My task is to calculate number of 1-bits of interval [1,10^16]. Loop is obviously unusable for this case, and I've heard there exists an algorithm for this. Can anyone help?
More generally, an algorithm for number of 1-bits in an interval [1,n] would be nice.
If that helps, I figured that number of 1-bits of interval [1,2^n-1], n positive integer, is n*2^(n-1).
The number of 1-bits in interval [1,n] is the number of 1-bits in interval [1,2^m] plus the number of 1-bits in interval [1,n-2^m] plus n - 2^m.
m is ⌊log(n)/log2⌋.
Let f(A,B) = the number of 1-bits from A to B, including A and B.
I figured that too : f(1,2^k-1) = k*2^(n-1)
Obviously, f(1, x) = f(0, x) since 0 has no 1-bit.
Let's x = 2^k + b, f(1, x) = f(0, x) = f(0, 2^k + b) = f(0, 2^k - 1) + f(2^k, 2^k + b)
The key problem is f(2^k, 2^k + b)
2^k = 1 0 0 0 ... 0 0
2^k + 1 = 1 0 0 0 ... 0 1
2^k + 2 = 1 0 0 0 ... 1 0
2^k + 3 = 1 0 0 0 ... 0 1
... ...
2^k + b = 1 0 0 0 ... ? ?
Clearly, there is 1-bits in the first bit of each number from 2^k to 2^k + b. And there is (b+1) integers from 2^k to 2^k + b.
We can remove the first 1-bit. And it becomes below.
0 = 0 0 0 0 ... 0 0
1 = 0 0 0 0 ... 0 1
2 = 0 0 0 0 ... 1 0
3 = 0 0 0 0 ... 0 1
... ...
b = 0 0 0 0 ... ? ?
So, f(2^k, 2^k + b) = (b+1) + f(0, b).
f(0, x) = f(0, 2^k - 1) + f(2^k, 2^k + b)
= f(0, 2^k - 1) + (b+1) + f(0, b)
Clearly, we have to recursively calculate f(0,b).
Give an example of step 4.
For f(1, 31) = 80, and 31 has 5 1-bits.
so f(1, 30) = 80 - 5 = 75;
Let's calculate f(1, 30) use the method of step 4.
f(1, 30) = f(0, 30)
= f(0, 15) + f(16, 30)
= 32 + 15 + f(0, 14)
= 47 + f(0, 14)
= 47 + f(0, 7) + f(8, 14)
= 47 + 12 + 7 + f(0, 6)
= 66 + f(0, 6)
= 66 + f(0, 3) + f(4, 6)
= 66 + 4 + 3 + f(0, 2)
= 73 + f(0, 2)
= 73 + f(0, 1) + f(2, 2)
= 74 + f(2, 2)
= 74 + 1 + f(0, 0)
= 75
Related
f(N) = 0^0 + 1^1 + 2^2 + 3^3 + 4^4 + ... + N^N.
I want to calculate (f(N) mod M).
These are the constraints.
1 ≤ N ≤ 10^9
1 ≤ M ≤ 10^3
Here is my code
test=int(input())
ans = 0
for cases in range(test):
arr=[int(x) for x in input().split()]
N=arr[0]
mod=arr[1]
#ret=sum([int(y**y) for y in range(N+1)])
#ans=ret
for i in range(1,N+1):
ans = (ans + pow(i,i,mod))%mod
print (ans)
I tried another approach but in vain.
Here is code for that
from functools import reduce
test=int(input())
answer=0
for cases in range(test):
arr=[int(x) for x in input().split()]
N=arr[0]
mod=arr[1]
answer = reduce(lambda K,N: x+pow(N,N), range(1,N+1)) % M
print(answer)
Two suggestions:
Let 0^0 = 1 be what you use. This seems like the best guidance I have for how to handle that.
Compute k^k by multiplying and taking the modulus as you go.
Do an initial pass where all k (not exponents) are changed to k mod M before doing anything else.
