BIT To Query For a given range - algorithm

We have an array arr[0 . . . n-1]. We should be able to efficiently find the minimum value from index qs (query start) to qe (query end) where 0 <= qs <= qe <= n-1
I know the data structure Segment Tree for this. I am wondering if Binary Index Tree (BIT) can also be used for this operation.If Yes, please How can i use BIT in this scenario and Is the array is to static , can we change the element and update our BIT or Segment Tree.

Yes, BIT also can solve this problem just with a little trick.
Let's use num[] represents the init array, and idx[] represents the BIT array.
The keypoint is we should use idx[k] represent the min value of range num[k-lowbit(k)+1, k], k is start from 1.
#define MAX_VALUE 10000
#define lowbit(x) (x&(-x))
int num[MAX_VALUE];
int idx[MAX_VALUE];
void update(int pos, int val, int max_index) {
num[pos] = val;
while (pos < max_index) {
idx[pos] = min(idx[pos], val);
pos += lowbit(pos);
}
}
int getMin(int left, int right) {
int res = num[right];
while (true) {
res = min(res,num[right]);
if(left == right)break;
for(right-=1;right-left>=lowbit(right);right-=lowbit(right)){
res=min(res,idx[right]);
}
}
return res;
}
Hope can help you.

Related

String permutation with duplicate characters

I have string "0011" and want all of the combinations without duplicate.
that's means I want a string with a combination of two '0' and two '1';
for example : [0011,0101,0110,1001,1010,1100]
I tried with this and the result is exactly what i need.
private void permutation(String result, String str, HashSet hashset) {
if (str.length()==0 && !hashSet.contains(result)){
System.out.println(result);
hashSet.add(result);
return;
}
IntStream.range(0,str.length()).forEach(pos->permutation(result+ str.charAt(pos), str.substring(0, pos) + str.substring(pos+1),hashset));
}
if i remove HashSet, this code will produce 24 results instead of 6 results.
but the time complexity of this code is O(n!).
how to avoid it to create a duplicate string and reduce the time complexity?
Probably something like this can be faster than n! even on small n
The idea is to count how many bits we need should be in resulting item and
iterate through all posible values and filter only those than have same number of bits. It will work similar amount of time with only one 1 and for 50%/50% of 0 and 1
function bitCount(n) {
n = n - ((n >> 1) & 0x55555555)
n = (n & 0x33333333) + ((n >> 2) & 0x33333333)
return ((n + (n >> 4) & 0xF0F0F0F) * 0x1010101) >> 24
}
function perm(inp) {
const bitString = 2;
const len = inp.length;
const target = bitCount(parseInt(inp, bitString));
const min = (Math.pow(target, bitString) - 1);
const max = min << (len - target);
const result = [];
for (let i = min; i < max + 1; i++) {
if (bitCount(i) === target) {
result.push(i.toString(bitString).padStart(len, '0'));
}
}
return result;
}
const inp = '0011';
const res = perm(inp);
console.log('result',res);
P.s. My first idea was probably faster than upper code. But upper is easier to implement
first idea was to convert string to int
and use bitwise left shift but only for one digit every time. it still depends on n. and can be larger or smaller than upper solution. but bitwise shift is faster itself.
example
const input = '0011'
const len = input.length;
step1: calc number of bits = 2;
then generate first element = 3(Dec) is = '0011' in bin
step2 move last from the right bit one position left with << operator: '0101'
step3 move again: '1001'
step4: we are reached `len` so use next bit:100'1' : '1010'
step5: repeat:'1100'
step6: move initial 3 << 1: '0110'
repeat above steps: '1010'
step8: '1100'
it will generate duplicates so probably can be improved
Hope it helps
The worst case time complexity cannot be improved because there can be no duplicates in a string. However, in case of a multi-set, we could prune a lot of sub-trees to prevent duplicates.
The key idea is to permute the string using traditional backtracking algorithm but prevent swapping if the character has been previously swapped to prevent duplicates.
