I am trying to read form Hbase using following code
JavaPairRDD<ImmutableBytesWritable, Result> pairRdd = ctx
.newAPIHadoopRDD(conf, TableInputFormat.class,
ImmutableBytesWritable.class,
org.apache.hadoop.hbase.client.Result.class).cache().cache();
System.out.println(pairRdd.count());
But getting exception
java.lang.IllegalStateException: unread block data
Find below code
SparkConf sparkConf = new SparkConf().setAppName("JavaSparkSQL");
sparkConf.set("spark.master","spark://192.168.50.247:7077");
/* String [] stjars={"/home/BreakDown/SparkDemo2/target/SparkDemo2-0.0.1-SNAPSHOT.jar"};
sparkConf.setJars(stjars);*/
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
JavaSQLContext sqlCtx = new JavaSQLContext(ctx);
Configuration conf= HBaseConfiguration.create();
;
conf.set("hbase.master","192.168.50.73:60000");
conf.set("hbase.zookeeper.quorum","192.168.50.73");
conf.set("hbase.zookeeper.property.clientPort","2181");
conf.set("zookeeper.session.timeout","6000");
conf.set("zookeeper.recovery.retry","1");
conf.set("hbase.mapreduce.inputtable","employee11");
Any pointer will be of great help
Spark version 1.1.1 hadoop 2
hadoop 2.2.0
Hbase 0.98.8-hadoop2
PFB Stack Trace
14/12/17 21:18:45 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/12/17 21:18:46 INFO AppClient$ClientActor: Connecting to master spark://192.168.50.247:7077...
14/12/17 21:18:46 INFO SparkDeploySchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
14/12/17 21:18:46 INFO SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20141217211846-0035
14/12/17 21:18:47 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, 192.168.50.253, ANY, 1256 bytes)
14/12/17 21:18:47 INFO BlockManagerMasterActor: Registering block manager 192.168.50.253:41717 with 265.4 MB RAM, BlockManagerId(0, 192.168.50.253, 41717, 0)
14/12/17 21:18:48 WARN TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0, 192.168.50.253): java.lang.IllegalStateException: unread block data
java.io.ObjectInputStream$BlockDataInputStream.setBlockDataMode(ObjectInputStream.java:2420)
java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1380)
java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1989)
java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1913)
java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796)
java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1348)
java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:62)
org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:87)
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:160)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
java.lang.Thread.run(Thread.java:724)
Related
Soft version as follows:
apache hbase 2.1.6
apache flink 1.13.6
apache hadoop 3.1.1
When I use the hbase-client api to access hbase, I get the following error:
Caused by: org.apache.hadoop.hbase.client.RetriesExhaustedException: Failed after attempts=16, exceptions:
Wed Sep 28 03:03:11 UTC 2022, null, java.net.SocketTimeoutException: callTimeout=60000, callDuration=68532: java.io.IOException: Invalid currTagsLen -32239. Block offset: 1319713, block length: 99991, position: 42422 (without header). path=hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/cd083a4a1ef04baff94ebb5aabdb8cb8/i/1f6dd8a1bc054eefbc9faa1bf625e24f
at org.apache.hadoop.hbase.ipc.RpcServer.call(RpcServer.java:472)
at org.apache.hadoop.hbase.ipc.CallRunner.run(CallRunner.java:132)
at org.apache.hadoop.hbase.ipc.RpcExecutor$Handler.run(RpcExecutor.java:324)
at org.apache.hadoop.hbase.ipc.RpcExecutor$Handler.run(RpcExecutor.java:304)
Caused by: java.lang.IllegalStateException: Invalid currTagsLen -32239. Block offset: 1319713, block length: 99991, position: 42422 (without header). path=hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/cd083a4a1ef04baff94ebb5aabdb8cb8/i/1f6dd8a1bc054eefbc9faa1bf625e24f
at org.apache.hadoop.hbase.io.hfile.HFileReaderImpl$HFileScannerImpl.checkTagsLen(HFileReaderImpl.java:642)
at org.apache.hadoop.hbase.io.hfile.HFileReaderImpl$HFileScannerImpl.readKeyValueLen(HFileReaderImpl.java:630)
at org.apache.hadoop.hbase.io.hfile.HFileReaderImpl$HFileScannerImpl._next(HFileReaderImpl.java:1080)
at org.apache.hadoop.hbase.io.hfile.HFileReaderImpl$HFileScannerImpl.next(HFileReaderImpl.java:1097)
at org.apache.hadoop.hbase.regionserver.StoreFileScanner.next(StoreFileScanner.java:208)
at org.apache.hadoop.hbase.regionserver.KeyValueHeap.next(KeyValueHeap.java:120)
at org.apache.hadoop.hbase.regionserver.StoreScanner.next(StoreScanner.java:653)
at org.apache.hadoop.hbase.regionserver.KeyValueHeap.next(KeyValueHeap.java:153)
at org.apache.hadoop.hbase.regionserver.HRegion$RegionScannerImpl.populateResult(HRegion.java:6581)
at org.apache.hadoop.hbase.regionserver.HRegion$RegionScannerImpl.nextInternal(HRegion.java:6745)
at org.apache.hadoop.hbase.regionserver.HRegion$RegionScannerImpl.nextRaw(HRegion.java:6518)
at org.apache.hadoop.hbase.regionserver.RSRpcServices.scan(RSRpcServices.java:3155)
at org.apache.hadoop.hbase.regionserver.RSRpcServices.scan(RSRpcServices.java:3404)
at org.apache.hadoop.hbase.shaded.protobuf.generated.ClientProtos$ClientService$2.callBlockingMethod(ClientProtos.java:42190)
at org.apache.hadoop.hbase.ipc.RpcServer.call(RpcServer.java:413)
... 3 more
The exception for hbase regionserver is as follows:
2022-09-28 11:19:36,019 INFO [HBase-Metrics2-1] impl.MetricsSystemImpl: HBase metrics system started
2022-09-28 11:20:20,946 INFO [MemStoreFlusher.0] regionserver.HRegion: Flushing 1/1 column families, dataSize=1.95 MB heapSize=2.09 MB
2022-09-28 11:20:20,969 INFO [MemStoreFlusher.0] regionserver.DefaultStoreFlusher: Flushed memstore data size=1.95 MB at sequenceid=8934625 (bloomFilter=true), to=hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/e63ee2269b0b076a415c5f76d5468
55f/.tmp/i/2629dbae7d5e402489ef56b1c097289f
2022-09-28 11:20:20,977 INFO [MemStoreFlusher.0] regionserver.HStore: Added hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/e63ee2269b0b076a415c5f76d546855f/i/2629dbae7d5e402489ef56b1c097289f, entries=1212, sequenceid=8934625, filesize=359.
