Runtime of GPU-based simulation unexplainable? - performance

I am developing a GPU-based simulation using OpenGL and GLSL-Shaders and i found that performance increases when I add additional (unnecessary) GL-commands.
The simulation runs entirely on GPU without any transfers and basically consists of a loop performing 2500 algorithmically identical time steps. I carefully implemented caching of GLSL-uniform locations and removed any GL-state requests (glGet* etc) to maximize speed. To measure wall clock time i've put a glFinish after the main loop and take the elapsed time afterwards.
CASE A:
Normal total runtime for all iterations is 490ms.
CASE B:
Now, if i add a single additional glGetUniformLocation(...) command at the end of EACH time step, it requires only 475ms in total, which is 3 percent faster. (Please note that this is relevant to me since later i will perform a lot more timesteps)
I've looked at a timeline captured with Nvidia nsight and found that, in case A, all opengl commands are issued within the first 140ms and the glFinish takes 348ms until completion of all GPU-work. In case B the issuing of opengl commands is spread out over a significantly longer time (410ms) and the glFinish only takes 64ms yielding the faster 475ms in total.
I also noticed, that hardware command queue is much more full of work packets most of the time in case B, whereas in case A there is only one item waiting most of the time (however, there are no visible idle times).
So my questions are:
Why is B faster?
Why are the command packages issued more uniformly to the hardware queue over time in case A?
How can speed be enhanced without adding additional commands?
I am using Visual c++, VS2008 on Win7 x64.

IMHO this question can not be answered definitely. For what it's worth I experimentally determined, that glFinish (and …SwapBuffers for that matter) have weird runtime time behavior. I'm currently developing my own VR rendering library and prior to that I spend some significant time profiling the timelines of OpenGL commands and their interaction with the graphics system. And what I found out was, that the only thing that's consistent is, that glFinish + …SwapBuffers have a very inconsistent timing behavior.
What could happen is, that this glGetUniformLocation call pulls the OpenGL driver into a "busy" state. If you call glFinish immediately afterwards it may use a different method for waiting (for example it may spin in a while loop waiting for a flag) for the GPU than if you just call glFinish (it may for example wait for a signal or a condition variable and is thus subject to the kernels scheduling behavior).

Related

Pytorch multiprocessing with shared memory causes matmul to be 30x slower (with only two processes)

I am trying to improve the speed of my reinforcement learning algorithm by using multiprocessing to have multiple workers generating experience at the same time. Each process just runs the forward pass of my neural net, no gradient computation is needed.
As I understand it, when passing Tensors and nn.Modules across process boundaries (using torch.multiprocessing.Queue or torch.multiprocessing.Pool), the tensor data is moved to shared memory, which shouldn't be any slower than non-shared memory.
However, when I run my multiprocess code with 2 processes (on an 8 core machine), I find that my pytorch operations become more than 30x slower, more than counteracting the speedup from running two processes simultaneously.
I profiled my application to find which operations specifically are slowing down. I found that much of my time was spend in nn.functional.linear(), specifically on this line inside a Tensor.matmul call:
output = input.matmul(weight.t())
I added a timer just to this specific matmul call, and I found that when one process is running, this operation takes less than 0.3 milliseconds, but when two processes are running, it takes more than 10 milliseconds. Note that in both cases the weight matrix has been put in shared memory and passed across process boundaries to a worker process, the only difference is that in the second case there are two worker processes instead of one.
For reference, the shapes of input and weight tensors are torch.Size([1, 24, 180]) and torch.Size([31, 180]), respectively.
What could be causing this drastic slowdown? is there some subtlety to using torch multiprocessing or shared memory that is not mentioned in any of the documentation? I feel like there must be some hidden lock that is causing contention here, because this drastic slowdown makes no sense to me.
It seems like this was caused by a bad interaction of OpenMP (used by pytorch by default) and multiprocessing. This is a known issue in pytorch (https://github.com/pytorch/pytorch/issues/17199) and I was even hitting deadlocks in certain configurations I used to debug. Turning off OpenMP using torch.set_num_threads(1) fixed the issue for me, and immediately sped up my tensor operations in the multiple processes case, presumably, by bypassing internal locking OpenMP was doing.