Here is a C++ code snippet that prevents duplicates and doesn't use any memory for lookup.
bool shouldSwap(const string& str, size_t start, size_t index) {
for (auto i = start; i < index; ++i) {
if (str[i] == str[index])
return false;
}
return true;
}
void permute(string& str, size_t index)
{
if (index >= str.size()) {
cout << str << endl;;
return;
}
for (size_t i = index; i < str.size(); ++i) {
if(shouldSwap(str, index, i)) {
swap(str[index], str[i]);
permute(str, index + 1);
swap(str[index], str[i]);
}
}
}
Running demo. Also refer to SO answer here and Distinct permutations for more references.
Also, note that the time complexity of this solution is O(n2 n!)
O(n) for printing a string
O(n) for iterating over the string to generate swaps and recurrence.
O(n!) possible states for the number of permutations.

Make unique array with minimal sum

It is a interview question. Given an array, e.g., [3,2,1,2,7], we want to make all elements in this array unique by incrementing duplicate elements and we require the sum of the refined array is minimal. For example the answer for [3,2,1,2,7] is [3,2,1,4,7] and its sum is 17. Any ideas?
It's not quite as simple as my earlier comment suggested, but it's not terrifically complicated.
First, sort the input array. If it matters to be able to recover the original order of the elements then record the permutation used for the sort.
Second, scan the sorted array from left to right (ie from low to high). If an element is less than or equal to the element to its left, set it to be one greater than that element.
Pseudocode
sar = sort(input_array)
for index = 2:size(sar) ! I count from 1
if sar(index)<=sar(index-1) sar(index) = sar(index-1)+1
forend
Is the sum of the result minimal ? I've convinced myself that it is through some head-scratching and trials but I haven't got a formal proof.
If you only need to find ONE of the best solution, here's the algorythm with some explainations.
The idea of this problem is to find an optimal solution, which can be found only by testing all existing solutions (well, they're infinite, let's stick with the reasonable ones).
I wrote a program in C, because I'm familiar with it, but you can port it to any language you want.
The program does this: it tries to increment one value to the max possible (I'll explain how to find it in the comments under the code sections), than if the solution is not found, decreases this value and goes on with the next one and so on.
It's an exponential algorythm, so it will be very slow on large values of duplicated data (yet, it assures you the best solution is found).
I tested this code with your example, and it worked; not sure if there's any bug left, but the code (in C) is this.
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
typedef int BOOL; //just to ease meanings of values
#define TRUE 1
#define FALSE 0
Just to ease comprehension, I did some typedefs. Don't worry.
typedef struct duplicate { //used to fasten the algorythm; it uses some more memory just to assure it's ok
int value;
BOOL duplicate;
} duplicate_t;
int maxInArrayExcept(int *array, int arraySize, int index); //find the max value in array except the value at the index given
//the result is the max value in the array, not counting th index
int *findDuplicateSum(int *array, int arraySize);
BOOL findDuplicateSum_R(duplicate_t *array, int arraySize, int *tempSolution, int *solution, int *totalSum, int currentSum); //resursive function used to find solution
BOOL check(int *array, int arraySize); //checks if there's any repeated value in the solution
These are all the functions we'll need. All split up for comprehension purpose.
First, we have a struct. This struct is used to avoid checking, for every iteration, if the value on a given index was originally duplicated. We don't want to modify any value not duplicated originally.
Then, we have a couple functions: first, we need to see the worst case scenario: every value after the duplicated ones is already occupied: then we need to increment the duplicated value up to the maximum value reached + 1.
Then, there are the main Function we'll discute later about.
The check Function only checks if there's any duplicated value in a temporary solution.
int main() { //testing purpose
int i;
int testArray[] = { 3,2,1,2,7 }; //test array
int nTestArraySize = 5; //test array size
int *solutionArray; //needed if you want to use the solution later
solutionArray = findDuplicateSum(testArray, nTestArraySize);
for (i = 0; i < nTestArraySize; ++i) {
printf("%d ", solutionArray[i]);
}
return 0;
}
This is the main Function: I used it to test everything.