1 K
2022-09-28 11:20:20,978 INFO [MemStoreFlusher.0] regionserver.HRegion: Finished flush of dataSize ~1.95 MB/2041026, heapSize ~2.09 MB/2190200, currentSize=0 B/0 for e63ee2269b0b076a415c5f76d546855f in 32ms, sequenceid=8934625, compaction requested=true
2022-09-28 11:20:20,986 INFO [regionserver/bghbaseclusterdn9528:16020-shortCompactions-1664173471436] regionserver.HRegion: Starting compaction of i in expose,9ffffff6,1663741391432.e63ee2269b0b076a415c5f76d546855f.
2022-09-28 11:20:20,986 INFO [regionserver/bghbaseclusterdn9528:16020-shortCompactions-1664173471436] regionserver.HStore: Starting compaction of [hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/e63ee2269b0b076a415c5f76d546855f/i/98d0ecd1ed
7744a8a5f94923c382861e, hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/e63ee2269b0b076a415c5f76d546855f/i/30bab1682dba4721b25e58b78dd17255, hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/e63ee2269b0b076a415c5f76d546855f/i/f8
0c2f08176e417a9184f434d4300935, hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/e63ee2269b0b076a415c5f76d546855f/i/52baca576c154c26b7df3b5d126d47b8, hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/e63ee2269b0b076a415c5f76d5468
55f/i/7d8291d422d042de9aa43aa5b79da6ad, hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/e63ee2269b0b076a415c5f76d546855f/i/8bf3b47909ab4eeb86d8a5c283cfe942, hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/e63ee2269b0b076a415c5
f76d546855f/i/0663d48a4ed94dbe9fdc78f6649c1eb3, hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/e63ee2269b0b076a415c5f76d546855f/i/b80b55d744174bc882db93283cd70c71] into tmpdir=hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/e
63ee2269b0b076a415c5f76d546855f/.tmp, totalSize=18.9 M
2022-09-28 11:20:21,153 INFO [regionserver/bghbaseclusterdn9528:16020-shortCompactions-1664173471436] throttle.PressureAwareThroughputController: e63ee2269b0b076a415c5f76d546855f#i#compaction#637 average throughput is 122.45 MB/second, slept 0 time(s) and
total slept time is 0 ms. 0 active operations remaining, total limit is 61.86 MB/second
2022-09-28 11:20:21,159 ERROR [regionserver/bghbaseclusterdn9528:16020-shortCompactions-1664173471436] regionserver.CompactSplit: Compaction failed region=expose,9ffffff6,1663741391432.e63ee2269b0b076a415c5f76d546855f., storeName=i, priority=73, startTime=
1664335220978
java.lang.IllegalStateException: Invalid currTagsLen -9. Block offset: 1677972, block length: 161891, position: 48652 (without header). path=hdfs://cthbaseclusterpro01/apps/hbase/data/data/default/expose/e63ee2269b0b076a415c5f76d546855f/i/b80b55d744174bc88
2db93283cd70c71
at org.apache.hadoop.hbase.io.hfile.HFileReaderImpl$HFileScannerImpl.checkTagsLen(HFileReaderImpl.java:642)
at org.apache.hadoop.hbase.io.hfile.HFileReaderImpl$HFileScannerImpl.readKeyValueLen(HFileReaderImpl.java:630)
at org.apache.hadoop.hbase.io.hfile.HFileReaderImpl$HFileScannerImpl._next(HFileReaderImpl.java:1080)
at org.apache.hadoop.hbase.io.hfile.HFileReaderImpl$HFileScannerImpl.next(HFileReaderImpl.java:1097)
at org.apache.hadoop.hbase.regionserver.StoreFileScanner.next(StoreFileScanner.java:208)
at org.apache.hadoop.hbase.regionserver.KeyValueHeap.next(KeyValueHeap.java:120)
at org.apache.hadoop.hbase.regionserver.StoreScanner.next(StoreScanner.java:653)
at org.apache.hadoop.hbase.regionserver.compactions.Compactor.performCompaction(Compactor.java:388)
at org.apache.hadoop.hbase.regionserver.compactions.Compactor.compact(Compactor.java:327)
at org.apache.hadoop.hbase.regionserver.compactions.DefaultCompactor.compact(DefaultCompactor.java:65)
at org.apache.hadoop.hbase.regionserver.DefaultStoreEngine$DefaultCompactionContext.compact(DefaultStoreEngine.java:126)
at org.apache.hadoop.hbase.regionserver.HStore.compact(HStore.java:1410)
at org.apache.hadoop.hbase.regionserver.HRegion.compact(HRegion.java:2187)
at org.apache.hadoop.hbase.regionserver.CompactSplit$CompactionRunner.doCompaction(CompactSplit.java:596)
at org.apache.hadoop.hbase.regionserver.CompactSplit$CompactionRunner.run(CompactSplit.java:638)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
2022-09-28 11:20:25,000 INFO [RpcServer.default.FPBQ.Fifo.handler=18,queue=3,port=16020] regionserver.HRegion: writing data to region expose,9ffffff6,1663741391432.e63ee2269b0b076a415c5f76d546855f. with WAL disabled. Data may be lost in the event of a cra
sh.