While computing (k mod M)^k, if an intermediate result is one you've already visited, you can cut back on the number of iterations to continue by all but up to one additional cycle.
Example: let N = 5 and M = 3. We want to calculate 0^0 + 1^1 + 2^2 + 3^3 + 4^4 + 5^5 (mod 3).
First, we apply suggestion 3. Now we want to calculate 0^0 + 1^1 + 2^2 + 0^3 + 1^4 + 2^5 (mod 3).
Next, we begin evaluating and use suggestion 1 immediately to get 1 + 1 + 2^2 + 0^3 + 1^4 + 2^5 (mod 3). 2^2 is 4 = 1 (mod 3) of which we make a note (2^2 = 1 (mod 3)). Next, we find 0^1 = 0, 0^2 = 0 so we have a cycle of size 1 meaning no further multiplication is needed to tell 0^3 = 0 (mod 3). Note taken. Similar process for 1^4 (we tell on the second iteration that we have a cycle of size 1, so 1^4 is 1, which we note). Finally, we get 2^1 = 2 (mod 3), 2^2 = 1(mod 3), 2^3 = 2(mod 3), a cycle of length 2, so we can skip ahead an even number which exhausts 2^5 and without checking again we know that 2^5 = 2 (mod 3).
Our sum is now 1 + 1 + 1 + 0 + 1 + 2 (mod 3) = 2 + 1 + 0 + 1 + 2 (mod 3) = 0 + 0 + 1 + 2 (mod 3) = 0 + 1 + 2 (mod 3) = 1 + 2 (mod 3) = 0 (mod 3).
These rules will be helpful to you since your cases see N much larger than M. If this were reversed - if N were much smaller than M - you'd get no benefit from my method (and taking the modulus w.r.t. M would affect the outcome less).
Pseudocode:
Compute(N, M)
1. sum = 0
2. for i = 0 to N do
3. term = SelfPower(i, M)
4. sum = (sum + term) % M
5. return sum
SelfPower(k, M)
1. selfPower = 1
2. iterations = new HashTable
3. for i = 1 to k do
4. selfPower = (selfPower * (k % M)) % M
5. if iterations[selfPower] is defined
6. i = k - (k - i) % (i - iterations[selfPower])
7. clear out iterations
8. else iterations[selfPower] = i
9. return selfPower
Example execution:
resul = Compute(5, 3)
sum = 0
i = 0
term = SelfPower(0, 3)
selfPower = 1
iterations = []
// does not enter loop
return 1
sum = (0 + 1) % 3 = 1
i = 1
term = SelfPower(1, 3)
selfPower = 1
iterations = []
i = 1
selfPower = (1 * 1 % 3) % 3 = 1
iterations[1] is not defined
iterations[1] = 1
return 1
sum = (1 + 1) % 3 = 2
i = 2
term = SelfPower(2, 3)
selfPower = 1
iterations = []
i = 1
selfPower = (1 * 2 % 3) % 3 = 2
iterations[2] is not defined
iterations[2] = 1
i = 2
selfPower = (2 * 2 % 3) % 3 = 1
iterations[1] is not defined
iterations[1] = 2
return 1
sum = (2 + 1) % 3 = 0
i = 3
term = SelfPower(3, 3)
selfPower = 1
iterations = []
i = 1
selfPower = (1 * 3 % 0) % 3 = 0
iterations[0] is not defined
iterations[0] = 1
i = 2
selfPower = (0 * 3 % 0) % 3 = 0
iterations[0] is defined as 1
i = 3 - (3 - 2) % (2 - 1) = 3
iterations is blank
return 0
sum = (0 + 0) % 3 = 0
i = 4
term = SelfPower(4, 3)
selfPower = 1
iterations = []
i = 1
selfPower = (1 * 4 % 3) % 3 = 1
iterations[1] is not defined
iterations[1] = 1
i = 2
selfPower = (1 * 4 % 3) % 3 = 1
iterations[1] is defined as 1
i = 4 - (4 - 2) % (2 - 1) = 4
iterations is blank
return 1
sum = (0 + 1) % 3 = 1
i = 5
term = SelfPower(5, 3)
selfPower = 1
iterations = []
i = 1
selfPower = (1 * 5 % 3) % 3 = 2
iterations[2] is not defined
iterations[2] = 1
i = 2
selfPower = (2 * 5 % 3) % 3 = 1
iterations[1] is not defined
iterations[1] = 2
i = 3
selfPower = (1 * 5 % 3) % 3 = 2
iterations[2] is defined as 1
i = 5 - (5 - 3) % (3 - 1) = 5
iterations is blank
return 2
sum = (1 + 2) % 3 = 0
return 0
why not just use simple recursion to find the recursive sum of the powers
def find_powersum(s):
if s == 1 or s== 0:
return 1
else:
return s*s + find_powersum(s-1)
def find_mod (s, m):
print(find_powersum(s) % m)
find_mod(4, 4)
2
I'm wondering if someone can help me try to figure this out.