int * findDuplicateSum(int * array, int arraySize)
{
int *solution = malloc(sizeof(int) * arraySize);
int *tempSolution = malloc(sizeof(int) * arraySize);
duplicate_t *duplicate = calloc(arraySize, sizeof(duplicate_t));
int i, j, currentSum = 0, totalSum = INT_MAX;
for (i = 0; i < arraySize; ++i) {
tempSolution[i] = solution[i] = duplicate[i].value = array[i];
currentSum += array[i];
for (j = 0; j < i; ++j) { //to find ALL the best solutions, we should also put the first found value as true; it's just a line more
//yet, it saves the algorythm half of the duplicated numbers (best/this case scenario)
if (array[j] == duplicate[i].value) {
duplicate[i].duplicate = TRUE;
}
}
}
if (findDuplicateSum_R(duplicate, arraySize, tempSolution, solution, &totalSum, currentSum));
else {
printf("No solution found\n");
}
free(tempSolution);
free(duplicate);
return solution;
}
This Function does a lot of things: first, it sets up the solution array, then it initializes both the solution values and the duplicate array, that is the one used to check for duplicated values at startup. Then, we find the current sum and we set the maximum available sum to the maximum integer possible.
Then, the recursive Function is called; this one gives us the info about having found the solution (that should be Always), then we return the solution as an array.
int findDuplicateSum_R(duplicate_t * array, int arraySize, int * tempSolution, int * solution, int * totalSum, int currentSum)
{
int i;
if (check(tempSolution, arraySize)) {
if (currentSum < *totalSum) { //optimal solution checking
for (i = 0; i < arraySize; ++i) {
solution[i] = tempSolution[i];
}
*totalSum = currentSum;
}
return TRUE; //just to ensure a solution is found
}
for (i = 0; i < arraySize; ++i) {
if (array[i].duplicate == TRUE) {
if (array[i].duplicate <= maxInArrayExcept(solution, arraySize, i)) { //worst case scenario, you need it to stop the recursion on that value
tempSolution[i]++;
return findDuplicateSum_R(array, arraySize, tempSolution, solution, totalSum, currentSum + 1);
tempSolution[i]--; //backtracking
}
}
}
return FALSE; //just in case the solution is not found, but we won't need it
}
This is the recursive Function. It first checks if the solution is ok and if it is the best one found until now. Then, if everything is correct, it updates the actual solution with the temporary values, and updates the optimal condition.
Then, we iterate on every repeated value (the if excludes other indexes) and we progress in the recursion until (if unlucky) we reach the worst case scenario: the check condition not satisfied above the maximum value.
Then we have to backtrack and continue with the iteration, that will go on with other values.
PS: an optimization is possible here, if we move the optimal condition from the check into the for: if the solution is already not optimal, we can't expect to find a better one just adding things.
The hard code has ended, and there are the supporting functions:
int maxInArrayExcept(int *array, int arraySize, int index) {
int i, max = 0;
for (i = 0; i < arraySize; ++i) {
if (i != index) {
if (array[i] > max) {
max = array[i];
}
}
}
return max;
}
BOOL check(int *array, int arraySize) {
int i, j;
for (i = 0; i < arraySize; ++i) {
for (j = 0; j < i; ++j) {
if (array[i] == array[j]) return FALSE;
}
}
return TRUE;
}
I hope this was useful.
Write if anything is unclear.
Well, I got the same question in one of my interviews.
Not sure if you still need it. But here's how I did it. And it worked well.
num_list1 = [2,8,3,6,3,5,3,5,9,4]
def UniqueMinSumArray(num_list):
max=min(num_list)
for i,V in enumerate(num_list):
while (num_list.count(num_list[i])>1):
if (max > num_list[i]+1) :
num_list[i] = max + 1
else:
num_list[i]+=1
max = num_list[i]
i+=1
return num_list
print (sum(UniqueMinSumArray(num_list1)))
You can try with your list of numbers and I am sure it will give you the correct unique minimum sum.
I got the same interview question too. But my answer is in JS in case anyone is interested.
For sure it can be improved to get rid of for loop.
function getMinimumUniqueSum(arr) {
// [1,1,2] => [1,2,3] = 6
// [1,2,2,3,3] = [1,2,3,4,5] = 15
if (arr.length > 1) {
var sortedArr = [...arr].sort((a, b) => a - b);
var current = sortedArr[0];
var res = [current];
for (var i = 1; i + 1 <= arr.length; i++) {
// check current equals to the rest array starting from index 1.
if (sortedArr[i] > current) {
res.push(sortedArr[i]);
current = sortedArr[i];
} else if (sortedArr[i] == current) {
current = sortedArr[i] + 1;
// sortedArr[i]++;
res.push(current);
} else {
current++;
res.push(current);
}
}
return res.reduce((a,b) => a + b, 0);
} else {
return 0;
}
}

Points and segments

I'm doing online course and got stuck at this problem.