2022-09-28 11:24:01,565 INFO [LruBlockCacheStatsExecutor] hfile.LruBlockCache: totalSize=1.08 GB, freeSize=2.52 GB, max=3.60 GB, blockCount=17155, accesses=133155383, hits=132992986, hitRatio=99.88%, , cachingAccesses=132985682, cachingHits=132951576, cac
hingHitsRatio=99.97%, evictions=16199, evicted=0, evictedPerRun=0.0
2022-09-28 11:24:01,569 INFO [MobFileCache #0] mob.MobFileCache: MobFileCache Statistics, access: 0, miss: 0, hit: 0, hit ratio: 0%, evicted files: 0
2022-09-28 11:24:05,246 INFO [regionserver/bghbaseclusterdn9528:16020.logRoller] wal.AbstractFSWAL: Rolled WAL /apps/hbase/data/WALs/bghbaseclusterdn9528,16020,1664173440239/bghbaseclusterdn9528%2C16020%2C1664173440239.1664331845190 with entries=21, files
ize=5.39 KB; new WAL /apps/hbase/data/WALs/bghbaseclusterdn9528,16020,1664173440239/bghbaseclusterdn9528%2C16020%2C1664173440239.1664335445235
I found some solutions in code. such as HBASE-21507、HBASE-24515、HBASE-21775
With sparkR in Rstudio Unable to read data in error.
How solve What can I
environment
R:version 3.3.1
RStudio:Version 0.99.902
sparkR:Version 1.6.1
mac:Version 10.11.6
code
SPARK_HOME <- "/usr/local/Cellar/apache-spark/1.6.1/libexec"
Sys.setenv('SPARKR_SUBMIT_ARGS'='"--packages" "com.databricks:spark-csv_2.10:1.4.0" "sparkr-shell"')
.libPaths(c(file.path(SPARK_HOME, "R", "lib"), .libPaths()))
library(SparkR)
sc <- sparkR.init(master="local[3]", sparkHome=SPARK_HOME,
sparkEnvir=list(spark.driver.maemory="6g",
sparkPackages="com.databricks:spark-csv_2.10:1.4.0"))
sqlContext <- sparkRSQL.init(sc)
WARN
WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.
code
df <- read.df(sqlContext, "iris.csv", source="com.databricks.spark.csv", inferSchema="true")
WARN
WARN : Your hostname, xxxx-no-MacBook-Pro.local resolves to a loopback/non-reachable address: fe80:0:0:0:701f:d8ff:fe34:fd1%8, but we couldn't find any external IP address!
ERROR
ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
java.net.SocketTimeoutException: connect timed out
at java.net.PlainSocketImpl.socketConnect(Native Method)
WARN
16/07/20 14:00:44 WARN TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0, localhost): java.net.SocketTimeoutException: connect timed out
at java.net.PlainSocketImpl.socketConnect(Native Method)
ERROR
16/07/20 14:00:44 ERROR TaskSetManager: Task 0 in stage 0.0 failed 1 times; aborting job
16/07/20 14:00:44 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
16/07/20 14:00:44 INFO TaskSchedulerImpl: Cancelling stage 0
16/07/20 14:00:44 INFO DAGScheduler: ResultStage 0 (first at CsvRelation.scala:267) failed in 60.099 s
16/07/20 14:00:44 INFO DAGScheduler: Job 0 failed: first at CsvRelation.scala:267, took 60.168711 s
16/07/20 14:00:44 ERROR RBackendHandler: loadDF on org.apache.spark.sql.api.r.SQLUtils failed
invokeJava(isStatic = TRUE, className, methodName, ...) でエラー:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0, localhost): java.net.SocketTimeoutException: connect timed out
at java.net.PlainSocketImpl.socketConnect(Native Method)
Because a solved way isn't understood.
Please tell me.
Try this
Sys.setenv(SPARK_HOME="/usr/local/Cellar/apache-spark/1.6.1/libexec")
Sys.setenv('SPARKR_SUBMIT_ARGS'='"--packages" "com.databricks:spark-csv_2.10:1.4.0" "sparkr-shell"')
library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK_HOME"), "R","lib")))
sc <- sparkR.init(master="local", sparkEnvir = list(spark.driver.memory="4g", spark.executor.memory="6g"))
sqlContext <- sparkRSQL.init(sc)
It works for me.
My Spark application is failing when it has to access numerous CSV files (~1000 # 63MB each) from S3, and pipe them into a Spark RDD. The actual process of splitting up the CSV seems to work, but an extra function call to S3NativeFileSystem seems to be causing an error and the job to crash.
To begin, the following is my PySpark Application:
from pyspark import SparkContext
sc = SparkContext("local", "Simple App")
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
import time
startTime = float(time.time())
dataPath = 's3://PATHTODIRECTORY/'
sc._jsc.hadoopConfiguration().set("fs.s3.awsAccessKeyId", "MYKEY")
sc._jsc.hadoopConfiguration().set("fs.s3.awsSecretAccessKey", "MYSECRETKEY")
def buildSchemaDF(tableName, columnList):
currentRDD = sc.textFile(dataPath + tableName).map(lambda line: line.split("|"))
currentDF = currentRDD.toDF(columnList)
return currentDF
loadStartTime = float(time.time())
lineitemDF = buildSchemaDF('lineitem*', ['l_orderkey','l_partkey','l_suppkey','l_linenumber','l_quantity','l_extendedprice','l_discount','l_tax','l_returnflag','l_linestatus','l_shipdate','l_commitdate','l_receiptdate','l_shipinstruct','l_shipmode','l_comment'])
lineitemDF.registerTempTable("lineitem")
loadTimeElapsed = float(time.time()) - loadStartTime
queryStartTime = float(time.time())
qstr = """
SELECT
lineitem.l_returnflag,
lineitem.l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_discount) as sum_disc,
sum(l_tax) as sum_tax,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(l_orderkey) as count_order
FROM
lineitem
WHERE
l_shipdate <= '19981001'
GROUP BY
l_returnflag,
l_linestatus
ORDER BY
l_returnflag,
l_linestatus
"""
tpch1DF = sqlContext.sql(qstr)
queryTimeElapsed = float(time.time()) - queryStartTime
totalTimeElapsed = float(time.time()) - startTime
tpch1DF.show()
queryResults = [qstr, loadTimeElapsed, queryTimeElapsed, totalTimeElapsed]
distData = sc.parallelize(queryResults)
distData.saveAsTextFile(dataPath + 'queryResults.csv')
print 'Load Time: ' + str(loadTimeElapsed)
print 'Query Time: ' + str(queryTimeElapsed)
print 'Total Time: ' + str(totalTimeElapsed)
To take it step by step I start off by spinning up a Spark EMR Cluster with the following AWS CLI command (carriage returns added for readability):
aws emr create-cluster --name "Big TPCH Spark cluster2" --release-label emr-4.6.0
--applications Name=Spark --ec2-attributes KeyName=blazing-test-aws
--log-uri s3://aws-logs-132950491118-us-west-2/elasticmapreduce/j-1WZ39GFS3IX49/
--instance-type m3.2xlarge --instance-count 6 --use-default-roles
After the EMR cluster finishes provisioning I then copy over my Pyspark application onto the master node at '/home/hadoop/pysparkApp.py'. With it copied over I'm able to add the Step for spark-submit.
