I'm trying to implement heap sort using the CLRS book. My code is:
private void maxHeapify(int[] input, int i) {
int l = left(i);
int r = right(i);
int largest;
if(l <= heapSize && input[l] > input[i]) {
largest = l;
} else {
largest = i;
}
if(r <= heapSize && input[r] > input[largest]) {
largest = r;
}
if(largest != i) {
swap(input, i, largest);
maxHeapify(input, largest);
}
}
private void buildMaxHeap(int[] input) {
heapSize = input.length;
for(int i = (input.length-1)/2; i >= 0; i--) {
maxHeapify(input, i);
}
}
public void heapSort(int[] input) {
buildMaxHeap(input);
for(int i = input.length-1; i > 0; i--) {
swap(input, 0, i);
heapSize--;
maxHeapify(input, 0);
}
}
For an input of {1, 5, 3, 7, 2, 0, 6, 2}, I'm getting the answer as 7 3 0 6 2 5 1 2. Why is this happening? I'm guessing it has something to do with the line for(int i = (input.length-1)/2; i >= 0; i--) but I can't put my finger on it.
Related
I am trying to print n weird numbers where n is really big number (eg: 10000).
I found this site to check the algorithm for n 600 if I have some errors:
http://www.numbersaplenty.com/set/weird_number/more.php
However, my algorithm is really slow in bigger numbers:
import java.util.ArrayList;
import java.util.List;
public class Test {
public static void main(String[] args) {
int n = 2;
for ( int count = 1 ; count <= 15000 ; n += 2 ) {
if (n % 6 == 0) {
continue;
}
List<Integer> properDivisors = getProperDivisors(n);
int divisorSum = properDivisors.stream().mapToInt(i -> i.intValue()).sum();
if ( isDeficient(divisorSum, n) ) {
continue;
}
if ( isWeird(n, properDivisors, divisorSum) ) {
System.out.printf("w(%d) = %d%n", count, n);
count++;
}
}
}
private static boolean isWeird(int n, List<Integer> divisors, int divisorSum) {
return isAbundant(divisorSum, n) && ! isSemiPerfect(divisors, n);
}
private static boolean isDeficient(int divisorSum, int n) {
return divisorSum < n;
}
private static boolean isAbundant(int divisorSum, int n) {
return divisorSum > n;
}
private static boolean isSemiPerfect(List<Integer> divisors, int sum) {
int size = divisors.size();
// The value of subset[i][j] will be true if there is a subset of divisors[0..j-1] with sum equal to i
boolean subset[][] = new boolean[sum+1][size+1];
// If sum is 0, then answer is true
for (int i = 0; i <= size; i++) {
subset[0][i] = true;
}
// If sum is not 0 and set is empty, then answer is false
for (int i = 1; i <= sum; i++) {
subset[i][0] = false;
}
// Fill the subset table in bottom up manner
for ( int i = 1 ; i <= sum ; i++ ) {
for ( int j = 1 ; j <= size ; j++ ) {
subset[i][j] = subset[i][j-1];
int test = divisors.get(j-1);
if ( i >= test ) {
subset[i][j] = subset[i][j] || subset[i - test][j-1];
}
}
}
return subset[sum][size];
}
private static final List<Integer> getProperDivisors(int number) {
List<Integer> divisors = new ArrayList<Integer>();
long sqrt = (long) Math.sqrt(number);
for ( int i = 1 ; i <= sqrt ; i++ ) {
if ( number % i == 0 ) {
divisors.add(i);
int div = number / i;
if ( div != i && div != number ) {
divisors.add(div);
}
}
}
return divisors;
}
}
I have three easy breakouts:
If a number is divisable by 6 it is semiperfect which means it cannot be weird
If a number is deficient this means it cannot be weird
The above points are based on https://mathworld.wolfram.com/DeficientNumber.html
If a a number is odd it cannot be weird at least for 10^21 numbers (which is good for the numbers I am trying to obtain).
The other optimization that I used is the optimization for finding all the dividers of a number. Instead of looping to n, we loop to SQRT(n).
However, I still need to optimize:
1. isSemiPerfect because it is really slow
2. If I can optimize further getProperDivisors it will be good too.
Any suggestions are welcome, since I cannot find any more optimizations to find 10000 weird numbers in reasonable time.