The first line contains two non-negative integers 1 ≤ n, m ≤ 50000 — the number of segments and points on a line, respectively. The next n lines contain two integers a_i ≤ b_i defining the i-th segment. The next line contain m integers defining points. All the integers are of absolute value at most 10^8. For each segment, output the number of points it is used from the n-points table.
My solution is :
for point in points:
occurrence = 0
for l, r in segments:
if l <= point <= r:
occurrence += 1
print(occurrence),
The complexity of this algorithm is O(m*n), which is obviously not very efficient. What is the best way of solving this problem? Any help will be appreciated!
Sample Input:
2 3
0 5
7 10
1 6 11
Sample Output:
1 0 0
Sample Input 2:
1 3
-10 10
-100 100 0
Sample Output 2:
0 0 1
You can use sweep line algorithm to solve this problem.
First, break each segment into two points, open and close points.
Add all these points together with those m points, and sort them based on their locations.
Iterating through the list of points, maintaining a counter, every time you encounter an open point, increase the counter, and if you encounter an end point, decrease it. If you encounter a point in list m point, the result for this point is the value of counter at this moment.
For example 2, we have:
1 3
-10 10
-100 100 0
After sorting, what we have is:
-100 -10 0 10 100
At point -100, we have `counter = 0`
At point -10, this is open point, we increase `counter = 1`
At point 0, so result is 1
At point 10, this is close point, we decrease `counter = 0`
At point 100, result is 0
So, result for point -100 is 0, point 100 is 0 and point 0 is 1 as expected.
Time complexity is O((n + m) log (n + m)).
[Original answer] by how many segments is each point used
I am not sure I got the problem correctly but looks like simple example of Histogram use ...
create counter array (one item per point)
set it to zero
process the last line incrementing each used point counter O(m)
write the answer by reading histogram O(n)
So the result should be O(m+n) something like (C++):
const int n=2,m=3;
const int p[n][2]={ {0,5},{7,10} };
const int s[m]={1,6,11};
int i,cnt[n];
for (i=0;i<n;i++) cnt[i]=0;
for (i=0;i<m;i++) if ((s[i]>=0)&&(s[i]<n)) cnt[s[i]]++;
for (i=0;i<n;i++) cout << cnt[i] << " "; // result: 0 1
But as you can see the p[] coordinates are never used so either I missed something in your problem description or you missing something or it is there just to trick solvers ...
[edit1] after clearing the inconsistencies in OP the result is a bit different
By how many points is each segment used:
create counter array (one item per segment)
set it to zero
process the last line incrementing each used point counter O(m)
write the answer by reading histogram O(m)
So the result is O(m) something like (C++):
const int n=2,m=3;
const int p[n][2]={ {0,5},{7,10} };
const int s[m]={1,6,11};
int i,cnt[m];
for (i=0;i<m;i++) cnt[i]=0;
for (i=0;i<m;i++) if ((s[i]>=0)&&(s[i]<n)) cnt[i]++;
for (i=0;i<m;i++) cout << cnt[i] << " "; // result: 1,0,0
[Notes]
After added new sample set to OP it is clear now that:
indexes starts from 0
the problem is how many points from table p[n] are really used by each segment (m numbers in output)
Use Binary Search.
Sort the line segments according to 1st value and the second value. If you use c++, you can use custom sort like this:
sort(a,a+n,fun); //a is your array of pair<int,int>, coordinates representing line
bool fun(pair<int,int> a, pair<int,int> b){
if(a.first<b.first)
return true;
if(a.first>b.first)
return false;
return a.second < b.second;
}
Then, for every point, find the 1st line that captures the point and the first line that does not (after the line that does of course). If no line captures the point, you can return -1 or something (and not check for the point that does not).