aws emr add-steps --cluster-id j-1DQJ8BDL1394N --steps
Type=spark,Name=SparkTPCHTests,Args=[--deploy-mode,cluster,-
conf,spark.yarn.submit.waitAppCompletion=true,--num-executors,5,--executor
cores,5,--executor memory,20g,/home/hadoop/tpchSpark.py]
,ActionOnFailure=CONTINUE
Now if I run this step over only a few of the aforementioned CSV files the final results will be generated, but the script will still claim to have failed.
I think it's associated with an extra call to S3NativeFileSystem, but I'm not certain. These are the Yarn log messages I'm getting which lead me to that conclusion. The first call appears to work just fine:
16/05/15 23:18:00 INFO HadoopRDD: Input split: s3://data-set-builder/splitLineItem2/lineitemad:0+64901757
16/05/15 23:18:00 INFO latency: StatusCode=[200], ServiceName=[Amazon S3], AWSRequestID=[ED8011CE4E1F6F18], ServiceEndpoint=[https://data-set-builder.s3-us-west-2.amazonaws.com], HttpClientPoolLeasedCount=0, RetryCapacityConsumed=0, RequestCount=1, HttpClientPoolPendingCount=0, HttpClientPoolAvailableCount=2, ClientExecuteTime=[77.956], HttpRequestTime=[77.183], HttpClientReceiveResponseTime=[20.028], RequestSigningTime=[0.229], CredentialsRequestTime=[0.003], ResponseProcessingTime=[0.128], HttpClientSendRequestTime=[0.35],
While the second one does not seem to execute properly, resulting in "Partial Results" (206 Error):
16/05/15 23:18:00 INFO S3NativeFileSystem: Opening 's3://data-set-builder/splitLineItem2/lineitemad' for reading
16/05/15 23:18:00 INFO latency: StatusCode=[206], ServiceName=[Amazon S3], AWSRequestID=[10BDDE61AE13AFBE], ServiceEndpoint=[https://data-set-builder.s3.amazonaws.com], HttpClientPoolLeasedCount=0, RetryCapacityConsumed=0, RequestCount=1, HttpClientPoolPendingCount=0, HttpClientPoolAvailableCount=2, Client Execute Time=[296.86], HttpRequestTime=[295.801], HttpClientReceiveResponseTime=[293.667], RequestSigningTime=[0.204], CredentialsRequestTime=[0.002], ResponseProcessingTime=[0.34], HttpClientSendRequestTime=[0.337],
16/05/15 23:18:02 INFO ApplicationMaster: Waiting for spark context initialization ...
I'm lost as to why it's even making the second call to S3NativeFileSystem when the first one appears to have responded effectively and even split the file. Is this something that is a product of my EMR configuration? I know S3Native has file limit issues and that a straight S3 call is optimal, which is what I've tried to do, but this call seems to be there no matter what I do. Please help!
Also, to add a few other error messages in my Yarn Log in case they are relevant.
1)
16/05/15 23:19:22 ERROR ApplicationMaster: SparkContext did not initialize after waiting for 100000 ms. Please check earlier log output for errors. Failing the application.
16/05/15 23:19:22 INFO ApplicationMaster: Final app status: FAILED, exitCode: 13, (reason: Timed out waiting for SparkContext.)
2)
16/05/15 23:19:22 ERROR DiskBlockObjectWriter: Uncaught exception while reverting partial writes to file /mnt/yarn/usercache/hadoop/appcache/application_1463354019776_0001/blockmgr-f847744b-c87a-442c-9135-57cae3d1f6f0/2b/temp_shuffle_3fe2e09e-f8e4-4e5d-ac96-1538bdc3b401
java.io.FileNotFoundException: /mnt/yarn/usercache/hadoop/appcache/application_1463354019776_0001/blockmgr-f847744b-c87a-442c-9135-57cae3d1f6f0/2b/temp_shuffle_3fe2e09e-f8e4-4e5d-ac96-1538bdc3b401 (No such file or directory)
at java.io.FileOutputStream.open(Native Method)
at java.io.FileOutputStream.<init>(FileOutputStream.java:221)
at org.apache.spark.storage.DiskBlockObjectWriter.revertPartialWritesAndClose(DiskBlockObjectWriter.scala:162)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.stop(BypassMergeSortShuffleWriter.java:226)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
16/05/15 23:19:22 ERROR BypassMergeSortShuffleWriter: Error while deleting file /mnt/yarn/usercache/hadoop/appcache/application_1463354019776_0001/blockmgr-f847744b-c87a-442c-9135-57cae3d1f6f0/2b/temp_shuffle_3fe2e09e-f8e4-4e5d-ac96-1538bdc3b401
16/05/15 23:19:22 WARN TaskMemoryManager: leak 32.3 MB memory from org.apache.spark.unsafe.map.BytesToBytesMap#762be8fe
16/05/15 23:19:22 ERROR Executor: Managed memory leak detected; size = 33816576 bytes, TID = 14
16/05/15 23:19:22 ERROR Executor: Exception in task 13.0 in stage 1.0 (TID 14)
java.io.FileNotFoundException: /mnt/yarn/usercache/hadoop/appcache/application_1463354019776_0001/blockmgr-f847744b-c87a-442c-9135-57cae3d1f6f0/3a/temp_shuffle_b9001fca-bba9-400d-9bc4-c23c002e0aa9 (No such file or directory)
at java.io.FileOutputStream.open(Native Method)
at java.io.FileOutputStream.<init>(FileOutputStream.java:221)
at org.apache.spark.storage.DiskBlockObjectWriter.open(DiskBlockObjectWriter.scala:88)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:140)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Order of precedence for spark configurations is :
SparkContext (code/application) > Spark-submit > Spark-defaults.conf
So couple of things to point here -
Use YARN cluster as deploy mode and master in your spark submit command -
spark-submit --deploy-mode cluster --master yarn ...