PS: Any code in Java, C#, PHP and JavaScript are OK for me.
EDIT: I found this topic and modified isSemiPerfect to look like this. However, it looks like it does not optimize but slow down the calculations:
private static boolean isSemiPerfect(List<Integer> divisors, int n) {
BigInteger combinations = BigInteger.valueOf(2).pow(divisors.size());
for (BigInteger i = BigInteger.ZERO; i.compareTo(combinations) < 0; i = i.add(BigInteger.ONE)) {
int sum = 0;
for (int j = 0; j < i.bitLength(); j++) {
sum += i.testBit(j) ? divisors.get(j) : 0;
}
if (sum == n) {
return true;
}
}
return false;
}
The issue is indeed in function isSemiPerfect. I transposed your code in C++, it was still quite slow.
Then I modified this function by using backtracking. I now obtain the first 15000 weird values in about 15s. My interpretation is that in about all the cases, the value is semiperfect, and the backtracking function converges rapidly.
Note also that in my backtracking implementation, I sort the divisors, which allow to reduce the number of cases to be examined.
Edit 1: an error was corrected in getProperDivisors. Final results did not seem to be modified !
#include <iostream>
#include <vector>
#include <cmath>
#include <numeric>
#include <algorithm>
// return true if sum is obtained
bool test_sum (std::vector<int>& arr, int amount) {
int n = arr.size();
std::sort(arr.begin(), arr.end(), std::greater<int>());
std::vector<int> bound (n);
std::vector<int> select (n);
bound[n-1] = arr[n-1];
for (int i = n-2; i >= 0; --i) {
bound[i] = bound[i+1] + arr[i];
}
int sum = 0; // current sum
int i = 0; // index of the coin being examined
bool up_down = true;
while (true) {
if (up_down) {
if (i == n || sum + bound[i] < amount) {
up_down = false;
i--;
continue;
}
sum += arr[i];
select[i] = 1;
if (sum == amount) return true;
if (sum < amount) {
i++;
continue;
}
up_down = false;
if (select[i] == 0) i--;
} else { // DOWN
if (i < 0) break;
if (select[i] == 0) {
i--;
} else {
sum -= arr[i];
select[i] = 0;
i++;
up_down = true;
}
}
}
return false;
}
bool isDeficient(int divisorSum, int n) {
return divisorSum < n;
}
bool isAbundant(int divisorSum, int n) {
return divisorSum > n;
}
bool isSemiPerfect(std::vector<int> &divisors, int sum) {
int size = divisors.size();
// The value of subset[i][j] will be true if there is a subset of divisors[0..j-1] with sum equal to i
//bool subset[sum+1][size+1];
std::vector<std::vector<bool>> subset(sum+1, std::vector<bool> (size+1));
// If sum is 0, then answer is true
for (int i = 0; i <= size; i++) {
subset[0][i] = true;
}
// If sum is not 0 and set is empty, then answer is false
for (int i = 1; i <= sum; i++) {
subset[i][0] = false;
}
// Fill the subset table in bottom up manner
for ( int i = 1 ; i <= sum ; i++ ) {
for ( int j = 1 ; j <= size ; j++ ) {
subset[i][j] = subset[i][j-1];
int test = divisors[j-1];
if ( i >= test ) {
subset[i][j] = subset[i][j] || subset[i - test][j-1];
}
}
}
return subset[sum][size];
}
bool isWeird(int n, std::vector<int> &divisors, int divisorSum) {
//return isAbundant(divisorSum, n) && !isSemiPerfect(divisors, n);
return isAbundant(divisorSum, n) && !test_sum(divisors, n);
}
std::vector<int> getProperDivisors_old(int number) {
std::vector<int> divisors;
long sqrtn = sqrt(number);
for ( int i = 1 ; i <= sqrtn ; i++ ) {
if ( number % i == 0 ) {
divisors.push_back(i);
int div = number / i;
if (div != i && div != number) {
divisors.push_back(div);
}
}
}
return divisors;
}
std::vector<int> getProperDivisors(int number) {
std::vector<int> divisors;
long sqrtn = sqrt(number);
divisors.push_back(1);
for ( int i = 2 ; i <= sqrtn ; i++ ) {
if (number % i == 0) {
divisors.push_back(i);
int div = number/i;
if (div != i) divisors.push_back(div);
}
}
return divisors;
}
int main() {
int n = 2, count;
std::vector<int> weird;
int Nweird = 15000;
for (count = 0; count < Nweird; n += 2) {
if (n % 6 == 0) continue;
auto properDivisors = getProperDivisors(n);
int divisorSum = std::accumulate (properDivisors.begin(), properDivisors.end(), 0);
if (isDeficient(divisorSum, n) ) {
continue;
}
if (isWeird(n, properDivisors, divisorSum)) {
//std::cout << count << " " << n << "\n";
weird.push_back (n);
count++;
}
}
for (int i = Nweird - 10; i < Nweird; ++i) {
std::cout << weird.at(i) << " ";
}
std::cout << "\n";
}
EDIT 2 The generation of Divisors were completely redefined. It uses now prime decomposition. Much more complex, but global time divided by 7.5. Generation of weird numbers take now 2s on my PC.