Set CPU affinity for profiling

I am working on a calculation intensive C# project that implements several algorithms. The problem is that when I want to profile my application, the time it takes for a particular algorithm varies. For example sometimes running the algorithm 100 times takes about 1100 ms and another time running 100 times takes much more time like 2000 or even 3000 ms. It may vary even in the same run. So it is impossible to measure improvement when I optimize a piece of code. It's just unreliable.
Here is another run:
So basically I want to make sure one CPU is dedicated to my app. The PC has an old dual core Intel E5300 CPU running on Windows 7 32 bit. So I can't just set process affinity and forget about one core forever. It would make the computer very slow for daily tasks. I need other apps to use a specific core when I desire and the when I'm done profiling, the CPU affinities come back to normal. Having a bat file to do the task would be a fantastic solution.
My question is: Is it possible to have a bat file to set process affinity for every process on windows 7?
PS: The algorithm is correct and every time runs the same code path. I created some object pool so after first run, zero memory is allocated. I also profiled memory allocation with dottrace and it showed no allocation after first run. So I don't believe GC is triggered when the algorithm is working. Physical memory is available and system is not running low on RAM.
Result: The answer by Chris Becke does the job and sets process affinities exactly as intended. It resulted in more uniform results specially when background apps like visual studio and dottrace are running. Further investigation into the divergent execution time revealed that the root for the unpredictability is CPU overheat. The CPU overheat alarm was off while the temperature was over 100C! So after fixing the malfunctioning fan, the results became completely uniform.
You mean SetProcessAffinityMask?
I see this question, while tagged windows, is c#, so... I see the System.Diagnostics.Process object has a ThreadAffinity member that should perform the same function.
I am just not sure that this will stabilize the CPU times quite in the way you expect. A single busy task that is not doing IO should remain scheduled on the same core anyway unless another thread interrupts it, so I think your variable times are more due to other threads / processes interrupting your algorithm than the OS randomly shunting your thread to a different core - so unless you set the affinity for all other threads in the system to exclude your preferred core I can't see this helping.

If a CPU is always executing instructions how do we measure its work?