OR
spark-submit --master yarn-cluster ...
Remove "local" string from line sc = SparkContext("local", "Simple App") in your code. Use conf = SparkConf().setAppName(appName)
sc = SparkContext(conf=conf) to initialize Spark context.
Ref - http://spark.apache.org/docs/latest/programming-guide.html
My configurations are as follows:
Running Spark 1.2.0, Hadoop 2.5.0/YARN, Cloudera CDH5 VM Centos 6.2 running on Windows 64 bit platform 8GB RAM
Below is the sequence of commands being run from the spark-shell but while trying to print the cust RDD, I am getting the Kerberos authentication error. I have logged in to spark-shell from cloudera user as login and the Cloudera VM is Kerberos authenticated with cloudera#HADOOP.LOCALDOMAIN as the default principal
Is there any way to authenticate Kerberos from spark-shell for normal RDD operations ?
Or I am missing something ? Appreciate any rightful help and will be rewarded
Below is the Spark Shell commands :
scala> sc
res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext#26226a12
scala> sqlContext
res1: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext#7213fc4a
scala> import sqlContext.createSchemaRDD
import sqlContext.createSchemaRDD
scala> case class Cust_flat_xml(xmldata: String)
defined class Cust_flat_xml
TRIED TO LOAD FROM LOCAL FILE PATH; BUT AS IT SEEMS FROM ERROR MESSAGE HDFS INPUT IS REQUIRED
**scala> val cust = sc.textFile("/home/cloudera/tdaf/tdaf_xml_data/new_cust_20110630_cpy").map(_.split(" ")).map(p => Cust_flat_xml(p(0)))**
15/07/01 11:11:45 INFO MemoryStore: ensureFreeSpace(260017) called with curMem=843639, maxMem=280248975
15/07/01 11:11:45 INFO MemoryStore: Block broadcast_3 stored as values in memory (estimated size 253.9 KB, free 266.2 MB)
15/07/01 11:11:45 INFO MemoryStore: ensureFreeSpace(21212) called with curMem=1103656, maxMem=280248975
15/07/01 11:11:45 INFO MemoryStore: Block broadcast_3_piece0 stored as bytes in memory (estimated size 20.7 KB, free 266.2 MB)
15/07/01 11:11:45 INFO BlockManagerInfo: Added broadcast_3_piece0 in memory on 10.113.234.25:58467 (size: 20.7 KB, free: 267.2 MB)
15/07/01 11:11:45 INFO BlockManagerMaster: Updated info of block broadcast_3_piece0
15/07/01 11:11:45 INFO SparkContext: Created broadcast 3 from textFile at <console>:28
cust: org.apache.spark.rdd.RDD[Cust_flat_xml] = MappedRDD[9] at map at <console>:28
scala> cust.foreach(println)
15/07/01 11:12:07 INFO DFSClient: Created HDFS_DELEGATION_TOKEN token 42 for cloudera on 127.0.0.1:8020
15/07/01 11:12:07 INFO TokenCache: Got dt for hdfs://localhost.localdomain:8020; Kind: HDFS_DELEGATION_TOKEN, Service: 127.0.0.1:8020, Ident: (HDFS_DELEGATION_TOKEN token 42 for cloudera)
**org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: hdfs://localhost.localdomain:8020/home/cloudera/tdaf/tdaf_xml_data/new_cust_20110630_cpy**
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:285)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:201)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:205)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:203)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:203)
at org.apache.spark.rdd.MappedRDD.getPartitions(MappedRDD.scala:28)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:205)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:203)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:203)
at org.apache.spark.rdd.MappedRDD.getPartitions(MappedRDD.scala:28)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:205)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:203)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:203)
at org.apache.spark.rdd.MappedRDD.getPartitions(MappedRDD.scala:28)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:205)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:203)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:203)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1328)
at org.apache.spark.rdd.RDD.foreach(RDD.scala:765)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:31)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:36)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:42)
at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:44)
at $iwC$$iwC$$iwC$$iwC.<init>(<console>:46)
at $iwC$$iwC$$iwC.<init>(<console>:48)
at $iwC$$iwC.<init>(<console>:50)
at $iwC.<init>(<console>:52)
at <init>(<console>:54)
at .<init>(<console>:58)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:852)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1125)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:674)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:705)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:669)
at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:828)
at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:873)
at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:785)
at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:628)
at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:636)
at org.apache.spark.repl.SparkILoop.loop(SparkILoop.scala:641)
at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply$mcZ$sp(SparkILoop.scala:968)
at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:916)
at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:916)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:916)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1011)
at org.apache.spark.repl.Main$.main(Main.scala:31)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
ADDED new_cust_20110630_cpy TO HDFS PATH hdfs://localhost.localdomain:8020/spark/sparksql/input
scala> val cust = sc.textFile("/spark/sparksql/input/new_cust_20110630_cpy").map(_.split(" ")).map(p => Cust_flat_xml(p(0)))
15/07/01 11:19:06 INFO MemoryStore: ensureFreeSpace(260041) called with curMem=1124868, maxMem=280248975
15/07/01 11:19:06 INFO MemoryStore: Block broadcast_4 stored as values in memory (estimated size 253.9 KB, free 265.9 MB)
15/07/01 11:19:06 INFO MemoryStore: ensureFreeSpace(21212) called with curMem=1384909, maxMem=280248975
15/07/01 11:19:06 INFO MemoryStore: Block broadcast_4_piece0 stored as bytes in memory (estimated size 20.7 KB, free 265.9 MB)
15/07/01 11:19:06 INFO BlockManagerInfo: Added broadcast_4_piece0 in memory on 10.113.234.25:58467 (size: 20.7 KB, free: 267.2 MB)
