Is solr cloud applicable for use case where indexing is offline? - performance

Solr cloud seems to be the suggested method to scale solr in future. I understand that legacy scaling methods (like master slave and replication) still exists. My use case with solr does not have to be near real time (NRT). It is fine if the newly indexed data is visible for searchers after about 1 day.
In the master slave (legacy scaling), I could replicate it once a day. In Solr cloud do i have an option like this?
Also i don't want the indexing to impact the searcher performance during index time. Is there a way to isolate the indexer from searcher shards in solr cloud?

You could skip SolrCloud and just index on a dedicate separate collection.
Then, you bring the new content to each machine individually and do a Core Swap.
Or similar thing using Aliases to point to the newest core/collection. Which also allows you to segment old content and new content into different collections and search them together.

I also used collection aliases in such cases. You can build your index once a day and when it is ready you simply change the alias. I'll give an example
At very begining you create index called: index_2014_12_01. This index is aliased by index_2014_12_01. The next day you build index_2014_12_02 and changing the alias now to point index_2014_12_02 instead of index_2014_12_01.

Related

Setting up a daily partitioned index

I'm looking to setup my index such that it is partitioned into daily sub-indices that I can adjust the individual settings of depending on the age of that index, i.e. >= 30 days old should be moved to slower hardware etc. I am aware I can do this with a lifecycle policy.
What I'm unable to join-the-dots on is how to setup the original index to be partitioned by day. When adding data/querying, do I need to specify the individual daily indicies or is there something in Elasticsearch that will do this for me? If the later, how does it work with adding/querying (assuming they are different?)...how does it determine the partitions that are relevant for the query/partition to add a document to? (I'm assuming there is a timestamp field - but I can't see from the docs how its all linked together)
I'm using the base Elasticsearch OSS v7.7.1 without any plugins installed.
there's no such thing as sub indices or partitions in Elasticsearch. if you want to use ilm, which you should, then you are using aliases and multiple indices
you will need to upgrade from 7.7 - which is EOL - and use the default distribution to get access to ilm as well
getting back to your conceptual questions, https://www.elastic.co/guide/en/elasticsearch/reference/current/overview-index-lifecycle-management.html and the following few chapters dive into it. but to your questions;
the major assumption of using ilm is that data being ingested is current, so on a rough level, data from today will end up in an index from today
if you are indexing historic data then you may want to put that into "traditional" index names, eg logs-2021.08.09 and then attach them to the ilm policy as per https://www.elastic.co/guide/en/elasticsearch/reference/current/ilm-with-existing-indices.html
when querying, Elasticsearch will handle accessing all the indices it needs based on the request it receives. it does this via https://www.elastic.co/guide/en/elasticsearch/reference/current/search-field-caps.html

Implements popular keyword in ElasticSearch

I'm using ElasticSearch on AWS EC2.
And i want to implement today's popular keyword function in ES.
there is 3 indexes(place, genre, name), and i want see today's popular keyword in name index only.
I tried to use ES slowlog and logstash. but slowlog save logs every shard's log.
(ex)number of shards : 5 then 5 query log saved.
Is there any good and easy way to implement popular keyword in ES?
As far as I know, this is not supported by Elasticsearch and you need to build your own custom solution.
Design you mentioned using the slowlog is not good as you mentioned its on per shard basis, even if you do some more computing and able to merge and relate them to a single search at index level, it would not be good, as
you have to change the slow log configuration and for every index there needs to be a different threshold, you can change it to 0ms, to make sure you get all the search queries in slow logs, but that would take a huge disk space and would not be good for Elasticsearch performance.
You have to do some parsing of slow log in your application and if you do it runtime it would be very costly.
I think you can maintain a distributed cache in your application where you store the top searched keyword like the leaderboard of a multi-player gaming app, which is changing very frequently but in your case, you don't even have to update this cache very frequently. I would not go into much implementation details, but simple Hashmap of search term as key and count as value would solve the issue.
Hope this helps. let me know if you have questions.

