 and T2 as roots, then look up r in S. If it has as a child the root of T1, we can extend the tree by adding in r. If it has as a child the root of T2, we can extend that tree by adding in r. Otherwise, we just take the larger of MCS(T1, S) and MCS(T2, S).
The formal version of the algorithm is as follows:
Create a new hash table mapping nodes in tree S from their value to the corresponding node in the tree. Then fill this table in with the nodes of S by doing a standard tree walk in O(m) time.
Create a new hash table mapping nodes in T from their value to the size of the maximum common subtree of the tree rooted at that node and S. Note that this means that the MCS-es stored in this table must be directly rooted at the given node. Leave this table empty.
Create a list of the nodes of T using a postorder traversal. This takes O(n) time. Note that this means that we will always process all of a node's children before the node itself; this is very important!
For each node v in the postorder traversal, in the order they were visited:
Look up the corresponding node in the hash table for the nodes of S.
If no node was found, set the size of the MCS rooted at v to 0.
If a node v' was found in S:
If neither of the children of v' match the children of v, set the size of the MCS rooted at v to 1.
If exactly one of the children of v' matches a child of v, set the size of the MCS rooted at v to 1 plus the size of the MCS of the subtree rooted at that child.
If both of the children of v' match the children of v, set the size of the MCS rooted at v to 1 plus the size of the MCS of the left subtree plus the size of the MCS of the right subtree.
(Note that step (4) runs in expected O(n) time, since it visits each node in S exactly once, makes O(n) hash table lookups, makes n hash table inserts, and does a constant amount of processing per node).
Iterate across the hash table and return the maximum value it contains. This step takes O(n) time as well. If the hash table is empty (S has size zero), return 0.
Overall, the runtime is O(n + m) time expected and O(n + m) space for the two hash tables.
To see a correctness proof, we proceed by induction on the height of the tree T. As a base case, if T has height zero, then we just return zero because the loop in (4) does not add anything to the hash table. If T has height one, then either it exists in T or it does not. If it exists in T, then it can't have any children at all, so we execute branch 4.3.1 and say that it has height one. Step (6) then reports that the MCS has size one, which is correct. If it does not exist, then we execute 4.2, putting zero into the hash table, so step (6) reports that the MCS has size zero as expected.
For the inductive step, assume that the algorithm works for all trees of height k' < k and consider a tree of height k. During our postorder walk of T, we will visit all of the nodes in the left subtree, then in the right subtree, and finally the root of T. By the inductive hypothesis, the table of MCS values will be filled in correctly for the left subtree and right subtree, since they have height ≤ k - 1 < k. Now consider what happens when we process the root. If the root doesn't appear in the tree S, then we put a zero into the table, and step (6) will pick the largest MCS value of some subtree of T, which must be fully contained in either its left subtree or right subtree. If the root appears in S, then we compute the size of the MCS rooted at the root of T by trying to link it with the MCS-es of its two children, which (inductively!) we've computed correctly.
Whew! That was an awesome problem. I hope this solution is correct!
EDIT: As was noted by #jonderry, this will find the largest common subgraph of the two trees, not the largest common complete subtree. However, you can restrict the algorithm to only work on subtrees quite easily. To do so, you would modify the inner code of the algorithm so that it records a subtree of size 0 if both subtrees aren't present with nonzero size. A similar inductive argument will show that this will find the largest complete subtree.
Though, admittedly, I like the "largest common subgraph" problem a lot more. :-)
The following algorithm computes all the largest common subtrees of two binary trees (with no assumption that it is a binary search tree). Let S and T be two binary trees. The algorithm works from the bottom of the trees up, starting at the leaves. We start by identifying leaves with the same value. Then consider their parents and identify nodes with the same children. More generally, at each iteration, we identify nodes provided they have the same value and their children are isomorphic (or isomorphic after swapping the left and right children). This algorithm terminates with the collection of all pairs of maximal subtrees in T and S.
Here is a more detailed description:
Let S and T be two binary trees. For simplicity, we may assume that for each node n, the left child has value <= the right child. If exactly one child of a node n is NULL, we assume the right node is NULL. (In general, we consider two subtrees isomorphic if they are up to permutation of the left/right children for each node.)
(1) Find all leaf nodes in each tree.
(2) Define a bipartite graph B with edges from nodes in S to nodes in T, initially with no edges. Let R(S) and T(S) be empty sets. Let R(S)_next and R(T)_next also be empty sets.
(3) For each leaf node in S and each leaf node in T, create an edge in B if the nodes have the same value. For each edge created from nodeS in S to nodeT in T, add all the parents of nodeS to the set R(S) and all the parents of nodeT to the set R(T).
(4) For each node nodeS in R(S) and each node nodeT in T(S), draw an edge between them in B if they have the same value AND
{
(i): nodeS->left is connected to nodeT->left and nodeS->right is connected to nodeT->right, OR
(ii): nodeS->left is connected to nodeT->right and nodeS->right is connected to nodeT->left, OR
(iii): nodeS->left is connected to nodeT-> right and nodeS->right == NULL and nodeT->right==NULL
(5) For each edge created in step (4), add their parents to R(S)_next and R(T)_next.
(6) If (R(S)_next) is nonempty {
(i) swap R(S) and R(S)_next and swap R(T) and R(T)_next.
(ii) Empty the contents of R(S)_next and R(T)_next.
(iii) Return to step (4).
}
When this algorithm terminates, R(S) and T(S) contain the roots of all maximal subtrees in S and T. Furthermore, the bipartite graph B identifies all pairs of nodes in S and nodes in T that give isomorphic subtrees.
I believe this algorithm has complexity is O(n log n), where n is the total number of nodes in S and T, since the sets R(S) and T(S) can be stored in BST’s ordered by value, however I would be interested to see a proof.