15/07/01 11:19:06 INFO BlockManagerMaster: Updated info of block broadcast_4_piece0
15/07/01 11:19:06 INFO SparkContext: Created broadcast 4 from textFile at <console>:28
cust: org.apache.spark.rdd.RDD[Cust_flat_xml] = MappedRDD[13] at map at <console>:28
scala>
scala> cust.foreach(println)
15/07/01 11:19:47 INFO DFSClient: Created HDFS_DELEGATION_TOKEN token 43 for cloudera on 127.0.0.1:8020
15/07/01 11:19:47 INFO TokenCache: Got dt for hdfs://localhost.localdomain:8020; Kind: HDFS_DELEGATION_TOKEN, Service: 127.0.0.1:8020, Ident: (HDFS_DELEGATION_TOKEN token 43 for cloudera)
15/07/01 11:19:47 INFO FileInputFormat: Total input paths to process : 1
15/07/01 11:19:47 INFO SparkContext: Starting job: foreach at <console>:31
15/07/01 11:19:47 INFO DAGScheduler: Got job 0 (foreach at <console>:31) with 2 output partitions (allowLocal=false)
15/07/01 11:19:47 INFO DAGScheduler: Final stage: Stage 0(foreach at <console>:31)
15/07/01 11:19:47 INFO DAGScheduler: Parents of final stage: List()
15/07/01 11:19:47 INFO DAGScheduler: Missing parents: List()
15/07/01 11:19:47 INFO DAGScheduler: Submitting Stage 0 (MappedRDD[13] at map at <console>:28), which has no missing parents
15/07/01 11:19:47 INFO MemoryStore: ensureFreeSpace(3080) called with curMem=1406121, maxMem=280248975
15/07/01 11:19:47 INFO MemoryStore: Block broadcast_5 stored as values in memory (estimated size 3.0 KB, free 265.9 MB)
15/07/01 11:19:47 INFO MemoryStore: ensureFreeSpace(1800) called with curMem=1409201, maxMem=280248975
15/07/01 11:19:47 INFO MemoryStore: Block broadcast_5_piece0 stored as bytes in memory (estimated size 1800.0 B, free 265.9 MB)
15/07/01 11:19:47 INFO BlockManagerInfo: Added broadcast_5_piece0 in memory on 10.113.234.25:58467 (size: 1800.0 B, free: 267.2 MB)
15/07/01 11:19:47 INFO BlockManagerMaster: Updated info of block broadcast_5_piece0
15/07/01 11:19:47 INFO SparkContext: Created broadcast 5 from broadcast at DAGScheduler.scala:838
15/07/01 11:19:47 INFO DAGScheduler: Submitting 2 missing tasks from Stage 0 (MappedRDD[13] at map at <console>:28)
15/07/01 11:19:47 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
15/07/01 11:19:47 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, 10.113.234.25, ANY, 1340 bytes)
15/07/01 11:19:48 INFO BlockManagerInfo: Added broadcast_5_piece0 in memory on 10.113.234.25:40605 (size: 1800.0 B, free: 267.3 MB)
15/07/01 11:19:50 INFO BlockManagerInfo: Added broadcast_4_piece0 in memory on 10.113.234.25:40605 (size: 20.7 KB, free: 267.2 MB)
15/07/01 11:19:53 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, 10.113.234.25, ANY, 1340 bytes)
15/07/01 11:19:53 WARN TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0, 10.113.234.25): java.io.IOException: Failed on local exception: java.io.IOException: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]; Host Details : local host is: "localhost.localdomain/127.0.0.1"; destination host is: "localhost.localdomain":8020;
at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:764)
at org.apache.hadoop.ipc.Client.call(Client.java:1415)
at org.apache.hadoop.ipc.Client.call(Client.java:1364)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:206)
at com.sun.proxy.$Proxy19.getBlockLocations(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.getBlockLocations(ClientNamenodeProtocolTranslatorPB.java:246)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:187)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
at com.sun.proxy.$Proxy20.getBlockLocations(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient.callGetBlockLocations(DFSClient.java:1179)
at org.apache.hadoop.hdfs.DFSClient.getLocatedBlocks(DFSClient.java:1169)
at org.apache.hadoop.hdfs.DFSClient.getLocatedBlocks(DFSClient.java:1159)
at org.apache.hadoop.hdfs.DFSInputStream.fetchLocatedBlocksAndGetLastBlockLength(DFSInputStream.java:270)
at org.apache.hadoop.hdfs.DFSInputStream.openInfo(DFSInputStream.java:237)
at org.apache.hadoop.hdfs.DFSInputStream.<init>(DFSInputStream.java:230)
at org.apache.hadoop.hdfs.DFSClient.open(DFSClient.java:1457)
at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:301)
at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:297)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
at org.apache.hadoop.hdfs.DistributedFileSystem.open(DistributedFileSystem.java:297)
at org.apache.hadoop.fs.FileSystem.open(FileSystem.java:766)
at org.apache.hadoop.mapred.LineRecordReader.<init>(LineRecordReader.java:108)
at org.apache.hadoop.mapred.TextInputFormat.getRecordReader(TextInputFormat.java:67)
at org.apache.spark.rdd.HadoopRDD$$anon$1.<init>(HadoopRDD.scala:233)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:210)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:99)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:230)
at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:230)
at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:230)
at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:230)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
at org.apache.spark.scheduler.Task.run(Task.scala:56)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:196)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.io.IOException: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]
at org.apache.hadoop.ipc.Client$Connection$1.run(Client.java:679)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1642)
at org.apache.hadoop.ipc.Client$Connection.handleSaslConnectionFailure(Client.java:642)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:725)
at org.apache.hadoop.ipc.Client$Connection.access$2800(Client.java:367)
at org.apache.hadoop.ipc.Client.getConnection(Client.java:1463)
at org.apache.hadoop.ipc.Client.call(Client.java:1382)
... 45 more
Caused by: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]
at org.apache.hadoop.security.SaslRpcClient.selectSaslClient(SaslRpcClient.java:172)
at org.apache.hadoop.security.SaslRpcClient.saslConnect(SaslRpcClient.java:396)
at org.apache.hadoop.ipc.Client$Connection.setupSaslConnection(Client.java:552)
at org.apache.hadoop.ipc.Client$Connection.access$1800(Client.java:367)
at org.apache.hadoop.ipc.Client$Connection$2.run(Client.java:717)