Something like:
int checkFirstHold(pair<int,int> a[], int p,int min, int max){ //p is the point
while(min < max){
int mid = (min + max)/2;
if(a[mid].first <= p && a[mid].second>=p && a[mid-1].first<p && a[mid-1].second<p) //ie, p is in line a[mid] and not in line a[mid-1]
return mid;
if(a[mid].first <= p && a[mid].second>=p && a[mid-1].first<=p && a[mid-1].second>=p) //ie, p is both in line a[mid] and not in line a[mid-1]
max = mid-1;
if(a[mid].first < p && a[mid].second<p ) //ie, p is not in line a[mid]
min = mid + 1;
}
return -1; //implying no point holds the line
}
Similarly, write a checkLastHold function.
Then, find checkLastHold - checkFirstHold for every point, which is the answer.
The complexity of this solution will be O(n log m), as it takes (log m) for every calculation.
Here is my counter-based solution in Java.
Note that all points, segment start and segment end are read into one array.
If points of different PointType have the same x-coordinate, then the point is sorted after segment start and before segment end. This is done to count the point as "in" the segment if it coincides with both the segment start (counter already increased) and the segment end (counter not yet decreased).
For storing an answer in the same order as the points from the input, I create the array result of size pointsCount (only points counted, not the segments) and set its element with index SuperPoint.index, which stores the position of the point in the original input.
import java.util.Arrays;
import java.util.Scanner;
public final class PointsAndSegmentsSolution {
enum PointType { // in order of sort, so that the point will be counted on both segment start and end coordinates
SEGMENT_START,
POINT,
SEGMENT_END,
}
static class SuperPoint {
final PointType type;
final int x;
final int index; // -1 (actually does not matter) for segments, index for points
public SuperPoint(final PointType type, final int x) {
this(type, x, -1);
}
public SuperPoint(final PointType type, final int x, final int index) {
this.type = type;
this.x = x;
this.index = index;
}
}
private static int[] countSegments(final SuperPoint[] allPoints, final int pointsCount) {
Arrays.sort(allPoints, (o1, o2) -> {
if (o1.x < o2.x)
return -1;
if (o1.x > o2.x)
return 1;
return Integer.compare( o1.type.ordinal(), o2.type.ordinal() ); // points with the same X coordinate by order in PointType enum
});
final int[] result = new int[pointsCount];
int counter = 0;
for (final SuperPoint superPoint : allPoints) {
switch (superPoint.type) {
case SEGMENT_START:
counter++;
break;
case SEGMENT_END:
counter--;
break;
case POINT:
result[superPoint.index] = counter;
break;
default:
throw new IllegalArgumentException( String.format("Unknown SuperPoint type: %s", superPoint.type) );
}
}
return result;
}
public static void main(final String[] args) {
final Scanner scanner = new Scanner(System.in);
final int segmentsCount = scanner.nextInt();
final int pointsCount = scanner.nextInt();
final SuperPoint[] allPoints = new SuperPoint[(segmentsCount * 2) + pointsCount];
int allPointsIndex = 0;
for (int i = 0; i < segmentsCount; i++) {
final int start = scanner.nextInt();
final int end = scanner.nextInt();
allPoints[allPointsIndex] = new SuperPoint(PointType.SEGMENT_START, start);
allPointsIndex++;
allPoints[allPointsIndex] = new SuperPoint(PointType.SEGMENT_END, end);
allPointsIndex++;
}
for (int i = 0; i < pointsCount; i++) {
final int x = scanner.nextInt();
allPoints[allPointsIndex] = new SuperPoint(PointType.POINT, x, i);
allPointsIndex++;
}
final int[] pointsSegmentsCounts = countSegments(allPoints, pointsCount);
for (final int count : pointsSegmentsCounts) {
System.out.print(count + " ");
}
}
}

Finding union length of many line segments

I have few bolded line segments on x-axis in form of their beginning and ending x-coordinates. Some line segments may be overlapping. How to find the union length of all the line segments.
Example, a line segment is 5,0 to 8,0 and other is 9,0 to 12,0. Both are non overlapping, so sum of length is 3 + 3 = 6.
a line segment is 5,0 to 8,0 and other is 7,0 to 12,0. But they are overlapping for range, 7,0 to 8,0. So union of length is 7.
But the x- coordinates may be floating points.
Represent a line segment as 2 EndPoint object. Each EndPoint object has the form <coordinate, isStartEndPoint>. Put all EndPoint objects of all the line segments together in a list endPointList.
