(bash) flock: when to use the -c option? - bash

Can anyone explain to me why the -c option exists in flock?
I can't find a good description of how it differs from simply specifying the command(s) to execute after flock (apart from its limitation of no arguments to the command).

-c invokes a shell with the command.
Consider this:
flock .lock somecommand > myfile
Since > is interpretted by the current shell and not flock, myfile will be truncated before the lock is captured.
You can work around this with -c:
flock .lock -c 'somecommand > myfile'
Now the redirection is performed after the lock is captured. However, it is indeed useless since you could just have invoked a shell yourself:
flock .lock sh -c 'somecommand > myfile'

Related

Can't run "compgen -c" from perl script

I want to check if a command exists on my machine (RedHat) inside a perl script.
Im trying to check if compgen -c contains the desired command, but running it from inside a script just gives me an empty output. Other commands work fine.
example.pl:
my $x = `compgen -c`;
print $x;
# empty output
my $y = `ls -a`;
print $y;
# .
# ..
# example.pl
Are there possible solutions for this? Or is there a better way to check for commands on my machine?
First, Perl runs external commands using /bin/sh, which is nowadays a link to a shell that is a default-of-sorts on your system. Much of the time that is bash, but not always; on RedHat it is.
This compgen is a bash builtin. One way to discover that is to run man compgen (in bash) -- and the bash manual pops up. Another way is type as Dave shows.
To use builtins we generally need to run an explicit shell for them, and they have a varied behavior in regards to whether the shell is "interactive" or not.† I can't find a discussion of that in bash documentation for this builtin but experimentation reveals that you need
my #completions = qx(bash -c "compgen -c")
The quotes are needed so to pass a complete command to a shell that will be started.
Note that this way you don't catch any STDERR out of those commands. That will come out on the terminal, and it can get missed that way. Or, you can redirect that stream in the command, by adding 2>&1 (redirect to STDOUT) at the end of it.
This is one of the reasons to use one of a number of good libraries for running and managing external commands instead of the builtin "backticks" (the qx I use above is an operator form of it.)
† This can be facilitated with -i
my #output_lines = qx(bash -i -c "command with arguments")
It's because compgen is a bash built-in command, not an external command. And when you run a command using backticks, you get your system's default shell - which is probably going to be /bin/sh, not bash.
The solution is to explicitly run bash, using the -c command-line option to give it a command to run.
my $x = `bash -c compgen -c`;
From a bash prompt, you can use type to see how a command is implemented.
$ type ssh
ssh is /usr/bin/ssh
$ type compgen
compgen is a shell builtin

Run command as bash from POSIX shell

I have a quick question
I have a posix shell but I need to run a bash command.
Think
root#home:~# sh
# /bin/bash /bin/ls
However, when I do that, I get
/bin/ls: /bin/ls: cannot execute binary file
I'm sure I'm missing something simple, but I'm not sure what it is. Any help? I also need to do it in one line.
Use the -c argument to specify a command that you want to be ran by the other shell:
" -c Read commands from the command_string operand"
bash -c "ls"
I came up with a workaround
echo '#!/bin/bash\--comamnd--; chmod ugo+x /tmp/script.sh; /tmp/script.sh

Difference between pgrep in sh and bash

Here is a test:
$ bash -c "pgrep -f novalidname"
$ sh -c "pgrep -f novalidname"
11202
Why is pgrep giving output when run from sh? (As far as I can see, there are no processes on my computer that is named novalidname)
It's probably a timing issue and pgrep finds itself, as you're issuing it with -f and novalidname is present in the command line. Try with -l to confirm.
The actual explanation:
Regardless of flags, pgrep never returns its own PID.
If you execute bash -c with a simple command, then bash will exec the command rather than creating a redundant subshell to execute it in. Consequently, bash -c "pgrep -f blah" will replace the bash process with a pgrep process. If that pgrep process is the only process whose command line includes blah, then pgrep will not display any PIDs (as per 1).
dash does not perform the above optimization. (zsh and ksh do.) So if on your system, sh is implemented with dash, then sh -c "pgrep -f blah" will result in two processes being executed -- the sh process and the pgrep child -- both of which contain blah in their command lines. pgrep will not report itself, but it will report its parent.
That's one thing (finding itself because of delay) see also:
$ ps ax | grep novalidname
Here it usually shows as well. (on Ubuntu does for me. (under bash)
The other thing is what is /bin/sh bound to?
On most Linux distros /bin/sh is a soft link to default shell which is usually actually bash, but can be any other shell.
The time difference that causes grep/pgrep to show itself may be introduced by finding a soft link location (hm, odd) or some other shell is bound to /bin/sh which executes slightly different than bash, thus causing the delay needed for process to show in pgrep.
Also, bash will firstly try to source ~/.bashrc and load its history, while /bin/sh will do what will do. In .bashrc can be pgrep defined as alias in another way which may also affect the difference.
To see where /bin/sh points to do:
$ readlink -e /bin/sh
Or just run sh to see what will show up. :D