binary tree data structures

Can anybody give me proof how the number of nodes in strictly binary tree is 2n-1 where n is the number of leaf nodes??
Proof by induction.
Base case is when you have one leaf. Suppose it is true for k leaves. Then you should proove for k+1. So you get the new node, his parent and his other leaf (by definition of strict binary tree). The rest leaves are k-1 and then you can use the induction hypothesis. So the actual number of nodes are 2*(k-1) + 3 = 2k+1 == 2*(k+1)-1.
just go with the basics, assuming there are x nodes in total, then we have n nodes with degree 1(leaves), 1 with degree 2(the root) and x-n-1 with degree 3(the inner nodes)
as a tree with x nodes will have x-1 edges. so summing
n + 3*(x-n-1) + 2 = 2(x-1) (equating the total degrees)
solving for x we get x = 2n-1
I'm guessing that what you really want is something like a proof that the depth is log2(N), where N is the number of nodes. In this case, the answer is fairly simple: for any given depth D, the number of nodes is 2D.
Edit: in response to edited question: the same fact pretty much applies. Since the number of nodes at any depth is 2D, the number of nodes further up the tree is 2D-1 + 2D-2 + ...20 = 2D-1. Therefore, the total number of nodes in a balanced binary tree is 2D + 2D-1. If you set n = 2D, you've gone the full circle back to the original equation.
I think you are trying to work out a proof for: N = 2L - 1 where L is the number
of leaf nodes and N is the total number of nodes in a binary tree.
For this formula to hold you need to put a few restrictions on how the binary
tree is constructed. Each node is either a leaf, which means it has no children, or
it is an internal node. Internal nodes have 3
possible configurations:
2 child nodes
1 child and 1 internal node
2 internal nodes
All three configurations imply that an internal node connects to two other nodes. This explicitly
rules out the situation where node connects to a single child as in:
o
/
o
Informal Proof
Start with a minimal tree of 1 leaf: L = 1, N = 1 substitute into N = 2L - 1 and the see that
the formula holds true (1 = 1, so far so good).
Now add another minimal chunk to the tree. To do that you need to add another two nodes and
tree looks like:
o
/ \
o o
Notice that you must add nodes in pairs to satisfy the restriction stated earlier.
Adding a pair of nodes always adds
one leaf (two new leaf nodes, but you loose one as it becomes an internal node). Node growth
progresses as the series: 1, 3, 5, 7, 9... but leaf growth is: 1, 2, 3, 4, 5... That is why the formula
N = 2L - 1 holds for this type of tree.
You might use mathematical induction to construct a formal proof, but this works find for me.
Proof by mathematical induction:
The statement that there are (2n-1) of nodes in a strictly binary tree with n leaf nodes is true for n=1. { tree with only one node i.e root node }
let us assume that the statement is true for tree with n-1 leaf nodes. Thus the tree has 2(n-1)-1 = 2n-3 nodes
to form a tree with n leaf nodes we need to add 2 child nodes to any of the leaf nodes in the above tree. Thus the total number of nodes = 2n-3+2 = 2n-1.
hence, proved
To prove: A strictly binary tree with n leaves contains 2n-1 nodes.
Show P(1): A strictly binary tree with 1 leaf contains 2(1)-1 = 1 node.
Show P(2): A strictly binary tree with 2 leaves contains 2(2)-1 = 3 nodes.
Show P(3): A strictly binary tree with 3 leaves contains 2(3)-1 = 5 nodes.
Assume P(K): A strictly binary tree with K leaves contains 2K-1 nodes.
Prove P(K+1): A strictly binary tree with K+1 leaves contains 2(K+1)-1 nodes.
2(K+1)-1 = 2K+2-1
= 2K+1
= 2K-1 +2*
* This result indicates that, for each leaf that is added, another node must be added to the father of the leaf , in order for it to continue to be a strictly binary tree. So, for every additional leaf, a total of two nodes must be added, as expected.
int N = 1000; insert here the value of N
int sum = 0; // the number of total nodes
int currFactor = 1;
for (int i = 0; i< log(N); ++i) //the is log(N) levels
{
sum += currFactor;
currFactor *= 2; //in each level the number of node is double than the upper level
}
if(sum == 2*N - 1)
{
cout<<"wow that the number of nodes is 2*N-1";
}

Resources