I want f(str) to take a string str of digits and return the sum of all substrings as numbers, and I want to write f as a function of itself so that I can try to solve this with memoization.
It's not jumping out at me as I stare at
Solve("1") = 1
Solve("2") = 2
Solve("12") = 12 + 1 + 2
Solve("29") = 29 + 2 + 9
Solve("129") = 129 + 12 + 29 + 1 + 2 + 9
Solve("293") = 293 + 29 + 93 + 2 + 9 + 3
Solve("1293") = 1293 + 129 + 293 + 12 + 29 + 93 + 1 + 2 + 9 + 3
Solve("2395") = 2395 + 239 + 395 + 23 + 39 + 95 + 2 + 3 + 9 + 5
Solve("12395") = 12395 + 1239 + 2395 + 123 + 239 + 395 + 12 + 23 + 39 + 95 + 1 + 2 + 3 + 9 + 5
You have to break f down into two functions.
Let N[i] be the ith digit of the input. Let T[i] be the sum of substrings of the first i-1 characters of the input. Let B[i] be the sum of suffixes of the first i characters of the input.
So if the input is "12395", then B[3] = 9+39+239+1239, and T[3] = 123+12+23+1+2+3.
The recurrence relations are:
T[0] = B[0] = 0
T[i+1] = T[i] + B[i]
B[i+1] = B[i]*10 + (i+1)*N[i]
The last line needs some explanation: the suffixes of the first i+2 characters are the suffixes of the first i+1 characters with the N[i] appended on the end, as well as the single-character string N[i]. The sum of these is (B[i]*10+N[i]*i) + N[i] which is the same as B[i]*10+N[i]*(i+1).
Also f(N) = T[len(N)] + B[len(N)].
This gives a short, linear-time, iterative solution, which you could consider to be a dynamic program:
def solve(n):
rt, rb = 0, 0
for i in xrange(len(n)):
rt, rb = rt+rb, rb*10+(i+1)*int(n[i])
return rt+rb
print solve("12395")
One way to look at this problem is to consider the contribution of each digit to the final sum.
For example, consider the digit Di at position i (from the end) in the number xn-1…xi+1Diyi-1…y0. (I used x, D, and y just to be able to talk about the digit positions.) If we look at all the substrings which contain D and sort them by the position of D from the end of the number, we'll see the following:
D
xD
xxD
…
xx…xD
Dy
xDy
xxDy
…
xx…xDy
Dyy
xDyy
xxDyy
…
xx…xDyy
and so on.
In other words, D appears in every position from 0 to i once for each prefix length from 0 to n-i-1 (inclusive), or a total of n-i times in each digit position. That means that its total contribution to the sum is D*(n-i) times the sum of the powers of 10 from 100 to 10i. (As it happens, that sum is exactly (10i+1−1)⁄9.)