The algorithm:
Sort endPointList, first by coordinate in ascending order, then place the start end points in front of the tail end points (regardless of which segment, since it doesn't matter - all at the same coordinate).
Loop through the sorted list according to this pseudocode:
prevCoordinate = -Inf
numSegment = 0
unionLength = 0
for (endPoint in endPointList):
if (numSegment > 0):
unionLength += endPoint.coordinate - prevCoordinate
prevCoordinate = endPoint.coordinate
if (endPoint.isStartCoordinate):
numSegment = numSegment + 1
else:
numSegment = numSegment - 1
The numSegment variable will tell whether we are in a segment or not. When it is larger than 0, we are inside some segment, so we can include the distance to the previous end point. If it is 0, it means that the part before the current end point doesn't contain any segment.
The complexity is dominated by the sorting part, since comparison-based sorting algorithm has lower bound of Omega(n log n), while the loop is clearly O(n) at best. So the complexity of the algorithm can be said to be O(n log n) if you choose an O(n log n) comparison-based sorting algorithm.
Use a range tree. A range tree is n log(n), just like the sorted begin/end points, but it has the additional advantage that overlapping ranges will reduce the number of elements (but maybe increase the cost of insertion) Snippet (untested)
struct segment {
struct segment *ll, *rr;
float lo, hi;
};
struct segment * newsegment(float lo, float hi) {
struct segment * ret;
ret = malloc (sizeof *ret);
ret->lo = lo; ret->hi = hi;
ret->ll= ret->rr = NULL;
return ret;
}
struct segment * insert_range(struct segment *root, float lo, float hi)
{
if (!root) return newsegment(lo, hi);
/* non-overlapping(or touching) ranges can be put into the {l,r} subtrees} */
if (hi < root->lo) {
root->ll = insert_range(root->ll, lo, hi);
return root;
}
if (lo > root->hi) {
root->rr = insert_range(root->rr, lo, hi);
return root;
}
/* when we get here, we must have overlap; we can extend the current node
** we also need to check if the broader range overlaps the child nodes
*/
if (lo < root->lo ) {
root->lo = lo;
while (root->ll && root->ll->hi >= root->lo) {
struct segment *tmp;
tmp = root->ll;
root->lo = tmp->lo;
root->ll = tmp->ll;
tmp->ll = NULL;
// freetree(tmp);
}
}
if (hi > root->hi ) {
root->hi = hi;
while (root->rr && root->rr->lo <= root->hi) {
struct segment *tmp;
tmp = root->rr;
root->hi = tmp->hi;
root->rr = tmp->rr;
tmp->rr = NULL;
// freetree(tmp);
}
}
return root;
}
float total_width(struct segment *ptr)
{
float ret;
if (!ptr) return 0.0;
ret = ptr->hi - ptr->lo;
ret += total_width(ptr->ll);
ret += total_width(ptr->rr);
return ret;
}
Here is a solution I just wrote in Haskell and below it is an example of how it can be implemented in the interpreter command prompt. The segments must be presented in the form of a list of tuples [(a,a)]. I hope you can get a sense of the algorithm from the code.
import Data.List
unionSegments segments =
let (x:xs) = sort segments
one_segment = snd x - fst x
in if xs /= []
then if snd x > fst (head xs)
then one_segment - (snd x - fst (head xs)) + unionSegments xs
else one_segment + unionSegments xs
else one_segment
*Main> :load "unionSegments.hs"
[1 of 1] Compiling Main ( unionSegments.hs, interpreted )
Ok, modules loaded: Main.
*Main> unionSegments [(5,8), (7,12)]
7
Java implementation
import java.util.*;
public class HelloWorld{
static void unionLength(int a[][],int sets)
{
TreeMap<Integer,Boolean> t=new TreeMap<>();
for(int i=0;i<sets;i++)
{
t.put(a[i][0],false);
t.put(a[i][1],true);
}
int count=0;
int res=0;
int one=1;
Set set = t.entrySet();
Iterator it = set.iterator();
int prev=0;
while(it.hasNext()) {
if(one==1){
Map.Entry me = (Map.Entry)it.next();
one=0;
prev=(int)me.getKey();
if((boolean)me.getValue()==false)
count++;
else
count--;
}
Map.Entry me = (Map.Entry)it.next();
if(count>0)
res=res+((int)me.getKey()-prev);
if((boolean)me.getValue()==false)
count++;
else
count--;
prev=(int)me.getKey();
}
System.out.println(res);
}
public static void main(String []args){
int a[][]={{0, 4}, {3, 6},{8,10}};
int b[][]={{5, 10}, {8, 12}};
unionLength(a,3);
unionLength(b,2);
}
}

Reorder a string by half the character

This is an interview question.