#include <iostream>
#include <vector>
#include <cmath>
#include <numeric>
#include <algorithm>
template <typename T>
struct factor {T val = 0; T mult = 0;};
template <typename T>
class decompo {
private:
std::vector<T> memory = {2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 39, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97};
T index = 0;
public:
decompo () {};
void reset () {index = 0;};
T pop () {index = memory.size() - 1; return memory[index];};
T get_next ();
std::vector<T> find_all_primes (T n);
std::vector<factor<T>> decomp (T n);
std::vector<T> GetDivisors (T n);
void complete (T n);
};
template <typename T>
T decompo<T>::get_next () {
++index;
if (index <= memory.size()) {
return memory[index-1];
}
T n = memory.size();
T candidate = memory[n-1] + 2;
while (1) {
bool found = true;
for (T i = 1; memory[i] * memory[i] <= candidate; ++i) {
if (candidate % memory[i] == 0) {
found = false;
break;
}
}
if (found) {
memory.push_back (candidate);
return candidate;
}
candidate += 2;
}
}
template <typename T>
std::vector<T> decompo<T>::find_all_primes (T n) {
reset();
std::vector<T> result;
while (1) {
T candidate = get_next();
if (candidate <= n) {
result.push_back (candidate);
} else {
return result;
}
}
}
template <typename T>
void decompo<T>::complete (T n) {
T last = pop();
while (last < n) {
last = get_next();
}
return;
}
template <typename T>
std::vector<factor<T>> decompo<T>::decomp (T n) {
reset();
std::vector<factor<T>> result;
if (n < 2) return result;
T candidate = get_next();
T last_prime = 0;
while (candidate*candidate <= n) {
if (n % candidate == 0) {
if (candidate == last_prime) {
result[result.size()-1].mult ++;
} else {
result.push_back ({candidate, 1});
last_prime = candidate;
}
n /= candidate;
} else {
candidate = get_next();
}
}
if (n > 1) {
if (n != last_prime) result.push_back ({n, 1});
else result[result.size()-1].mult ++;
}
return result;
}
template <typename T>
std::vector<T> decompo<T>::GetDivisors (T n) {
std::vector<T> div;
auto primes = decomp (n);
int n_primes = primes.size();
std::vector<int> exponent (n_primes, 0);
div.push_back(1);
int current_index = 0;
int product = 1;
std::vector<int> product_partial(n_primes, 1);;
while (true) {
current_index = 0;
while (current_index < n_primes && exponent[current_index] == primes[current_index].mult) current_index++;
if (current_index == n_primes) break;
for (int index = 0; index < current_index; ++index) {
exponent[index] = 0;
product /= product_partial[index];
product_partial[index] = 1;
}
exponent[current_index]++;
product *= primes[current_index].val;
product_partial[current_index] *= primes[current_index].val;
if (product != n && product != 1) div.push_back (product);
}
return div;
}
// return true if sum is obtained
bool test_sum (std::vector<int>& arr, int amount) {
int n = arr.size();
std::sort(arr.begin(), arr.end(), std::greater<int>());
std::vector<int> bound (n);