Let us say we have a fictitious single core CPU with Program Counter and basic instruction set such as Load, Store, Compare, Branch, Add, Mul and some ROM and RAM. Upon switching on it executes a program from ROM.
Would it be fair to say the work the CPU does is based on the type of instruction it's executing. For example, a MUL operating would likely involve more transistors firing up than say Branch.
However from an outside perspective if the clock speed remains constant then surely the CPU could be said to be running at 100% constantly.
How exactly do we establish a paradigm for measuring the work of the CPU? Is there some kind of standard metric perhaps based on the type of instructions executing, the power consumption of the CPU, number of clock cycles to complete or even whether it's accessing RAM or ROM.
A related second question is what does it mean for the program to "stop". Usually does it just branch in an infinite loop or does the PC halt and the CPU waits for an interupt?
First of all, that a CPU is always executing some code is just an approximation these days. Computer systems have so-called sleep states which allow for energy saving when there is not too much work to do. Modern CPUs can also throttle their speed in order to improve battery life.
Apart from that, there is a difference between the CPU executing "some work" and "useful work". The CPU by itself can't tell, but the operating system usually can. Except for some embedded software, a CPU will never be running a single job, but rather an operating system with different processes within it. If there is no useful process to run, the Operating System will schedule the "idle task" which mostly means putting the CPU to sleep for some time (see above) or jsut burning CPU cycles in a loop which does nothing useful. Calculating the ratio of time spent in idle task to time spent in regular tasks gives the CPU's business factor.
So while in the old days of DOS when the computer was running (almost) only a single task, it was true that it was always doing something. Many applications used so-called busy-waiting if they jus thad to delay their execution for some time, doing nothing useful. But today there will almost always be a smart OS in place which can run the idle process than can put the CPU to sleep, throttle down its speed etc.
Oh boy, this is a toughie. It’s a very practical question as it is a measure of performance and efficiency, and also a very subjective question as it judges what instructions are more or less “useful” toward accomplishing the purpose of an application. The purpose of an application could be just about anything, such as finding the solution to a complex matrix equation or rendering an image on a display.
In addition, modern processors do things like clock gating in power idle states. The oscillator is still producing cycles, but no instructions execute due to certain circuitry being idled due to cycles not reaching them. These are cycles that are not doing anything useful and need to be ignored.
Similarly, modern processors can execute multiple instructions simultaneously, execute them out of order, and predict and execute which instructions will be executed next before your program (i.e. the IP or Instruction Pointer) actually reaches them. You don’t want to include instructions whose execution never actually complete, such as because the processor guesses wrong and has to flush those instructions, e.g. as due to a branch mispredict. So a better metric is counting those instructions that actually complete. Instructions that complete are termed “retired”.
So we should only count those instructions that complete (i.e. retire), and cycles that are actually used to execute instructions (i.e. unhalted).)
Perhaps the most practical general metric for “work” is CPI or cycles-per-instruction: CPI = CPU_CLK_UNHALTED.CORE / INST_RETIRED.ANY. CPU_CLK_UNHALTED.CORE are cycles used to execute actual instructions (vs those “wasted” in an idle state). INST_RETIRED are those instructions that complete (vs those that don’t due to something like a branch mispredict).
Trying to get a more specific metric, such as the instructions that contribute to the solution of a matrix multiple, and excluding instructions that don’t directly contribute to computing the solution, such as control instructions, is very subjective and difficult to gather statistics on. (There are some that you can, such as VECTOR_INTENSITY = VPU_ELEMENTS_ACTIVE / VPU_INSTRUCTIONS_EXECUTED which is the number of SIMD vector operations, such as SSE or AVX, that are executed per second. These instructions are more likely to directly contribute to the solution of a mathematical solution as that is their primary purpose.)
Now that I’ve talked your ear off, check out some of the optimization resources at your local friendly Intel developer resource, software.intel.com. Particularly, check out how to effectively use VTune. I’m not suggesting you need to get VTune though you can get a free or very discounted student license (I think). But the material will tell you a lot about increasing your programs performance (i.e. optimizing), which is, if you think about it, increasing the useful work your program accomplishes.
Expanding on Michał's answer a bit:
Program written for modern multi-tasking OSes are more like a collection of event handlers: they effectively setup listeners for I/O and then yield control back to the OS. The OS wake them up each time there is something to process (e.g. user action, data from device) and they "go to sleep" by calling into the OS once they've finished processing. Most OSes will also preempt in case one process hog the CPU for too long and starve the others.
The OS can then keep tabs on how long each process are actually running (by remembering the start and end time of each run) and generate the statistics like CPU time and load (ready process queue length).
And to answer your second question:
To stop mostly means a process is no longer scheduled and all associated resource (scheduling data structures, file handles, memory space, ...) destroyed. This usually require the process to call a special OS call (syscall/interrupt) so the OS can release the resources gracefully.
If however a process run into an infinite loop and stops responding to OS events, then it can only be forcibly stopped (by simply not running it anymore).

dotTrace - what profiling settings should I use for my desktop app?

When using dotTrace, I have to pick a profiling mode and a time measurement method. Profiling modes are:
Tracing
Line-by-line
Sampling
And time measurement methods are:
Wall time (performance counter)
Thread time
Wall time (CPU instruction)
Tracing and line-by-line can't use thread time measurement. But that still leaves me with seven different combinations to try. I've now read the dotTrace help pages on these well over a dozen times, and I remain no more knowledgeable than I started out about which one to pick.
I'm working on a WPF app that reads Word docs, extracts all the paragraphs and styles, and then loops through that extracted content to pick out document sections. I'm trying to optimize this process. (Currently it takes well over an hour to complete, so I'm trying to profile it for a given length of time rather than until it finishes.)
Which profiling and time measurement types would give me the best results? Or if the answer is "It depends", then what does it depend on? What are the pros and cons of a given profiling mode or time measurement method?
Profiling types:
Sampling: fastest but least accurate profiling-type, minimum profiler overhead. Essentially equivalent to pausing the program many times a second and viewing the stacktrace; thus the number of calls per method is approximate. Still useful for identifying performance bottlenecks at the method-level.
Snapshots captured in sampling mode occupy a lot less space on disk (I'd say 5-6 less space.)
Use for initial assessment or when profiling a long-running application (which sounds like your case.)
Tracing: Records the duration taken for each method. App under profiling runs slower but in return, dotTrace shows exact number of calls of each function, and function timing info is more accurate. This is good for diving into details of a problem at the method-level.
Line-by-line: Profiles the program on a per-line basis. Largest resource hog but most fine-grained profiling results. Slows the program way down. The preferred tactic here is to initially profile using another type, and then hand-pick functions for line-by-line profiling.
As for meter kinds, I think they are described quite well in Getting started with dotTrace Performance by the great Hadi Hariri.
Wall time (CPU Instruction): This is the simplest and fastest way to measure wall time (that is, the
time we observe on a wall clock). However, on some older multi-core processors this may produce
incorrect results due to the cores timers being desynchronized. If this is the case, it is recommended
to use Performance Counter.
Wall time (Performance Counter): Performance counters is part of the Windows API and it allows
taking time samples in a hardware-independent way. However, being an API call, every measure takes
substantial time and therefore has an impact on the profiled application.
Thread time: In a multi-threaded application concurrent threads contribute to each other's wall time.
To avoid such interference we can use thread time meter which makes system API calls to get the
amount of time given by the OS scheduler to the thread. The downsides are that taking thread time
samples is much slower than using CPU counter and the precision is also limited by the size of
quantum used by thread scheduler (normally 10ms). This mode is only supported when the Profiling
Type is set to Sampling
However they don't differ too much.
I'm not a wizard in profiling myself but in your case I'd start with sampling to get a list of functions that take ridiculously long to execute, and then I'd mark them for line-by-line profiling.