Given a string such as: 123456abcdef consisting of n/2 integers followed by n/2 characters. Reorder the string to contain as 1a2b3c4d5e6f . The algortithm should be in-place.
The solution I gave was trivial - O(n^2). Just shift the characters by n/2 places to the left.
I tried using recursion as -
a. Swap later half of the first half with the previous half of the 2nd part - eg
123 456 abc def
123 abc 456 def
b. Recurse on the two halves.
The pbm I am stuck is that the swapping varies with the number of elements - for eg.
What to do next?
123 abc
12ab 3c
And what to do for : 12345 abcde
123abc 45ab
This is a pretty old question and may be a duplicate. Please let me know.. :)
Another example:
Input: 38726zfgsa
Output: 3z8f7g2s6a
Here's how I would approach the problem:
1) Divide the string into two partitions, number part and letter part
2) Divide each of those partitions into two more (equal sized)
3) Swap the second the third partition (inner number and inner letter)
4) Recurse on the original two partitions (with their newly swapped bits)
5) Stop when the partition has a size of 2
For example:
123456abcdef -> 123456 abcdef -> 123 456 abc def -> 123 abc 456 def
123abc -> 123 abc -> 12 3 ab c -> 12 ab 3 c
12 ab -> 1 2 a b -> 1 a 2 b
... etc
And the same for the other half of the recursion..
All can be done in place with the only gotcha being swapping partitions that aren't the same size (but it'll be off by one, so not difficult to handle).
It is easy to permute an array in place by chasing elements round cycles if you have a bit-map to mark which elements have been moved. We don't have a separate bit-map, but IF your characters are letters (or at least have the high order bit clear) then we can use the top bit of each character to mark this. This produces the following program, which is not recursive and so does not use stack space.
class XX
{
/** new position given old position */
static int newFromOld(int x, int n)
{
if (x < n / 2)
{
return x * 2;
}
return (x - n / 2) * 2 + 1;
}
private static int HIGH_ORDER_BIT = 1 << 15; // 16-bit chars
public static void main(String[] s)
{
// input data - create an array so we can modify
// characters in place
char[] x = s[0].toCharArray();
if ((x.length & 1) != 0)
{
System.err.println("Only works with even length strings");
return;
}
// Character we have read but not yet written, if any
char holding = 0;
// where character in hand was read from
int holdingPos = 0;
// whether picked up a character in our hand
boolean isHolding = false;
int rpos = 0;
while (rpos < x.length)
{ // Here => moved out everything up to rpos
// and put in place with top bit set to mark new occupant
if (!isHolding)
{ // advance read pointer to read new character
char here = x[rpos];
holdingPos = rpos++;
if ((here & HIGH_ORDER_BIT) != 0)
{
// already dealt with
continue;
}
int targetPos = newFromOld(holdingPos, x.length);
// pick up char at target position
holding = x[targetPos];
// place new character, and mark as new
x[targetPos] = (char)(here | HIGH_ORDER_BIT);
// Now holding a character that needs to be put in its
// correct place
isHolding = true;
holdingPos = targetPos;
}
int targetPos = newFromOld(holdingPos, x.length);
char here = x[targetPos];
if ((here & HIGH_ORDER_BIT) != 0)
{ // back to where we picked up a character to hold
isHolding = false;
continue;
}
x[targetPos] = (char)(holding | HIGH_ORDER_BIT);
holding = here;
holdingPos = targetPos;
}
for (int i = 0; i < x.length; i++)
{
x[i] ^= HIGH_ORDER_BIT;
}
System.out.println("Result is " + new String(x));
}
}
These days, if I asked someone that question, what I'm looking for them to write on the whiteboard first is:
assertEquals("1a2b3c4d5e6f",funnySort("123456abcdef"));
...
and then maybe ask for more examples.