at org.apache.hadoop.ipc.Client$Connection$2.run(Client.java:713)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1642)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:712)
... 48 more
15/07/01 11:19:53 INFO TaskSetManager: Starting task 0.1 in stage 0.0 (TID 2, 10.113.234.25, ANY, 1340 bytes)
15/07/01 11:19:53 INFO TaskSetManager: Lost task 1.0 in stage 0.0 (TID 1) on executor 10.113.234.25: java.io.IOException (Failed on local exception: java.io.IOException: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]; Host Details : local host is: "localhost.localdomain/127.0.0.1"; destination host is: "localhost.localdomain":8020; ) [duplicate 1]
15/07/01 11:19:53 INFO TaskSetManager: Starting task 1.1 in stage 0.0 (TID 3, 10.113.234.25, ANY, 1340 bytes)
15/07/01 11:19:53 INFO TaskSetManager: Lost task 0.1 in stage 0.0 (TID 2) on executor 10.113.234.25: java.io.IOException (Failed on local exception: java.io.IOException: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]; Host Details : local host is: "localhost.localdomain/127.0.0.1"; destination host is: "localhost.localdomain":8020; ) [duplicate 2]
15/07/01 11:19:53 INFO TaskSetManager: Starting task 0.2 in stage 0.0 (TID 4, 10.113.234.25, ANY, 1340 bytes)
15/07/01 11:19:54 INFO TaskSetManager: Lost task 1.1 in stage 0.0 (TID 3) on executor 10.113.234.25: java.io.IOException (Failed on local exception: java.io.IOException: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]; Host Details : local host is: "localhost.localdomain/127.0.0.1"; destination host is: "localhost.localdomain":8020; ) [duplicate 3]
15/07/01 11:19:54 INFO TaskSetManager: Starting task 1.2 in stage 0.0 (TID 5, 10.113.234.25, ANY, 1340 bytes)
15/07/01 11:19:54 INFO TaskSetManager: Lost task 0.2 in stage 0.0 (TID 4) on executor 10.113.234.25: java.io.IOException (Failed on local exception: java.io.IOException: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]; Host Details : local host is: "localhost.localdomain/127.0.0.1"; destination host is: "localhost.localdomain":8020; ) [duplicate 4]
15/07/01 11:19:54 INFO TaskSetManager: Starting task 0.3 in stage 0.0 (TID 6, 10.113.234.25, ANY, 1340 bytes)
15/07/01 11:19:54 INFO TaskSetManager: Lost task 1.2 in stage 0.0 (TID 5) on executor 10.113.234.25: java.io.IOException (Failed on local exception: java.io.IOException: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]; Host Details : local host is: "localhost.localdomain/127.0.0.1"; destination host is: "localhost.localdomain":8020; ) [duplicate 5]
15/07/01 11:19:54 INFO TaskSetManager: Starting task 1.3 in stage 0.0 (TID 7, 10.113.234.25, ANY, 1340 bytes)
15/07/01 11:19:54 INFO TaskSetManager: Lost task 0.3 in stage 0.0 (TID 6) on executor 10.113.234.25: java.io.IOException (Failed on local exception: java.io.IOException: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]; Host Details : local host is: "localhost.localdomain/127.0.0.1"; destination host is: "localhost.localdomain":8020; ) [duplicate 6]
15/07/01 11:19:54 ERROR TaskSetManager: Task 0 in stage 0.0 failed 4 times; aborting job
15/07/01 11:19:54 INFO TaskSchedulerImpl: Cancelling stage 0
15/07/01 11:19:54 INFO TaskSchedulerImpl: Stage 0 was cancelled
15/07/01 11:19:54 INFO DAGScheduler: Job 0 failed: foreach at <console>:31, took 6.713733 s
15/07/01 11:19:54 INFO TaskSetManager: Lost task 1.3 in stage 0.0 (TID 7) on executor 10.113.234.25: java.io.IOException (Failed on local exception: java.io.IOException: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]; Host Details : local host is: "localhost.localdomain/127.0.0.1"; destination host is: "localhost.localdomain":8020; ) [duplicate 7]
15/07/01 11:19:54 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 6, 10.113.234.25): java.io.IOException: Failed on local exception: java.io.IOException: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]; Host Details : local host is: "localhost.localdomain/127.0.0.1"; destination host is: "localhost.localdomain":8020;
at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:764)
at org.apache.hadoop.ipc.Client.call(Client.java:1415)
at org.apache.hadoop.ipc.Client.call(Client.java:1364)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:206)
at com.sun.proxy.$Proxy19.getBlockLocations(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.getBlockLocations(ClientNamenodeProtocolTranslatorPB.java:246)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:187)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
at com.sun.proxy.$Proxy20.getBlockLocations(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient.callGetBlockLocations(DFSClient.java:1179)
at org.apache.hadoop.hdfs.DFSClient.getLocatedBlocks(DFSClient.java:1169)
at org.apache.hadoop.hdfs.DFSClient.getLocatedBlocks(DFSClient.java:1159)
at org.apache.hadoop.hdfs.DFSInputStream.fetchLocatedBlocksAndGetLastBlockLength(DFSInputStream.java:270)
at org.apache.hadoop.hdfs.DFSInputStream.openInfo(DFSInputStream.java:237)
at org.apache.hadoop.hdfs.DFSInputStream.<init>(DFSInputStream.java:230)
at org.apache.hadoop.hdfs.DFSClient.open(DFSClient.java:1457)
at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:301)
at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:297)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
at org.apache.hadoop.hdfs.DistributedFileSystem.open(DistributedFileSystem.java:297)
at org.apache.hadoop.fs.FileSystem.open(FileSystem.java:766)
at org.apache.hadoop.mapred.LineRecordReader.<init>(LineRecordReader.java:108)
at org.apache.hadoop.mapred.TextInputFormat.getRecordReader(TextInputFormat.java:67)
at org.apache.spark.rdd.HadoopRDD$$anon$1.<init>(HadoopRDD.scala:233)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:210)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:99)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:230)
at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:230)
at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:230)
at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:230)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
at org.apache.spark.scheduler.Task.run(Task.scala:56)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:196)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.io.IOException: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]