Elastic search API Vs Spring data Vs logstash

I am planing to use elastic search for our dashboard using spring boot based rest services. After research i see top 3 options
Option A:
Use Elastic Search Java API ( from comment looks like going to go away)
Use Elastic Search Java Rest Client
Use spring-data-elasticsearch ( planing to use es 5.6 but challenging for latest es 6 as I don't see it's supports right now)
Option B:
Or shall I use logstash approach to
Sync data between postgressql and elastic search using logstash ?
Which one among them will be long term approach to get near real time data from ES in high load scenario ??
Usecase: I need to save some data from postgresql table to elastic search for my dashboard (near real time )
Update is frequent for both tables and es
to maintain current state
Load is going to increase in couple of week
The options you listed, in essence, are: should you go with a ready to use solution (logstash) or should you implement your own.
Try logstash first to see if it works for you - it'll take less time than implementing your own solution, and you can get working solution in minutes (if it's not hundreds of tables)
If you want near-real time, then you need to figure out if it allows you to:
handle incremental updates, i.e. if its 'tracking_column' configuration will work for your data structure and it will only load updated records in each run, not the whole table.
run it at the desired frequency
and in general, satisfies your latency requirements
If you decide to go with your own solution, keep in mind that spring-data-elasticsearch is a higher level wrapper for underlying elasticsearch client. If there are latency goals, then working on the lower level (elasticsearch clients) may give you better control and more options to tune the pipeline.
Otherwise, the client choice will not matter that much as data feed features (volume/update frequency) and db/es cluster configuration.

How many old indices I should have for ElasticSearch?

I am using ElasticSearch with mainly default configuration and noticed recently that my old indices are eating too much space. I believe they are being created automatically because of default configuration since I have not done any such configuration. Please help me with:
how many old indices I should generally keep?
does my today's search use index created yesterday?
can i live with just one index copy and reuse the same every time?
what purpose old indices serve?
Since ES is running on a Production server, I simply cannot delete old indices hence need expert advice. Thanks.
It's up to you to decide number of indices. I suggest you should go through the document first. It should answer all your questions in great details :)
Retire your data

Is Elasticsearch suitable as a final storage solution?

I'm currently learning Elasticsearch, and I have noticed that a lot of operations for modifying indices require reindexing of all documents, such as adding a field to all documents, which from my understanding means retrieving the document, performing the desirable operation, deleting the original document from the index and reindex it. This seems to be somewhat dangerous and a backup of the original index seems to be preferable before performing this (obviously).
This made me wonder if Elasticsearch actually is suitable as a final storage solution at all, or if I should keep the raw documents that makes up an index separately stored to be able to recreate an index from scratch if necessary. Or is a regular backup of the index safe enough?
You are talking about two issues here:
Deleting old documents and re-indexing on schema change: You don't always have to delete old documents when you add new fields. There are various options to change the schema. Have a look at this blog which explains changing the schema without any downtime.
http://www.elasticsearch.org/blog/changing-mapping-with-zero-downtime/
Also, look at the Update API which gives you the ability to add/remove fields.
The update API allows to update a document based on a script provided. The operation gets the document (collocated with the shard) from the index, runs the script (with optional script language and parameters), and index back the result (also allows to delete, or ignore the operation). It uses versioning to make sure no updates have happened during the "get" and "reindex".
Note, this operation still means full reindex of the document, it just removes some network roundtrips and reduces chances of version conflicts between the get and the index. The _source field need to be enabled for this feature to work.
Using Elasticsearch as a final storage solution at all : It depends on how you intend to use Elastic Search as storage. Do you need RDBMS , key Value store, column based datastore or a document store like MongoDb? Elastic Search is definitely well suited when you need a distributed document store (json, html, xml etc) with Lucene based advanced search capabilities. Have a look at the various use cases for ES especially the usage at The Guardian:http://www.elasticsearch.org/case-study/guardian/
I'm pretty sure, that search engines shouldn't be viewed as a storage solution, because of the nature of these applications. I've never heard about this kind of a practice to backup index of search engine.
Usual schema when you using ElasticSearch or Solr or whatever search engine you have:
You have some kind of a datasource (it could be database, legacy mainframe, excel papers, some REST service with data or whatever)
You have search engine that should index this datasource to add to your system capability for search. When datasource is changed - you could reindex it, or index only changed part with the help of incremental indexation.
If something happen to search engine index - you could easily reindex all your data.

Resources