That leads to a slightly simpler version of the iteration proposed by Paul Hankin:
def solve(n):
ones = 0
accum = 0
for m in range(len(n),0,-1):
ones = 10 * ones + 1
accum += m * ones * int(n[m-1])
return accum
By rearranging the sums in a different way, you can come up with this simple recursion, if you really really want a recursive solution:
# Find the sum of the digits in a number represented as a string
digitSum = lambda n: sum(map(int, n))
# Recursive solution by summing suffixes:
solve2 = lambda n: solve2(n[1:]) + (10 * int(n) - digitSum(n))/9 if n else 0
In case it's not obvious, 10*n-digitSum(n) is always divisible by 9, because:
10*n == n + 9*n == (mod 9) n mod 9 + 0
digitSum(n) mod 9 == n mod 9. (Because 10k == 1 mod n for any k.)
Therefore (10*n - digitSum(n)) mod 9 == (n - n) mod 9 == 0.
Looking at this pattern:
Solve("1") = f("1") = 1
Solve("12") = f("12") = 1 + 2 + 12 = f("1") + 2 + 12
Solve("123") = f("123") = 1 + 2 + 12 + 3 + 23 + 123 = f("12") + 3 + 23 + 123
Solve("1239") = f("1239") = 1 + 2 + 12 + 3 + 23 + 123 + 9 + 39 + 239 + 1239 = f("123") + 9 + 39 + 239 + 1239
Solve("12395") = f("12395") = 1 + 2 + 12 + 3 + 23 + 123 + 9 + 39 + 239 + 1239 + 5 + 95 + 395 + 2395 + 12395 = f("1239") + 5 + 95 + 395 + 2395 + 12395
To get the new terms, with n being the length of str, you are including the substrings made up of the 0-based index ranges of characters in str: (n-1,n-1), (n-2,n-1), (n-3,n-1), ... (n-n, n-1).
You can write a function to get the sum of the integers formed from the substring index ranges. Calling that function g(str), you can write the function recursively as f(str) = f(str.substring(0, str.length - 1)) + g(str) when str.length > 1, and the base case with str.length == 1 would just return the integer value of str. (The parameters of substring are the start index of a character in str and the length of the resulting substring.)
For the example Solve("12395"), the recursive equation f(str) = f(str.substring(0, str.length - 1)) + g(str) yields:
f("12395") =
f("1239") + g("12395") =
(f("123") + g("1239")) + g("12395") =
((f("12") + g("123")) + g("1239")) + g("12395") =
(((f("1") + g("12")) + g("123")) + g("1239")) + g("12395") =
1 + (2 + 12) + (3 + 23 + 123) + (9 + 39 + 239 + 1239) + (5 + 95 + 395 + 2395 + 12395)
Given a number N, print in how many ways it can be represented as
N = a + b + c + d
with
1 <= a <= b <= c <= d; 1 <= N <= M
My observation:
For N = 4: Only 1 way - 1 + 1 + 1 + 1
For N = 5: Only 1 way - 1 + 1 + 1 + 2
For N = 6: 2 ways - 1 + 1 + 1 + 3
1 + 1 + 2 + 2
For N = 7: 3 ways - 1 + 1 + 1 + 4
1 + 1 + 2 + 3
1 + 2 + 2 + 2
For N = 8: 5 ways - 1 + 1 + 1 + 5
1 + 1 + 2 + 4
1 + 1 + 3 + 3
1 + 2 + 2 + 3
2 + 2 + 2 + 2
So I have reduced it to a DP solution as follows:
DP[4] = 1, DP[5] = 1;
for(int i = 6; i <= M; i++)
DP[i] = DP[i-1] + DP[i-2];
Is my observation correct or am I missing any thing. I don't have any test cases to run on. So please let me know if the approach is correct or wrong.
It's not correct. Here is the correct one:
Lets DP[n,k] be the number of ways to represent n as sum of k numbers.
Then you are looking for DP[n,4].
DP[n,1] = 1
DP[n,2] = DP[n-2, 2] + DP[n-1,1] = n / 2
DP[n,3] = DP[n-3, 3] + DP[n-1,2]
DP[n,4] = DP[n-4, 4] + DP[n-1,3]
I will only explain the last line and you can see right away, why others are true.