at org.apache.hadoop.ipc.Client$Connection$1.run(Client.java:679)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1642)
at org.apache.hadoop.ipc.Client$Connection.handleSaslConnectionFailure(Client.java:642)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:725)
at org.apache.hadoop.ipc.Client$Connection.access$2800(Client.java:367)
at org.apache.hadoop.ipc.Client.getConnection(Client.java:1463)
at org.apache.hadoop.ipc.Client.call(Client.java:1382)
... 45 more
Caused by: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]
at org.apache.hadoop.security.SaslRpcClient.selectSaslClient(SaslRpcClient.java:172)
at org.apache.hadoop.security.SaslRpcClient.saslConnect(SaslRpcClient.java:396)
at org.apache.hadoop.ipc.Client$Connection.setupSaslConnection(Client.java:552)
at org.apache.hadoop.ipc.Client$Connection.access$1800(Client.java:367)
at org.apache.hadoop.ipc.Client$Connection$2.run(Client.java:717)
at org.apache.hadoop.ipc.Client$Connection$2.run(Client.java:713)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1642)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:712)
... 48 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1214)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1203)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1202)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1202)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:696)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1420)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
at akka.actor.ActorCell.invoke(ActorCell.scala:456)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
at akka.dispatch.Mailbox.run(Mailbox.scala:219)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
scala>
I have been running Spark 1.2.0 in standalone mode and using a Kerberos-enabled CDH5 cluster (Cloudera VM). So Spark application cannot be run.
For more details see the below link from cloudera:
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_spark_auth.html
HTH ... Pls award points if found useful. Thanks
I have a simple map-reduce program in which my map and reduce primitives look like this
map(K,V) = (Text, OutputAggregator)
reduce(Text, OutputAggregator) = (Text,Text)
The important point is that from my map function I emit an object of type OutputAggregator which is my own class that implements the Writable interface. However, my reduce fails with the following exception. More specifically, the readFieds() function is throwing an exception. Any clue why ? I use hadoop 0.18.3
10/09/19 04:04:59 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
10/09/19 04:04:59 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
10/09/19 04:04:59 INFO mapred.FileInputFormat: Total input paths to process : 1
10/09/19 04:04:59 INFO mapred.FileInputFormat: Total input paths to process : 1
10/09/19 04:04:59 INFO mapred.FileInputFormat: Total input paths to process : 1
10/09/19 04:04:59 INFO mapred.FileInputFormat: Total input paths to process : 1
10/09/19 04:04:59 INFO mapred.JobClient: Running job: job_local_0001
10/09/19 04:04:59 INFO mapred.MapTask: numReduceTasks: 1
10/09/19 04:04:59 INFO mapred.MapTask: io.sort.mb = 100
10/09/19 04:04:59 INFO mapred.MapTask: data buffer = 79691776/99614720
10/09/19 04:04:59 INFO mapred.MapTask: record buffer = 262144/327680
Length = 10
10
10/09/19 04:04:59 INFO mapred.MapTask: Starting flush of map output
10/09/19 04:04:59 INFO mapred.MapTask: bufstart = 0; bufend = 231; bufvoid = 99614720
10/09/19 04:04:59 INFO mapred.MapTask: kvstart = 0; kvend = 10; length = 327680
gl_books
10/09/19 04:04:59 WARN mapred.LocalJobRunner: job_local_0001
java.lang.NullPointerException
at org.myorg.OutputAggregator.readFields(OutputAggregator.java:46)
at org.apache.hadoop.io.serializer.WritableSerialization$WritableDeserializer.deserialize(WritableSerialization.java:67)
at org.apache.hadoop.io.serializer.WritableSerialization$WritableDeserializer.deserialize(WritableSerialization.java:40)
at org.apache.hadoop.mapred.Task$ValuesIterator.readNextValue(Task.java:751)
at org.apache.hadoop.mapred.Task$ValuesIterator.next(Task.java:691)
at org.apache.hadoop.mapred.Task$CombineValuesIterator.next(Task.java:770)
at org.myorg.xxxParallelizer$Reduce.reduce(xxxParallelizer.java:117)
at org.myorg.xxxParallelizer$Reduce.reduce(xxxParallelizer.java:1)
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.combineAndSpill(MapTask.java:904)
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.sortAndSpill(MapTask.java:785)
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.flush(MapTask.java:698)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:228)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:157)
java.io.IOException: Job failed!
at org.apache.hadoop.mapred.JobClient.runJob(JobClient.java:1113)
at org.myorg.xxxParallelizer.main(xxxParallelizer.java:145)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at org.apache.hadoop.util.RunJar.main(RunJar.java:155)
at org.apache.hadoop.mapred.JobShell.run(JobShell.java:54)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:65)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:79)
at org.apache.hadoop.mapred.JobShell.main(JobShell.java:68)
When posting a question about custom code: Post the relevant piece of code. So the content of line 46 and a few lines before & after would really help ...:)
However this may help:
THE pitfall when writing your own Writable Class is the fact that Hadoop reuses the actual instance of the class over and over again. Between calls to readFields you do NOT get a shiny new instance.
So at the start of the readFields method you MUST assume the object you are in is filled with "garbage" and must be cleared before continuing.
My suggestion to you is to implement a "clear()" method that fully wipes the current instance and resets it to the state it would be in the moment after it was created and the constructor completed. And of course you call that method as the first thing in your readFields for both the key and the value.
HTH
In addition to Niels Basjes answer: Just initialize your member variables within the empty constructor (which you have to supply, otherwise Hadoop can not init your object), e.g.:
public OutputAggregator() {
this.member = new IntWritable();
...
}
assuming that this.member is of type IntWritable.