How to specify zeroeth argument

I'm writing a bash script that starts the tcsh interpreter as a login shell and has it execute my_command. The tcsh man page says that there are two ways to start a login shell. The first is to use /bin/tcsh -l with no other arguments. Not an option, because I need the shell to execute my_command. The second is to specify a dash (-) as the zeroeth argument.
Now the bash exec command with the -l option does exactly this, and in fact the following works perfectly:
#!/bin/bash
exec -l /bin/tcsh -c my_command
Except... I can't use exec because I need the script to come back and do some other things afterwards! So how can I specify - as the zeroeth argument to /bin/tcsh without using exec?
You can enclose the exec command into a sub-shell of your script.
#!/bin/bash
(exec -l /bin/tcsh -c my_command)
# ... whatever else you need to do after the command is done
You can write a wrapper (w.sh) script that contains:
#!/bin/bash
exec -l /bin/tcsh -c my_command
and execute w.sh in your main script.

How to invoke bash, run commands inside the new shell, and then give control back to user?

This must either be really simple or really complex, but I couldn't find anything about it... I am trying to open a new bash instance, then run a few commands inside it, and give the control back to the user inside that same instance.
I tried:
$ bash -lic "some_command"
but this executes some_command inside the new instance, then closes it. I want it to stay open.
One more detail which might affect answers: if I can get this to work I will use it in my .bashrc as alias(es), so bonus points for an alias implementation!
bash --rcfile <(echo '. ~/.bashrc; some_command')
dispenses the creation of temporary files. Question on other sites:
https://serverfault.com/questions/368054/run-an-interactive-bash-subshell-with-initial-commands-without-returning-to-the
https://unix.stackexchange.com/questions/123103/how-to-keep-bash-running-after-command-execution
This is a late answer, but I had the exact same problem and Google sent me to this page, so for completeness here is how I got around the problem.
As far as I can tell, bash does not have an option to do what the original poster wanted to do. The -c option will always return after the commands have been executed.
Broken solution: The simplest and obvious attempt around this is:
bash -c 'XXXX ; bash'
This partly works (albeit with an extra sub-shell layer). However, the problem is that while a sub-shell will inherit the exported environment variables, aliases and functions are not inherited. So this might work for some things but isn't a general solution.
Better: The way around this is to dynamically create a startup file and call bash with this new initialization file, making sure that your new init file calls your regular ~/.bashrc if necessary.
# Create a temporary file
TMPFILE=$(mktemp)
# Add stuff to the temporary file
echo "source ~/.bashrc" > $TMPFILE
echo "<other commands>" >> $TMPFILE
echo "rm -f $TMPFILE" >> $TMPFILE
# Start the new bash shell
bash --rcfile $TMPFILE
The nice thing is that the temporary init file will delete itself as soon as it is used, reducing the risk that it is not cleaned up correctly.
Note: I'm not sure if /etc/bashrc is usually called as part of a normal non-login shell. If so you might want to source /etc/bashrc as well as your ~/.bashrc.
You can pass --rcfile to Bash to cause it to read a file of your choice. This file will be read instead of your .bashrc. (If that's a problem, source ~/.bashrc from the other script.)
Edit: So a function to start a new shell with the stuff from ~/.more.sh would look something like:
more() { bash --rcfile ~/.more.sh ; }
... and in .more.sh you would have the commands you want to execute when the shell starts. (I suppose it would be elegant to avoid a separate startup file -- you cannot use standard input because then the shell will not be interactive, but you could create a startup file from a here document in a temporary location, then read it.)
bash -c '<some command> ; exec /bin/bash'
will avoid additional shell sublayer
You can get the functionality you want by sourcing the script instead of running it. eg:
$cat script
cmd1
cmd2
$ . script
$ at this point cmd1 and cmd2 have been run inside this shell
Append to ~/.bashrc a section like this:
if [ "$subshell" = 'true' ]
then
# commands to execute only on a subshell
date
fi
alias sub='subshell=true bash'
Then you can start the subshell with sub.
The accepted answer is really helpful! Just to add that process substitution (i.e., <(COMMAND)) is not supported in some shells (e.g., dash).
In my case, I was trying to create a custom action (basically a one-line shell script) in Thunar file manager to start a shell and activate the selected Python virtual environment. My first attempt was:
urxvt -e bash --rcfile <(echo ". $HOME/.bashrc; . %f/bin/activate;")
where %f is the path to the virtual environment handled by Thunar.