Let's take one case of n=a+b+c+d.
If a > 1, then n-4 = (a-1)+(b-1)+(c-1)+(d-1) is a valid sum for DP[n-4,4].
If a = 1, then n-1 = b+c+d is a valid sum for DP[n-1,3].
Also in reverse:
For each valid n-4 = x+y+z+t we have a valid n=(x+1)+(y+1)+(z+1)+(t+1).
For each valid n-1 = x+y+z we have a valid n=1+x+y+z.
Unfortunately, your recurrence is wrong, because for n = 9, the solution is 6, not 8.
If p(n,k) is the number of ways to partition n into k non-zero integer parts, then we have
p(0,0) = 1
p(n,k) = 0 if k > n or (n > 0 and k = 0)
p(n,k) = p(n-k, k) + p(n-1, k-1)
Because there is either a partition of value 1 (in which case taking this part away yields a partition of n-1 into k-1 parts) or you can subtract 1 from each partition, yielding a partition of n - k. It's easy to show that this process is a bijection, hence the recurrence.
UPDATE:
For the specific case k = 4, OEIS tells us that there is another linear recurrence that depends only on n:
a(n) = 1 + a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9)
This recurrence can be solved via standard methods to get an explicit formula. I wrote a small SAGE script to solve it and got the following formula:
a(n) = 1/144*n^3 + 1/32*(-1)^n*n + 1/48*n^2 - 1/54*(1/2*I*sqrt(3) - 1/2)^n*(I*sqrt(3) + 3) - 1/54*(-1/2*I*sqrt(3) - 1/2)^n*(-I*sqrt(3) + 3) + 1/16*I^n + 1/16*(-I)^n + 1/32*(-1)^n - 1/32*n - 13/288
OEIS also gives the following simplification:
a(n) = round((n^3 + 3*n^2 -9*n*(n % 2))/144)
Which I have not verified.
#include <iostream>
using namespace std;
int func_count( int n, int m )
{
if(n==m)
return 1;
if(n<m)
return 0;
if ( m == 1 )
return 1;
if ( m==2 )
return (func_count(n-2,2) + func_count(n - 1, 1));
if ( m==3 )
return (func_count(n-3,3) + func_count(n - 1, 2));
return (func_count(n-1, 3) + func_count(n - 4, 4));
}
int main()
{
int t;
cin>>t;
cout<<func_count(t,4);
return 0;
}
I think that the definition of a function f(N,m,n) where N is the sum we want to produce, m is the maximum value for each term in the sum and n is the number of terms in the sum should work.
f(N,m,n) is defined for n=1 to be 0 if N > m, or N otherwise.
for n > 1, f(N,m,n) = the sum, for all t from 1 to N of f(S-t, t, n-1)
This represents setting each term, right to left.
You can then solve the problem using this relationship, probably using memoization.
For maximum n=4, and N=5000, (and implementing cleverly to quickly work out when there are 0 possibilities), I think that this is probably computable quickly enough for most purposes.
This was a Google question i didn't figure out was right or wrong but a 2nd opinion never hurt. but the question is "given an n length bit-string solve for the number of times "111" appeared in all possible combinations."
now i know to find total combinations is 2^n what took me trouble was figuring out the number of occurrences i did find a pattern in occurrences but who knows for sure what happens when n becomes vast.
My logical solution was
#Level (n length) # combos # strings with "111" in it
_________________ ________ _____________________________
0 0 0
1("1" or "0") 2 0
2("11","01" etc. 4 0
3 8 1("111")
4 16 3
5 32 8
6 64 20
------------------------------------Everything before this is confirmed
7 128 49
8 256 119
9 512 288
10 1000 696
etc.. i can post how i came up with the magical fairy dust but yeah
I can help you with a solution:
Call the function to calculate number of string with n bit contains 111 is f(n)
If the first bit of the string is 0, we have f(n) += f(n - 1)//0 + (n - 1 bits)
If the first bit of the string is 1, we have f(n) += f(n - 2) + f(n - 3) + 2^(n - 3)
More explanation for case first bit is 1
If the first bit is 1, we have three cases:
10 + (n - 2 bits) = f(n - 2)
110 + (n - 3 bits) = f(n - 3)
111 + (n - 3 bits) = 2^(n - 3) as we can take all combinations.
