Elasticsearch - Term Aggregation In Theory - elasticsearch

imagine a random term aggregation on a specific field:
"aggs":{
"top_terms": {
"terms": {
"field": "any.specific.field"
}
}
}
My question here is: how does ES aggregate terms?
If the inverted & fielddate index looks like this: ES: inverted index & fielddata index and the fact that unique terms are stored per document, not per field, how does ES aggregate terms per field? What is happening behind the scenes to aggregate them?
Can somebody shed some light to me/us? Thanks in advance

Related

Application-side Joins Elasticsearch

I have two indexes in Elasticsearch, a system index, and a telemetry index. I'd like to perform queries and aggregations on the telemetry index using filters from the systems index. The systems index is relatively small and only receives new documents occasionally, but the telemetry index is much larger and is constantly receiving new documents. This seems like an ideal situation for using an application-side join.
I tried emulating the example query at the pervious link, but it turns out the filtered query is deprecated as of ES 5.0. (Why is this example in the current documentation?!)
Here are my queries:
GET /system/_search
{
"query": {
"match": {
"name": "George's system"
}
}
}
GET /telemetry/_search
{
"query": {
"bool":{
"must": {
"multi_match": {
"operator": "and",
"fields": ["systemId"]
, [1] }
}
}
}
}
}
The second one fails with a json_parse_exception because for some reason it doesn't like the [ ] characters after "fields".
Can anyone provide a simple example of using application-side joins?
Once such a query is defined (perhaps in Kibana's Dev Tools console) is there a way to visualize it in Kibana?
With elastic there is no way to execute two nested queries like in a relational database where the first query uses the response of the second. The example in the application-side join, means that you are actually making two queries (two different requests to elastic) on the application side.
First query you get the list of ids you need to filter on.
Second query you pass the list of ids that you got to the terms filter.
This works when you have no more than 1024 values for systemId. Because terms query has a limit on the number of terms.
Because this query is not feasible, then you can't visualize it in kibana.
In such case you have to sacrifice a little of space and add the systemId to your mapping.
Good Luck!

Querying large amounts of terms without expanding maxClauseCount

In a data flow of mine, I am trying to retrieve a subset of documents from a previous terms aggregation, but hitting the maxClauseCount limit within my ES cluster. The follow up query is along these lines:
GET dataset/_search
{
"size": 2000,
"query": {
"bool": {
"must": [
(a filter or two)...,
{
"terms":{
"otherid":[
"789e18f2-bacb-4e38-9800-bf8e4c65c206",
"8e6967aa-5b98-483e-b50f-c681c7396a6a",
...
]
}
}
]}
}
}
In my research I've come across a lookup - which sadly we can't use - as well as the ids query.
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-terms-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-ids-query.html
From experimentation, it appears that the ids query doesn't share the limit the terms query has (potentially it's not converted into terms clauses). Do any of you know if there's a good way to achieve similar functionality to the ids query without using the ids fields.
My version of ES is 5.0.
Thanks!
instead of using terms use the Terms filter it will solve the issue
OR
index.query.bool.max_clause_count: increase to higher value(*Not Recommended)
http://george-stathis.com/2013/10/18/setting-the-booleanquery-maxclausecount-in-elasticsearch/

Boosting the relevance score based on the unique keyword found

I am in a scenario where I need to give more relevance to the document in Index if it has a unique keyword. Let me provide a scenario.
Let's say I need to search for a term znkdref unsuccessfull so the result will have contents which have znkdref or unsuccessfull or znkdref unsuccessfull but here I want that the contents which are having znkdref unsuccessfull should have highest relevance and then content having znkdref should have less relevance and then content having unsuccessfull should have least relevance.
Is there a way to achieve this ?? I would be glad to get any help
You want to use Query Time Boosting, in particular Prioritized Clauses.
In short you need to extract the keywords that you want boosted and build a query that boosts the parts that you want.
{
"query": {
"bool": {
"should": [{
"match": {
"content": {
"query": "znkdref",
"boost": 2
}
}
},
{
"match": {
"content": {
"query": "unsuccessfull"
}
}
}]
}
}
}
Update based on comment:
If you want to know why a document got the score that it did (maybe to identify "keywords") then you can pass in "explain" as a query parameter or set it in the root POST payload. The result will now have document frequency counts and sub scores.
Do you mean "znkdref" is a unique keyword? For example, "znkdref" is a special name of something. If so.
Of course, the documents match the whole query string "znkdref unsuccessfull" will have a highest relevance score in general.
The documents contain "znkdref" will usually have a higher relevance score than the documents contain "unsuccessfull". Because TF.IDF score of "znkdref" is bigger than TF.IDF score of "unsuccessfull".
The relevance score function is described at https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
I hope that my answer is helpful for you.

Elastic Search Distinct values

I want to know how it's possible to get distinct value of a field in elastic search. I read an article here shows how to do that with facets, but I read facets are deprecated:
http://elasticsearch-users.115913.n3.nabble.com/Getting-Distinct-Values-td3830953.html
Is there any other way to do that? if not is it possible to tell me how to do that? it's abit hard to understand solutions like this: Elastic Search - display all distinct values of an array
Use aggregations:
GET /my_index/my_type/_search?search_type=count
{
"aggs": {
"my_fields": {
"terms": {
"field": "name",
"size": 1000
}
}
}
}
You can use the Cardinality metric
Although the counts returned aren't guaranteed to be 100% accurate, they almost always are for low cardinality terms and the precision is configurable via the precision_threshold param.
http://www.elastic.co/guide/en/elasticsearch/guide/current/cardinality.html

ElasticSearch results aren't relevant

In ElasticSearch, I've created two documents with one field, "CategoryMajor"
In doc1, I set CategoryMajor to "Restaurants"
In doc2, I set CategoryMajor to "Restaurants Restaurants Restaurants Restaurants Restaurants"
If I perform a search for CategoryMajor:Restaurants, doc1 shows up as MORE RELEVANT than doc2. Which is not typical Lucene behavior, which gives more relevance the more times a term shows up. doc2 should be MORE RELEVANT than doc1.
How in do I fix this?
You can add &explain=true to your GET query to see that score of doc2 is lowered by "fieldNorm" factor. This is caused by default lucene similarity calculation formula, which lowers score for longer documents. Please read this document about default lucene similarity formula:
http://lucene.apache.org/core/3_6_0/api/all/org/apache/lucene/search/Similarity.html
To disable this behaviour add "omit_norms=true" for CategoryMajor field to your index mapping by sending PUT request to:
http://localhost:9200/index/type/_mapping
with request body:
{
"type": {
properties": {
"CategoryMajor": {
"type": "string",
"omit_norms": "true"
}
}
}
}
I'm not certain, but it may be necessary to delete your index, create it again, put above mapping and then reindex your documents. Reindexing after changing mapping is necessary for sure :).

Resources