Is the d3 object a monad? - d3.js

There's been some conflicting views opinions on SO and elsewhere on whether the JQuery object is a monad or not. My question is, however, if the JQuery like object in d3.js qualifies as a monad, i.e. that it has these properties:
type constructor.
unit function.
binding operation.

There's no evidence that the object in d3.js implements the necessary operations (bind,join,return etc) or that those operations satisfy the monad laws. Typically, such objects have lots of backdoors and holes in the API that break any such laws. So the answer is almost certainly no.

I'm not sure what you mean by "the D3 object", but things that use closures like the layouts are somewhat monadic (although I wouldn't call the monads). They do encapsulate state that you can modify, and you can get something out of the monad by running them on some data.
Monads are more general than that. In particular, they determine how data can be passed from one component to another, which (D3) closures don't do at all. See also this question.
The same things mentioned in the first answer to the question you've linked to also apply here -- you'd have to show that the API is monadic.

Related

Java: Are Instance methods Prohibited for Domain Objects in Functional Programming?

Since Functional Programming treats Data and Behavior separately, and behavior is not supposed to mutate the the state of an Instance, does FP recommend not having instance methods at all for Domain Objects? Or should I always declare all the fields final?
I am asking more in the context of Object oriented languages like Java.
Since Functional Programming treats Data and Behavior separately,
I heard that said a lot, but it is not necessarily true. Yes, syntactically they are different, but encapsulation is a thing in FP too. You don't really want your data structures exposed for the same reason you don't want it in OOP, you want to evolve it later. You want to add features, or optimize it. Once you gave direct access to the data you've essentially lost control of that data.
For example in haskell, there are modules, which are actually the data + behavior in a single unit. Normally the "constructors" of data (i.e. the direct access to "fields") are not available for outside functions. (There are exceptions as always.)
does FP recommends not having instance methods at all for Domain Objects
FP is a paradigm which says that software should be build using a (mathematical) composition of (mathematical) functions. That is essentially it. Now if you squint enough, you could call a method a function, with just one additional parameter this. Provided everything is immutable.
So I would say no, "FP" does not explicitly define syntax and it can be compatible with objects under certain conditions.
I am asking more in the context of Object oriented languages like Java.
This is where it kind-of gets hazy. Java is not well suited to do functional programming. Keep in mind, that it may have borrowed certain syntax from traditional FP languages, but that doesn't make it suitable for FP.
For example immutability, pure functions, function composition are all things that you should have to do FP, Java has none of those. I mean you can write code to "pretend", but you would be swimming against the tide.
does FP recommends not having instance methods at all for Domain Objects?
In the Domain Driven Design book, Eric Evans discusses modeling your domain with Entities, and Value Objects.
The Value Object pattern calls for immutable private data; once you initialize the value object, it does not change. In the language of Command Query Separation, we would say that the interface of a Value Object supports queries, but not commands.
So an instance method on a value object is very similar to a closure, with the immutable private state of the object playing the role of the captured variables.
Your fields should be final, but functional code and instance methods are not mutually exclusive.
Take a look at the BigDecimal class for example:
BigDecimal x = new BigDecimal(1);
BigDecimal y = new BigDecimal(2);
BigDecimal z = a.add(b);
x and y are immutable and the add method leaves them unchanged and creates a new BigDecimal.