So in total f(n) = f(n - 1) + f(n - 2) + f(n - 3) + 2^(n - 3).
Apply to our example:
n = 4 -> f(4) = f(3) + f(2) + f(1) + 2^1 = 1 + 0 + 0 + 2 = 3;
n = 5 -> f(5) = f(4) + f(3) + f(2) + 2^2 = 3 + 1 + 0 + 4 = 8;
n = 6 -> f(6) = f(5) + f(4) + f(3) + 2^3 = 8 + 3 + 1 + 8 = 20;
n = 7 -> f(7) = f(6) + f(5) + f(4) + 2^4 = 20 + 8 + 3 + 16 = 47;
n = 8 -> f(8) = f(7) + f(6) + f(5) + 2^5 = 47 + 20 + 8 + 32 = 107;
n = 9 -> f(9) = f(8) + f(7) + f(6) + 2^6 = 107 + 47 + 20 + 64 = 238;
Determine the positive number c & n0 for the following recurrences (Using Substitution Method):
T(n) = T(ceiling(n/2)) + 1 ... Guess is Big-Oh(log base 2 of n)
T(n) = 3T(floor(n/3)) + n ... Guess is Big-Omega (n * log base 3 of n)
T(n) = 2T(floor(n/2) + 17) + n ... Guess is Big-Oh(n * log base 2 of n).
I am giving my Solution for Problem 1:
Our Guess is: T(n) = O (log_2(n)).
By Induction Hypothesis assume T(k) <= c * log_2(k) for all k < n,here c is a const & c > 0
T(n) = T(ceiling(n/2)) + 1
<=> T(n) <= c*log_2(ceiling(n/2)) + 1
<=> " <= c*{log_2(n/2) + 1} + 1
<=> " = c*log_2(n/2) + c + 1
<=> " = c*{log_2(n) - log_2(2)} + c + 1
<=> " = c*log_2(n) - c + c + 1
<=> " = c*log_2(n) + 1
<=> T(n) not_<= c*log_2(n) because c*log_2(n) + 1 not_<= c*log_2(n).
To solve this remedy used a trick a follows:
T(n) = T(ceiling(n/2)) + 1
<=> " <= c*log(ceiling(n/2)) + 1
<=> " <= c*{log_2 (n/2) + b} + 1 where 0 <= b < 1
<=> " <= c*{log_2 (n) - log_2(2) + b) + 1
<=> " = c*{log_2(n) - 1 + b} + 1
<=> " = c*log_2(n) - c + bc + 1
<=> " = c*log_2(n) - (c - bc - 1) if c - bc -1 >= 0
c >= 1 / (1 - b)
<=> T(n) <= c*log_2(n) for c >= {1 / (1 - b)}
so T(n) = O(log_2(n)).
This solution is seems to be correct to me ... My Ques is: Is it the proper approach to do?
Thanks to all of U.
For the first exercise:
We want to show by induction that T(n) <= ceiling(log(n)) + 1.
Let's assume that T(1) = 1, than T(1) = 1 <= ceiling(log(1)) + 1 = 1 and the base of the induction is proved.
Now, we assume that for every 1 <= i < nhold that T(i) <= ceiling(log(i)) + 1.
For the inductive step we have to distinguish the cases when n is even and when is odd.
If n is even: T(n) = T(ceiling(n/2)) + 1 = T(n/2) + 1 <= ceiling(log(n/2)) + 1 + 1 = ceiling(log(n) - 1) + 1 + 1 = ceiling(log(n)) + 1.