std::vector<int> select (n);
bound[n-1] = arr[n-1];
for (int i = n-2; i >= 0; --i) {
bound[i] = bound[i+1] + arr[i];
}
int sum = 0; // current sum
int i = 0; // index of the coin being examined
bool up_down = true;
while (true) {
if (up_down) {
if (i == n || sum + bound[i] < amount) {
up_down = false;
i--;
continue;
}
sum += arr[i];
select[i] = 1;
if (sum == amount) return true;
if (sum < amount) {
i++;
continue;
}
up_down = false;
if (select[i] == 0) i--;
} else { // DOWN
if (i < 0) break;
if (select[i] == 0) {
i--;
} else {
sum -= arr[i];
select[i] = 0;
i++;
up_down = true;
}
}
}
return false;
}
bool isDeficient(int divisorSum, int n) {
return divisorSum < n;
}
bool isAbundant(int divisorSum, int n) {
return divisorSum > n;
}
bool isSemiPerfect(std::vector<int> &divisors, int sum) {
int size = divisors.size();
// The value of subset[i][j] will be true if there is a subset of divisors[0..j-1] with sum equal to i
//bool subset[sum+1][size+1];
std::vector<std::vector<bool>> subset(sum+1, std::vector<bool> (size+1));
// If sum is 0, then answer is true
for (int i = 0; i <= size; i++) {
subset[0][i] = true;
}
// If sum is not 0 and set is empty, then answer is false
for (int i = 1; i <= sum; i++) {
subset[i][0] = false;
}
// Fill the subset table in bottom up manner
for ( int i = 1 ; i <= sum ; i++ ) {
for ( int j = 1 ; j <= size ; j++ ) {
subset[i][j] = subset[i][j-1];
int test = divisors[j-1];
if ( i >= test ) {
subset[i][j] = subset[i][j] || subset[i - test][j-1];
}
}
}
return subset[sum][size];
}
bool isWeird(int n, std::vector<int> &divisors, int divisorSum) {
//return isAbundant(divisorSum, n) && !isSemiPerfect(divisors, n);
return isAbundant(divisorSum, n) && !test_sum(divisors, n);
}
std::vector<int> getProperDivisors(int number) {
std::vector<int> divisors;
long sqrtn = sqrt(number);
divisors.push_back(1);
for ( int i = 2 ; i <= sqrtn ; i++ ) {
if (number % i == 0) {
divisors.push_back(i);
int div = number/i;
if (div != i) divisors.push_back(div);
}
}
return divisors;
}
int main() {
decompo <int> decomposition;
decomposition.complete (1e3); // not relly useful
int n = 2, count;
std::vector<int> weird;
int Nweird = 15000;
for (count = 0; count < Nweird; n += 2) {
if (n % 6 == 0) continue;
//auto properDivisors = getProperDivisors(n);
auto properDivisors = decomposition.GetDivisors(n);
int divisorSum = std::accumulate (properDivisors.begin(), properDivisors.end(), 0);
if (isDeficient(divisorSum, n) ) {
continue;
}
if (isWeird(n, properDivisors, divisorSum)) {
//std::cout << count << " " << n << "\n";
weird.push_back (n);
count++;
}
}
for (int i = Nweird - 10; i < Nweird; ++i) {
std::cout << weird.at(i) << " ";
}
std::cout << "\n";
}
The method mergeSort(int[]) is undefined for the type merge. This is the error that I am facing. Can anyone please point out my fault? Might be I'm making a syntax error, please point out the mistake im making.