How to Work with Ruby Duck Typing

I am learning Ruby and I'm having a major conceptual problem concerning typing. Allow me to detail why I don't understand with paradigm.
Say I am method chaining for concise code as you do in Ruby. I have to precisely know what the return type of each method call in the chain, otherwise I can't know what methods are available on the next link. Do I have to check the method documentation every time?? I'm running into this constantly running tutorial exercises. It seems I'm stuck with a process of reference, infer, run, fail, fix, repeat to get code running rather then knowing precisely what I'm working with during coding. This flies in the face of Ruby's promise of intuitiveness.
Say I am using a third party library, once again I need to know what types are allow to pass on the parameters otherwise I get a failure. I can look at the code but there may or may not be any comments or declaration of what type the method is expecting. I understand you code based on methods are available on an object, not the type. But then I have to be sure whatever I pass as a parameter has all the methods the library is expect, so I still have to do type checking. Do I have to hope and pray everything is documented properly on an interface so I know if I'm expected to give a string, a hash, a class, etc.
If I look at the source of a method I can get a list of methods being called and infer the type expected, but I have to perform analysis.
Ruby and duck typing: design by contract impossible?
The discussions in the preceding stackoverflow question don't really answer anything other than "there are processes you have to follow" and those processes don't seem to be standard, everyone has a different opinion on what process to follow, and the language has zero enforcement. Method Validation? Test-Driven Design? Documented API? Strict Method Naming Conventions? What's the standard and who dictates it? What do I follow? Would these guidelines solve this concern https://stackoverflow.com/questions/616037/ruby-coding-style-guidelines? Is there editors that help?
Conceptually I don't get the advantage either. You need to know what methods are needed for any method called, so regardless you are typing when you code anything. You just aren't informing the language or anyone else explicitly, unless you decide to document it. Then you are stuck doing all type checking at runtime instead of during coding. I've done PHP and Python programming and I don't understand it there either.
What am I missing or not understanding? Please help me understand this paradigm.
This is not a Ruby specific problem, it's the same for all dynamically typed languages.
Usually there are no guidelines for how to document this either (and most of the time not really possible). See for instance map in the ruby documentation
map { |item| block } → new_ary
map → Enumerator
What is item, block and new_ary here and how are they related? There's no way to tell unless you know the implementation or can infer it from the name of the function somehow. Specifying the type is also hard since new_ary depends on what block returns, which in turn depends on the type of item, which could be different for each element in the Array.
A lot of times you also stumble across documentation that says that an argument is of type Object, Which again tells you nothing since everything is an Object.
OCaml has a solution for this, it supports structural typing so a function that needs an object with a property foo that's a String will be inferred to be { foo : String } instead of a concrete type. But OCaml is still statically typed.
Worth noting is that this can be a problem in statically typed lanugages too. Scala has very generic methods on collections which leads to type signatures like ++[B >: A, That](that: GenTraversableOnce[B])(implicit bf: CanBuildFrom[Array[T], B, That]): That for appending two collections.
So most of the time, you will just have to learn this by heart in dynamically typed languages, and perhaps help improve the documentation of libraries you are using.
And this is why I prefer static typing ;)
Edit One thing that might make sense is to do what Scala also does. It doesn't actually show you that type signature for ++ by default, instead it shows ++[B](that: GenTraversableOnce[B]): Array[B] which is not as generic, but probably covers most of the use cases. So for Ruby's map it could have a monomorphic type signature like Array<a> -> (a -> b) -> Array<b>. It's only correct for the cases where the list only contains values of one type and the block only returns elements of one other type, but it's much easier to understand and gives a good overview of what the function does.
Yes, you seem to misunderstand the concept. It's not a replacement for static type checking. It's just different. For example, if you convert objects to json (for rendering them to client), you don't care about actual type of the object, as long as it has #to_json method. In Java, you'd have to create IJsonable interface. In ruby no overhead is needed.
As for knowing what to pass where and what returns what: memorize this or consult docs each time. We all do that.
Just another day, I've seen rails programmer with 6+ years of experience complain on twitter that he can't memorize order of parameters to alias_method: does new name go first or last?
This flies in the face of Ruby's promise of intuitiveness.
Not really. Maybe it's just badly written library. In core ruby everything is quite intuitive, I dare say.
Statically typed languages with their powerful IDEs have a small advantage here, because they can show you documentation right here, very quickly. This is still accessing documentation, though. Only quicker.
Consider that the design choices of strongly typed languages (C++,Java,C#,et al) enforce strict declarations of type passed to methods, and type returned by methods. This is because these languages were designed to validate that arguments are correct (and since these languages are compiled, this work can be done at compile time). But some questions can only be answered at run time, and C++ for example has the RTTI (Run Time Type Interpreter) to examine and enforce type guarantees. But as the developer, you are guided by syntax, semantics and the compiler to produce code that follows these type constraints.
Ruby gives you flexibility to take dynamic argument types, and return dynamic types. This freedom enables you to write more generic code (read Stepanov on the STL and generic programming), and gives you a rich set of introspection methods (is_a?, instance_of?, respond_to?, kind_of?, is_array?, et al) which you can use dynamically. Ruby enables you to write generic methods, but you can also explicity enforce design by contract, and process failure of contract by means chosen.
Yes, you will need to use care when chaining methods together, but learning Ruby is not just a few new keywords. Ruby supports multiple paradigms; you can write procedural, object oriend, generic, and functional programs. The cycle you are in right now will improve quickly as you learn about Ruby.
Perhaps your concern stems from a bias towards strongly typed languages (C++, Java, C#, et al). Duck typing is a different approach. You think differently. Duck typing means that if an object looks like a , behaves like a , then it is a . Everything (almost) is an Object in Ruby, so everything is polymorphic.
Consider templates (C++ has them, C# has them, Java is getting them, C has macros). You build an algorithm, and then have the compiler generate instances for your chosen types. You aren't doing design by contract with generics, but when you recognize their power, you write less code, and produce more.
Some of your other concerns,
third party libraries (gems) are not as hard to use as you fear
Documented API? See Rdoc and http://www.ruby-doc.org/
Rdoc documentation is (usually) provided for libraries
coding guidelines - look at the source for a couple of simple gems for starters
naming conventions - snake case and camel case are both popular
Suggestion - approach an online tutorial with an open mind, do the tutorial (http://rubymonk.com/learning/books/ is good), and you will have more focused questions.