If n is odd: T(n) = T(ceiling(n/2)) + 1 = T((n+1)/2) + 1 <= ceiling(log((n+1)/2)) + 1 + 1 = ceiling(log(n+1) - 1) + 1 + 1 = ceiling(log(n+1)) + 1 = ceiling(log(n)) + 1
The last passage is tricky, but is possibile because n is odd and then it cannot be a power of 2.
Problem #1:
T(1) = t0
T(2) = T(1) + 1 = t0 + 1
T(4) = T(2) + 1 = t0 + 2
T(8) = T(4) + 1 = t0 + 3
...
T(2^(m+1)) = T(2^m) + 1 = t0 + (m + 1)
Letting n = 2^(m+1), we get that T(n) = t0 + log_2(n) = O(log_2(n))
Problem #2:
T(1) = t0
T(3) = 3T(1) + 3 = 3t0 + 3
T(9) = 3T(3) + 9 = 3(3t0 + 3) + 9 = 9t0 + 18
T(27) = 3T(9) + 27 = 3(9t0 + 18) + 27 = 27t0 + 81
...
T(3^(m+1)) = 3T(3^m) + 3^(m+1) = ((3^(m+1))t0 + (3^(m+1))(m+1)
Letting n = 3^(m+1), we get that T(n) = nt0 + nlog_3(n) = O(nlog_3(n)).
Problem #3:
Consider n = 34. T(34) = 2T(17+17) + 34 = 2T(34) + 34. We can solve this to find that T(34) = -34. We can also see that for odd n, T(n) = 1 + T(n - 1). We continue to find what values are fixed:
T(0) = 2T(17) + 0 = 2T(17)
T(17) = 1 + T(16)
T(16) = 2T(25) + 16
T(25) = T(24) + 1
T(24) = 2T(29) + 24
T(29) = T(28) + 1
T(28) = 2T(31) + 28
T(31) = T(30) + 1
T(30) = 2T(32) + 30
T(32) = 2T(33) + 32
T(33) = T(32) + 1
We get T(32) = 2T(33) + 32 = 2T(32) + 34, meaning that T(32) = -34. Working backword, we get
T(32) = -34
T(33) = -33
T(30) = -38
T(31) = -37
T(28) = -46
T(29) = -45
T(24) = -96
T(25) = -95
T(16) = -174
T(17) = -173
T(0) = -346
As you can see, this recurrence is a little more complicated than the others, and as such, you should probably take a hard look at this one. If I get any other ideas, I'll come back; otherwise, you're on your own.
EDIT:
After looking at #3 some more, it looks like you're right in your assessment that it's O(nlog_2(n)). So you can try listing a bunch of numbers - I did it from n=0 to n=45. You notice a pattern: it goes from negative numbers to positive numbers around n=43,44. To get the next even-index element of the sequence, you add powers of two, in the following order: 4, 8, 4, 16, 4, 8, 4, 32, 4, 8, 4, 16, 4, 8, 4, 64, 4, 8, 4, 16, 4, 8, 4, 32, ...
These numbers are essentially where you'd mark an arbitary-length ruler... quarters, halves, eights, sixteenths, etc. As such, we can solve the equivalent problem of finding the order of the sum 1 + 2 + 1 + 4 + 1 + 2 + 1 + 8 + ... (same as ours, divided by 4, and ours is shifted, but the order will still work). By observing that the sum of the first k numbers (where k is a power of 2) is equal to sum((n/(2^(k+1))2^k) = (1/2)sum(n) for k = 0 to log_2(n), we get that the simple recurrence is given by (n/2)log_2(n). Multiply by 4 to get ours, and shift x to the right by 34 and perhaps add a constant value to the result. So we're playing around with y = 2nlog_n(x) + k' for some constant k'.
Phew. That was a tricky one. Note that this recurrence does not admit of any arbitary "initial condiditons"; in other words, the recurrence does not describe a family of sequences, but one specific one, with no parameterization.