(And then, depending, if the task is to interleave numbers & letters, I think you can do it with two walking-pointers, indexLetter and indexDigit, and advance them across swapping as needed til you reach the end.)
In your recursive solution why don't you just make a test if n/2 % 2 == 0 (n%4 ==0 ) and treat the 2 situations differently
As templatetypedef commented your recursion cannot be in-place.
But here is a solution (not in place) using the way you wanted to make your recursion :
def f(s):
n=len(s)
if n==2: #initialisation
return s
elif n%4 == 0 : #if n%4 == 0 it's easy
return f(s[:n/4]+s[n/2:3*n/4])+f(s[n/4:n/2]+s[3*n/4:])
else: #otherwise, n-2 %4 == 0
return s[0]+s[n/2]+f(s[1:n/2]+s[n/2+1:])
Here we go. Recursive, cuts it in half each time, and in-place. Uses the approach outlined by #Chris Mennie. Getting the splitting right was tricky. A lot longer than Python, innit?
/* In-place, divide-and-conquer, recursive riffle-shuffle of strings;
* even length only. No wide characters or Unicode; old school. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void testrif(const char *s);
void riffle(char *s);
void rif_recur(char *s, size_t len);
void swap(char *s, size_t midpt, size_t len);
void flip(char *s, size_t len);
void if_odd_quit(const char *s);
int main(void)
{
testrif("");
testrif("a1");
testrif("ab12");
testrif("abc123");
testrif("abcd1234");
testrif("abcde12345");
testrif("abcdef123456");
return 0;
}
void testrif(const char *s)
{
char mutable[20];
strcpy(mutable, s);
printf("'%s'\n", mutable);
riffle(mutable);
printf("'%s'\n\n", mutable);
}
void riffle(char *s)
{
if_odd_quit(s);
rif_recur(s, strlen(s));
}
void rif_recur(char *s, size_t len)
{
/* Turn, e.g., "abcde12345" into "abc123de45", then recurse. */
size_t pivot = len / 2;
size_t half = (pivot + 1) / 2;
size_t twice = half * 2;
if (len < 4)
return;
swap(s + half, pivot - half, pivot);
rif_recur(s, twice);
rif_recur(s + twice, len - twice);
}
void swap(char *s, size_t midpt, size_t len)
{
/* Swap s[0..midpt] with s[midpt..len], in place. Algorithm from
* Programming Pearls, Chapter 2. */
flip(s, midpt);
flip(s + midpt, len - midpt);
flip(s, len);
}
void flip(char *s, size_t len)
{
/* Reverse order of characters in s, in place. */
char *p, *q, tmp;
if (len < 2)
return;
for (p = s, q = s + len - 1; p < q; p++, q--) {
tmp = *p;
*p = *q;
*q = tmp;
}
}
void if_odd_quit(const char *s)
{
if (strlen(s) % 2) {
fputs("String length is odd; aborting.\n", stderr);
exit(1);
}
}
By comparing 123456abcdef and 1a2b3c4d5e6f we can note that only the first and the last characters are in their correct position. We can also note that for each remaining n-2 characters we can compute their correct position directly from their original position. They will get there, and the element that was there surely was not in the correct position, so it will have to replace another one. By doing n-2 such steps all the elements will get to the correct positions:
void funny_sort(char* arr, int n){
int pos = 1; // first unordered element
char aux = arr[pos];
for (int iter = 0; iter < n-2; iter++) { // n-2 unordered elements
pos = (pos < n/2) ? pos*2 : (pos-n/2)*2+1;// correct pos for aux
swap(&aux, arr + pos);
}
}
Score each digit as its numerical value. Score each letter as a = 1.5, b = 2.5 c = 3.5 etc. Run an insertion sort of the string based on the score of each character.
[ETA] Simple scoring won't work so use two pointers and reverse the piece of the string between the two pointers. One pointer starts at the front of the string and advances one step each cycle. The other pointer starts in the middle of the string and advances every second cycle.
123456abcdef
^ ^
1a65432bcdef
^ ^
1a23456bcdef
^ ^
1a2b6543cdef
^ ^

Resources