I got an error (by running Thunar from command line):
/bin/sh: 1: Syntax error: "(" unexpected
Then I realized that my sh (essentially dash) does not support process substitution.
My solution was to invoke bash at the top level to interpret the process substitution, at the expense of an extra level of shell:
bash -c 'urxvt -e bash --rcfile <(echo "source $HOME/.bashrc; source %f/bin/activate;")'
Alternatively, I tried to use here-document for dash but with no success. Something like:
echo -e " <<EOF\n. $HOME/.bashrc; . %f/bin/activate;\nEOF\n" | xargs -0 urxvt -e bash --rcfile
P.S.: I do not have enough reputation to post comments, moderators please feel free to move it to comments or remove it if not helpful with this question.
With accordance with the answer by daveraja, here is a bash script which will solve the purpose.
Consider a situation if you are using C-shell and you want to execute a command
without leaving the C-shell context/window as follows,
Command to be executed: Search exact word 'Testing' in current directory recursively only in *.h, *.c files
grep -nrs --color -w --include="*.{h,c}" Testing ./
Solution 1: Enter into bash from C-shell and execute the command
bash
grep -nrs --color -w --include="*.{h,c}" Testing ./
exit
Solution 2: Write the intended command into a text file and execute it using bash
echo 'grep -nrs --color -w --include="*.{h,c}" Testing ./' > tmp_file.txt
bash tmp_file.txt
Solution 3: Run command on the same line using bash
bash -c 'grep -nrs --color -w --include="*.{h,c}" Testing ./'
Solution 4: Create a sciprt (one-time) and use it for all future commands
alias ebash './execute_command_on_bash.sh'
ebash grep -nrs --color -w --include="*.{h,c}" Testing ./
The script is as follows,
#!/bin/bash
# =========================================================================
# References:
# https://stackoverflow.com/a/13343457/5409274
# https://stackoverflow.com/a/26733366/5409274
# https://stackoverflow.com/a/2853811/5409274
# https://stackoverflow.com/a/2853811/5409274
# https://www.linuxquestions.org/questions/other-%2Anix-55/how-can-i-run-a-command-on-another-shell-without-changing-the-current-shell-794580/
# https://www.tldp.org/LDP/abs/html/internalvariables.html
# https://stackoverflow.com/a/4277753/5409274
# =========================================================================
# Enable following line to see the script commands
# getting printing along with their execution. This will help for debugging.
#set -o verbose
E_BADARGS=85
if [ ! -n "$1" ]
then
echo "Usage: `basename $0` grep -nrs --color -w --include=\"*.{h,c}\" Testing ."
echo "Usage: `basename $0` find . -name \"*.txt\""
exit $E_BADARGS
fi
# Create a temporary file
TMPFILE=$(mktemp)
# Add stuff to the temporary file
#echo "echo Hello World...." >> $TMPFILE
#initialize the variable that will contain the whole argument string
argList=""
#iterate on each argument
for arg in "$#"
do
#if an argument contains a white space, enclose it in double quotes and append to the list
#otherwise simply append the argument to the list
if echo $arg | grep -q " "; then
argList="$argList \"$arg\""
else
argList="$argList $arg"
fi
done
#remove a possible trailing space at the beginning of the list
argList=$(echo $argList | sed 's/^ *//')
# Echoing the command to be executed to tmp file
echo "$argList" >> $TMPFILE
# Note: This should be your last command
# Important last command which deletes the tmp file
last_command="rm -f $TMPFILE"
echo "$last_command" >> $TMPFILE
#echo "---------------------------------------------"
#echo "TMPFILE is $TMPFILE as follows"
#cat $TMPFILE
#echo "---------------------------------------------"
check_for_last_line=$(tail -n 1 $TMPFILE | grep -o "$last_command")
#echo $check_for_last_line
#if tail -n 1 $TMPFILE | grep -o "$last_command"
if [ "$check_for_last_line" == "$last_command" ]
then
#echo "Okay..."
bash $TMPFILE
exit 0
else
echo "Something is wrong"
echo "Last command in your tmp file should be removing itself"
echo "Aborting the process"
exit 1
fi
$ bash --init-file <(echo 'some_command')
$ bash --rcfile <(echo 'some_command')
In case you can't or don't want to use process substitution:
$ cat script
some_command
$ bash --init-file script
Another way:
$ bash -c 'some_command; exec bash'
$ sh -c 'some_command; exec sh'
sh-only way (dash, busybox):
$ ENV=script sh
Here is yet another (working) variant:
This opens a new gnome terminal, then in the new terminal it runs bash. The user's rc file is read first, then a command ls -la is sent for execution to the new shell before it turns interactive.
The last echo adds an extra newline that is needed to finish execution.
gnome-terminal -- bash -c 'bash --rcfile <( cat ~/.bashrc; echo ls -la ; echo)'
I also find it useful sometimes to decorate the terminal, e.g. with colorfor better orientation.
gnome-terminal --profile green -- bash -c 'bash --rcfile <( cat ~/.bashrc; echo ls -la ; echo)'

Resources