public class merge {
public static mergeSort(int[] a) {
int n = a.length;
if (n < 2) {
return(a[]);
}
int mid = n / 2;
int left[] = new int[mid];
int left[] = new int[n - mid];
for (int i = 0; i < mid; i++) {
left[i] = a[i];
}
for (int i = mid; i < n; i++) {
right[i - mid] = a[i];
}
mergeSort(left[]);
mergeSort(right[]);
mmerge(left[], right[], A);
}
public static void mmerge(int[] l, int[] r, int[] array) {
int len1 = l.length();
int len2 = r.length();
int i = 0;
int j = 0;
int k = 0;
while (i < len1 && j < len2) {
if (l[i] <= r[j]) {
array[k]=l[i];
k++;
i++;
} else {
array[k] = r[j];
k++;
j++;
}
}
while (i < len1) {
array[k] = l[i];
k++;
i++;
}
while (j < len2) {
array[k] = r[j];
k++;
j++;
}
}
public static void main(String args[]) {
int[] arr = { 4, 6, 2, 9, 1, 7, 3 };
mergeSort(arr);
for (int p = 0; p < arr.length; p++) {
System.out.print(arr[p]+" ");
}
}
}
Try this
public class merge {
public static void mergeSort(int[] a) {
int n=a.length;
if(n<2) {
return;
}
int mid=n/2;
int left[]=new int[mid];
int right[]=new int[n-mid];
for (int i=0;i<mid;i++) {
left[i]=a[i];
}
for (int i=mid;i<n;i++) {
right[i-mid]=a[i];
}
mergeSort(left);
mergeSort(right);
mmerge(left,right,a);
}
public static void mmerge(int[] l,int[] r,int[] array) {
int len1=l.length;
int len2=r.length;
int i=0;
int j=0;
int k=0;
while(i<len1 && j<len2) {
if(l[i]<=r[j]) {
array[k]=l[i];
k++;
i++;
}else {
array[k]=r[j];
k++;
j++;
}
}
while(i<len1) {
array[k]=l[i];
k++;
i++;
}
while(j<len2) {
array[k]=r[j];
k++;
j++;
}
}
public static void main(String args[]) {
int[] arr={4,6,2,9,1,7,3};
mergeSort(arr);
for(int p=0;p<arr.length;p++) {
System.out.print(arr[p]+" ");
}
}
}
I want to print this shape big X from collection of small x using recursion
this is my code
private static void shape(PrintWriter output, int times, int k, int times2) {
if(times < 0){
return;
} else{
for (int i =0; i<times; i++){
if (i==times)
output.print("X");
else if(i==k)
output.print("X");
else
output.print(" ");
}
output.println();
shape(output,times-1,k+1,times2);
}
}
but I couldn't print the shape requested
Try this.
static void shape(PrintWriter output, int size, int index) {
if (index >= size)
return;
char[] buffer = new char[size];
Arrays.fill(buffer, ' ');
buffer[index] = buffer[size - index - 1] = 'X';
output.println(new String(buffer));
shape(output, size, index + 1);
}
and
try (PrintWriter output = new PrintWriter(new OutputStreamWriter(System.out))) {
shape(output, 11, 0);
}
Just change
int arr[] = new int[times]
to
int arr[] = new int[times2]
where times2 is the width of a single row.
However a more cleaner way would be:
public class InputTest {
private static void FCITshape(int times, int k,int times2) {
if (times < 0) {
return;
} else {
for (int i = 0; i <= times2; i++) {
if (i == times)
System.out.print("X");
else if (i == k)
System.out.print("X");
else
System.out.print(" ");
}
System.out.println();
FCITshape(times - 1, k + 1, times2);
}
}
public static void main(String[] args) {
FCITshape(10, 0, 10);
}
}
Regards.
With recursion
Now just call printX(0, 10);
public static void printX(int x, int l) {
if (x <= l) {
if (x < l / 2) {
for (int i = 0; i < x ; i++) {
System.out.print(" ");
}
} else {
for (int i = 0; i < l - x; i++) {
System.out.print(" ");
}
}
System.out.print("x");
if (x < l / 2) {
for (int j = 0; j < l - x * 2 - 1; j++) {
System.out.print(" ");
}
} else {
for (int j = 0; j < (x * 2 - l) - 1; j++) {
System.out.print(" ");
}
}
if (x != l / 2) {
System.out.print("x");
}
System.out.println();
printX(x + 1, l);
}
}
this is the code for the mergeSort,this gives an stackoverflow error in line 53 and 54(mergeSort(l,m); and mergeSort(m,h);)
Any help will be regarded so valuable,please help me out,i am clueless,Thank you.