Programming Go, using Unified Modelling Language Diagrams

I have just started using Go (GoLang) and I am finding it a great language. However, after many years of UML and the Object Oriented methods, I find that modelling Go programs (Reverse engineering) is a bit problematic, in that Go Structs contain properties/state, but no methods, and methods/functions that use Structs as parameters (even the ones that do magic so that it makes a Struct look like an object), don't contain methods, or state.
Does this mean I should be using another Methodology to model a Go Program or does UML sufficiently model the language constructs?
Yes I know that if you use methods on the Structs that the behavior of an object in UML can be mapped into Go via a combination of a Struct and a Struct Method, but I am finding this to be wrong, an impedance mismatch in paradigms of sorts.
Is it time for a new (perish the thought!) diagramming technique, for the brave new world where behavior is no longer controlled by an object? can behavior be modeled without reference to the state that it is affecting?
Update:
I am trying Data Flow Diagrams out, to see if they fit better to the paradigm. So far so good, but I think I am going to come unstuck when I model the Methods of a Struct, the compromise in the DFD being that they are treated as Functions. :(
Go supports inheritance!!! arghhh!!! (head is blown clean off.) you can compose a Struct which is made of another Struct, which has methods, that the Sub Struct now inherits...you getting this? my mind is blown. Means that UML IS valid...fully but it feels dirty.
Go Does not support inheritance, it just appears so. :) DFD's it is then!
The fact that methods are declared outside the definition of the struct itself should not be significant; it is just a minor syntax difference. The methods belong to the struct type just as surely as if they were inside the braces. (They are declared outside the braces because methods aren't limited to structs.)
The real potential problem with using UML with Go is that UML is normally used with traditional object-oriented design (i.e. class hierarchies), and Go takes a different approach to inheritance and polymorphism. Maybe UML can be adapted to Go's type system—I'm not familiar enough with UML to say—but your design approach will probably need to change somewhat whether you continue using UML or not.
Go is not intended to be used in the everything-is-an-object style of Smalltalk and Java. Idiomatic Go programs generally contain a large percentage of procedural code. If your design process focuses on object modeling, it will not work well for Go.
UML still gives you tools useful for analysis and design of components, interfaces, and data. Go is not an OO language, so you cannot use inheritance, polymorphism, methods, etc. You don't need a new paradigm, you may need an old one: Structured Analysis and Structured Design.
Go Structs contain properties/state, but no methods, and
methods/functions that use Structs as parameters (even the ones that
do magic so that it makes a Struct look like an object), don't contain
methods, or state.
As you may know, in C++ you can also declare methods on structs - just as in classes with the only difference that you won't be able to use access modifiers.
In OOP languages you declare methods of a class inside the class definition, giving the feeling that these methods are somehow part of the class. This is not true for most languages and Go makes this obvious.
When you declare something like the following pseudo-code in a traditional OOP language:
class Foo {
public function bar(x int) {
// ...
}
}
the linker will export a function that will look something like:
Foo__bar(this Foo, x int)
When you then do (assume f is an instance of Foo):
f.bar(3)
you are in fact (and indirectly, more on that later) doing:
Foo__bar(f, 3)
The class instance itself will only contain a so called vtable with function pointers to the methods it implements and/or inherits.
Additionally, methods do not contain state, at least not in the contemporary programming world.
Does this mean I should be using another Methodology to model a Go
Program or does UML sufficiently model the language constructs?
UML should suffice.
Is it time for a new (perish the thought!) diagramming technique, for
the brave new world where behavior is no longer controlled by an
object?
Naa.
Can behavior be modeled without reference to the state that it is
affecting?
Yes, that's what interfaces are for.
I am trying Data Flow Diagrams out, to see if they fit better to the
paradigm. So far so good, but I think I am going to come unstuck when
I model the Methods of a struct, the compromise in the DFD being that
they are treated as Functions. :(
Do not get lost in abstractions, break them. There is no perfect paradigm and there will never be.
If you like planning and modeling more than programming you should just stick with Java.
If you like building and maintaining the actual code and working systems you should try just planning your Go program on a piece of paper or a whiteboard and get programming.