Is 16 milliseconds an unusually long length of time for an unblocked thread running on Windows to be waiting for execution?

Recently I was doing some deep timing checks on a DirectShow application I have in Delphi 6, using the DSPACK components. As part of my diagnostics, I created a Critical Section class that adds a time-out feature to the usual Critical Section object found in most Windows programming languages. If the time duration between the first Acquire() and the last matching Release() is more than X milliseconds, an Exception is thrown.
Initially I set the time-out at 10 milliseconds. The code I have wrapped in Critical Sections is pretty fast using mostly memory moves and fills for most of the operations contained in the protected areas. Much to my surprise I got fairly frequent time-outs in seemingly random parts of the code. Sometimes it happened in a code block that iterates a buffer list and does certain quick operations in sequence, other times in tiny sections of protected code that only did a clearing of a flag between the Acquire() and Release() calls. The only pattern I noticed is that the durations found when the time-out occurred were centered on a median value of about 16 milliseconds. Obviously that's a huge amount of time for a flag to be set in the latter example of an occurrence I mentioned above.
So my questions are:
1) Is it possible for Windows thread management code to, on a fairly frequent basis (about once every few seconds), to switch out an unblocked thread and not return to it for 16 milliseconds or longer?
2) If that is a reasonable scenario, what steps can I take to lessen that occurrence and should I consider elevating my thread priorities?
3) If it is not a reasonable scenario, what else should I look at or try as an analysis technique to diagnose the real problem?
Note: I am running on Windows XP on an Intel i5 Quad Core with 3 GB of memory. Also, the reason why I need to be fast in this code is due to the size of the buffer in milliseconds I have chosen in my DirectShow filter graphs. To keep latency at a minimum audio buffers in my graph are delivered every 50 milliseconds. Therefore, any operation that takes a significant percentage of that time duration is troubling.
Thread priorities determine when ready threads are run. There's, however, a starvation prevention mechanism. There's a so-called Balance Set Manager that wakes up every second and looks for ready threads that haven't been run for about 3 or 4 seconds, and if there's one, it'll boost its priority to 15 and give it a double the normal quantum. It does this for not more than 10 threads at a time (per second) and scans not more than 16 threads at each priority level at a time. At the end of the quantum, the boosted priority drops to its base value. You can find out more in the Windows Internals book(s).
So, it's a pretty normal behavior what you observe, threads may be not run for seconds.
You may need to elevate priorities or otherwise consider other threads that are competing for the CPU time.
sounds like normal windows behaviour with respect to timer resolution unless you explicitly go for some of the high precision timers. Some details in this msdn link
First of all, I am not sure if Delphi's Now is a good choice for millisecond precision measurements. GetTickCount and QueryPerformanceCoutner API would be a better choice.
When there is no collision in critical section locking, everything runs pretty fast, however if you are trying to enter critical section which is currently locked on another thread, eventually you hit a wait operation on an internal kernel object (mutex or event), which involves yielding control on the thread and waiting for scheduler to give control back later.
The "later" above would depend on a few things, including priorities mentioned above, and there is one important things you omitted in your test - what is the overall CPU load at the time of your testing. The more is the load, the less chances to get the thread continue execution soon. 16 ms time looks perhaps a bit still within reasonable tolerance, and all in all it might depends on your actual implementation.

Resources