package codejam;
public class vector {
static int[] a;
static int[] b;
public static void main(String[] args) {
int[] a1 = {12,33,2,1};
int[] b1 = {12,333,11,1};
mergeSort(0,a1.length);
a1=b1;
mergeSort(0,b1.length);
for (int i = 0; i < a1.length; i++) {
System.out.println(a[i]);
}
}
public static void merge(int l,int m,int h) {
int n1=m-l+1;
int n2 = h-m+1;
int[] left = new int[n1];
int[] right = new int[n2];
int k=l;
for (int i = 0; i < n1 ; i++) {
left[i] = a[k];
k++;
}
for (int i = 0; i < n2; i++) {
right[i] = a[k];
k++;
}
left[n1] = 100000000;
right[n1] = 10000000;
int i=0,j=0;
for ( k =l ; k < h; k++) {
if(left[i]>=right[j])
{
a[k] = right[j];
j++;
}
else
{
a[k] = left[i];
i++;
}
}
}
public static void mergeSort(int l,int h) {
int m =(l+h)/2;
if(l<h)
{
mergeSort(l,m);
mergeSort(m,h);
merge(l,m,h);;
}
}
}
Following is the recursive iterations table of the mergeSort function with argument l=0 and h=4
when the value of l is 0 and value of h is 1 , expression calculate m value which turn out to be 0 but we are checking condition with h which is still 1 so 0<1 become true , recursive calls of this mergeSort function forms a pattern , this pattern doesn't let the function to terminate , stack runs out of memory , cause stackoverflow error.
import java.lang.*;
import java.util.Random;
public class MergeSort {
public static int[] merge_sort(int[] arr, int low, int high ) {
if (low < high) {
int middle = low + (high-low)/2;
merge_sort(arr,low, middle);
merge_sort(arr,middle+1, high);
arr = merge (arr,low,middle, high);
}
return arr;
}
public static int[] merge(int[] arr, int low, int middle, int high) {
int[] helper = new int[arr.length];
for (int i = 0; i <=high; i++){
helper[i] = arr[i];
}
int i = low;
int j = middle+1;
int k = low;
while ( i <= middle && j <= high) {
if (helper[i] <= helper[j]) {
arr[k++] = helper[i++];
} else {
arr[k++] = helper[j++];
}
}
while ( i <= middle){
arr[k++] = helper[i++];
}
while ( j <= high){
arr[k++] = helper[j++];
}
return arr;
}
public static void printArray(int[] B) {
for (int i = 0; i < B.length ; i++) {
System.out.print(B[i] + " ");
}
System.out.println("");
}
public static int[] populateA(int[] B) {
for (int i = 0; i < B.length; i++) {
Random rand = new Random();
B[i] = rand.nextInt(20);
}
return B;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
int A[] = new int[10];
A = populateA(A);
System.out.println("Before sorting");
printArray(A);
A = merge_sort(A,0, A.length -1);
System.out.println("Sorted Array");
printArray(A);
}
}
UPDATE: I have found the problem that my DP solution didn't handle bonus correctly. I added one more dimension to the state array to represent the sum of the first 6 categories. However, the solution got timed out. It's not badly timeout since each test case can be solved less than 1 sec on my machine.
The problem description is here: http://uva.onlinejudge.org/external/101/10149.html
I searched online and found that it should be solved by DP and bitmask. I implemented the code and passed all test cases I tested, but the Uva Judge returns wrong answer.