Does Ruby have a Metaobject protocol and if not, is it possible to implement one?

Pardon my ignorance, but What is a Metaobject protocol, and does Ruby have one? If not, is it possible to implement one for Ruby? What features might a Metaobject protocol possess if Ruby was to have one?
What is a Metaobject protocol?
The best description I've come across is from the Class::MOP documentation:
A meta object protocol is an API to an object system.
To be more specific, it abstracts the components of an object system (classes, object, methods, object attributes, etc.). These abstractions can then be used to inspect and manipulate the object system which they describe.
It can be said that there are two MOPs for any object system; the implicit MOP and the explicit MOP. The implicit MOP handles things like method dispatch or inheritance, which happen automatically as part of how the object system works. The explicit MOP typically handles the introspection/reflection features of the object system.
All object systems have implicit MOPs. Without one, they would not work. Explicit MOPs are much less common, and depending on the language can vary from restrictive (Reflection in Java or C#) to wide open (CLOS is a perfect example).
Does Ruby have one?
According to this thread on Reopening builtin classes, redefining builtin functions? Perlmonks article I think the answer is no (at least in the strictest sense of what a MOP is).
Clearly there is some wriggle room here so it might be worth posting a question in the Perl side of SO because the Class::MOP / Moose author does answer questions there.
If you look closer to the definition, youll see that Ruby does have a MOP. Is it like the one in CLOS? No, CLOS is a meta-circular MOP which is great (I'd even say genius), but it's not the one true way, take a look at Smalltalk. To implement a (let's say basic) MOP all you need is to provide functions that allow your runtime to:
Create or delete a new class
Create a new property or method
Cause a class to inherit from a different class ("change the class structure")
Generate or change the code defining the methods of a class.
And Ruby provides a way to do all that.
On a side note: The author of Class::MOP is right (IMHO) when it claims that some of the things you can do with a meta circular MOP can be hard to do in Ruby (DISCLAIMER: I have zero, zilch, nada Perl knowledge, so I'm thinking Smalltalk like MOP vs CLOS like MOP here) but most of them are very specific (I'm thinking about metaclass instantation here) and there are ways to make things work without them. I think it all depends on your point view, meta circular MOPs are cooler but more on the academic side and non meta circular MOPs are more practical and easier to implement.

Abstracting away from data structure implementation details in Clojure

I am developing a complex data structure in Clojure with multiple sub-structures.
I know that I will want to extend this structure over time, and may at times want to change the internal structure without breaking different users of the data structure (for example I may want to change a vector into a hashmap, add some kind of indexing structure for performance reasons, or incorporate a Java type)
My current thinking is:
Define a protocol for the overall structure with various accessor methods
Create a mini-library of functions that navigate the data structure e.g. (query-substructure-abc param1 param2)
Implement the data structure using defrecord or deftype, with the protocol methods defined to use the mini-library
I think this will work, though I'm worried it is starting to look like rather a lot of "glue" code. Also it probably also reflects my greater familiarity with object-oriented approaches.
What is the recommended way to do this in Clojure?
I think that deftype might be the way to go, however I'd take a pass on the accessor methods. Instead, look into clojure.lang.ILookup and clojure.lang.Associative; these are interfaces which, if you implement them for your type, will let you use get / get-in and assoc / assoc-in, making for a far more versatile solution (not only will you be able to change the underlying implementation, but perhaps also to use functions built on top of Clojure's standard collections library to manipulate your structures).
A couple of things to note:
You should probably start with defrecord, using get, assoc & Co. with the standard defrecord implementations of ILookup, Associative, IPersistentMap and java.util.Map. You might be able to go a pretty long way with it.
If/when these are no longer enough, have a look at the sources for emit-defrecord (a private function defined in core_deftype.clj in Clojure's sources). It's pretty complex, but it will give you an idea of what you may need to implement.
Neither deftype nor defrecord currently define any factory functions for you, but you should probably do it yourself. Sanity checking goes inside those functions (and/or the corresponding tests).
The more conceptually complex operations are of course a perfect fit for protocol functions built on the foundation of get & Co.
Oh, and have a look at gvec.clj in Clojure's sources for an example of what some serious data structure code written using deftype might look like. The complexity here is of a different kind from what you describe in the question, but still, it's one of the few examples of custom data structure programming in Clojure currently available for public consumption (and it is of course excellent quality code).
Of course this is just what my intuition tells me at this time. I'm not sure that there is much in the way of established idioms at this stage, what with deftype not actually having been released and all. :-)

Resources