My idea is to have state[i][j] to be matching round i to category bitmasked by j. Please point out my mistakes or link some code that can solve this problem correctly. Here is my code:
public class P10149 {
public static void main(String[] args) throws IOException {
Scanner in = new Scanner(new FileInputStream("input.txt"));
// Scanner in = new Scanner(System.in);
while (in.hasNextLine()) {
int[][] round = new int[13][5];
for (int i = 0; i < 13; i++) {
for (int j = 0; j < 5; j++) {
round[i][j] = in.nextInt();
}
}
in.nextLine();
int[][] point = new int[13][13];
for (int i = 0; i < 13; i++) {
for (int j = 0; j < 13; j++) {
point[i][j] = getPoint(round[i], j);
}
}
int[][] state = new int[14][1 << 13];
for (int i = 1; i <= 13; i++) {
Arrays.fill(state[i], -1);
}
int[][] bonusSum = new int[14][1 << 13];
int[][] choice = new int[14][1 << 13];
for (int i = 1; i <= 13; i++) {
for (int j = 0; j < (1 << 13); j++) {
int usedSlot = 0;
for (int b = 0; b < 13; b++) {
if (((1 << b) & j) != 0) {
usedSlot++;
}
}
if (usedSlot != i) {
continue;
}
for (int b = 0; b < 13; b++) {
if (((1 << b) & j) != 0) {
int j2 = (~(1 << b) & j);
int bonus;
if (b < 6) {
bonus = bonusSum[i - 1][j2] + point[i - 1][b];
} else {
bonus = bonusSum[i - 1][j2];
}
int newPoint;
if (bonus >= 63 && bonusSum[i - 1][j2] < 63) {
newPoint = 35 + state[i - 1][j2] + point[i - 1][b];
} else {
newPoint = state[i - 1][j2] + point[i - 1][b];
}
if (newPoint > state[i][j]) {
choice[i][j] = b;
state[i][j] = newPoint;
bonusSum[i][j] = bonus;
}
}
}
}
}
int index = (1 << 13) - 1;
int maxPoint = state[13][index];
boolean bonus = (bonusSum[13][index] >= 63);
int[] mapping = new int[13];
for (int i = 13; i >= 1; i--) {
mapping[choice[i][index]] = i;
index = (~(1 << choice[i][index]) & index);
}
for (int i = 0; i < 13; i++) {
System.out.print(point[mapping[i] - 1][i] + " ");
}
if (bonus) {
System.out.print("35 ");
} else {
System.out.print("0 ");
}
System.out.println(maxPoint);
}
}
static int getPoint(int[] round, int category) {
if (category < 6) {
int sum = 0;
for (int i = 0; i < round.length; i++) {
if (round[i] == category + 1) {
sum += category + 1;
}
}
return sum;
}
int sum = 0;
int[] count = new int[7];
for (int i = 0; i < round.length; i++) {
sum += round[i];
count[round[i]]++;
}
if (category == 6) {
return sum;
} else if (category == 7) {
for (int i = 1; i <= 6; i++) {
if (count[i] >= 3) {
return sum;
}
}
} else if (category == 8) {
for (int i = 1; i <= 6; i++) {
if (count[i] >= 4) {
return sum;
}
}
} else if (category == 9) {
for (int i = 1; i <= 6; i++) {
if (count[i] >= 5) {
return 50;
}
}
} else if (category == 10) {
for (int i = 1; i <= 3; i++) {
if (isStraight(count, i, 4)) {
return 25;
}
}
} else if (category == 11) {
for (int i = 1; i <= 2; i++) {
if (isStraight(count, i, 5)) {
return 35;
}
}
} else if (category == 12) {
for (int i = 1; i <= 6; i++) {
for (int j = 1; j <= 6; j++) {
if (i != j && count[i] == 3 && count[j] == 2) {
return 40;
}
}
}
}
return 0;
}
static boolean isStraight(int[] count, int start, int num) {
for (int i = start; i < start + num; i++) {
if (count[i] == 0) {
return false;
}
}
return true;
}
}
Here is the working solution.
import java.io.FileInputStream;
import java.io.IOException;
import java.util.Arrays;
import java.util.Scanner;
public class P10149 {
static final int MAX_BONUS_SUM = 115;
public static void main(String[] args) throws IOException {
Scanner in = new Scanner(new FileInputStream("input.txt"));
// Scanner in = new Scanner(System.in);
long t1 = System.currentTimeMillis();
while (in.hasNextLine()) {
int[][] round = new int[13][5];
for (int i = 0; i < 13; i++) {
for (int j = 0; j < 5; j++) {
round[i][j] = in.nextInt();
}
}
in.nextLine();
int[][] point = new int[13][13];
for (int i = 0; i < 13; i++) {
for (int j = 0; j < 13; j++) {
point[i][j] = getPoint(round[i], j);
}
}
int[][] state = new int[1 << 13][MAX_BONUS_SUM + 1];
int[][] newState = new int[1 << 13][MAX_BONUS_SUM + 1];
for (int j = 0; j < (1 << 13); j++) {
Arrays.fill(state[j], -1);
Arrays.fill(newState[j], -1);
}
state[0][0] = 0;
int[][][] choice = new int[13][1 << 13][MAX_BONUS_SUM + 1];
for (int i = 0; i < 13; i++) {
for (int j = 0; j < (1 << 13); j++) {
int usedSlot = 0;
for (int b = 0; b < 13; b++) {
if (((1 << b) & j) != 0) {
usedSlot++;
}
}
if (usedSlot != i + 1) {
continue;
}
for (int b = 0; b < 13; b++) {
if (((1 << b) & j) != 0) {
int j2 = (~(1 << b) & j);
for (int s = 0; s <= MAX_BONUS_SUM; s++) {
int oldSum;
if (b < 6) {
if (s < point[i][b]) {
s = point[i][b] - 1;
continue;
}
oldSum = s - point[i][b];
} else {
oldSum = s;
}
if (state[j2][oldSum] < 0) {
continue;
}
int newPoint;
if (s >= 63 && oldSum < 63) {
newPoint = 35 + state[j2][oldSum] + point[i][b];
} else {
newPoint = state[j2][oldSum] + point[i][b];
}
if (newPoint > newState[j][s]) {
choice[i][j][s] = b;
newState[j][s] = newPoint;
}
}
}
}
}
for (int j = 0; j < (1 << 13); j++) {
for (int s = 0; s <= MAX_BONUS_SUM; s++) {
state[j][s] = newState[j][s];
}
Arrays.fill(newState[j], -1);
}
}
int index = (1 << 13) - 1;
int maxPoint = -1;
int sum = 0;
for (int s = 0; s <= MAX_BONUS_SUM; s++) {
if (state[index][s] > maxPoint) {
maxPoint = state[index][s];
sum = s;
}
}
boolean bonus = (sum >= 63);
int[] mapping = new int[13];
for (int i = 12; i >= 0; i--) {
mapping[choice[i][index][sum]] = i;
int p = 0;
if (choice[i][index][sum] < 6) {
p = point[i][choice[i][index][sum]];
}
index = (~(1 << choice[i][index][sum]) & index);
sum -= p;
}
for (int i = 0; i < 13; i++) {
System.out.print(point[mapping[i]][i] + " ");
}
if (bonus) {
System.out.print("35 ");
} else {
System.out.print("0 ");
}
System.out.println(maxPoint);
}
long t2 = System.currentTimeMillis();
// System.out.println(t2 - t1);
}
static int getPoint(int[] round, int category) {
if (category < 6) {
int sum = 0;
for (int i = 0; i < round.length; i++) {
if (round[i] == category + 1) {
sum += category + 1;
}
}
return sum;
}
int sum = 0;
int[] count = new int[7];
for (int i = 0; i < round.length; i++) {
sum += round[i];
count[round[i]]++;
}
if (category == 6) {
return sum;
} else if (category == 7) {
for (int i = 1; i <= 6; i++) {
if (count[i] >= 3) {
return sum;
}
}
} else if (category == 8) {
for (int i = 1; i <= 6; i++) {
if (count[i] >= 4) {
return sum;
}
}
} else if (category == 9) {
for (int i = 1; i <= 6; i++) {
if (count[i] >= 5) {
return 50;
}
}
} else if (category == 10) {
for (int i = 1; i <= 3; i++) {
if (isStraight(count, i, 4)) {
return 25;
}
}
} else if (category == 11) {
for (int i = 1; i <= 2; i++) {
if (isStraight(count, i, 5)) {
return 35;
}
}
} else if (category == 12) {
for (int i = 1; i <= 6; i++) {
if (count[i] >= 5) {
return 40;
}
}
for (int i = 1; i <= 6; i++) {
for (int j = 1; j <= 6; j++) {
if (i != j && count[i] == 3 && count[j] == 2) {
return 40;
}
}
}
}
return 0;
}
static boolean isStraight(int[] count, int start, int num) {
for (int i = start; i < start + num; i++) {
if (count[i] == 0) {
return false;
}
}
return true;
}
}
Use Munker's algorithm to solve this problem