Polygon Algorithm - algorithm

I'm trying to code a general algorithm that can find a polygon from the area swept out by a circle (red line) that follows some known path (green line), and where the circle gets bigger as it moves further down the known path. Basically, can anyone point me down a direction to solve this, please? I can't seem to nail down which tangent points are part of the polygon for any point (and thus circle) on the path.
Any help is appreciated.

Well, the easiest is to approximate your path by small segments on which your path is linear, and your circle grows linearly.
Your segments and angles will likely be small, but for the sake of the example, let's take bigger (and more obvious) angles.
Going through the geometry
Good lines for the edges of your polygon are the tangents to both circles. Note that there aren't always close to the lines defined by the intersections between the circles and the orthogonal line to the path, especially with stronger growth speeds. See the figure below, where (AB) is the path, we want the (OE) and (OF) lines, but not the (MN) one for example :
The first step is to identify the point O. It is the only point that defines a homothetic transformation between both circles, with a positive ratio.
Thus ratio = OA/OB = (radius C) / (radius C') and O = A + AB/(1-ratio)
Now let u be the vector from O to A normalized, and v a vector orthogonal to u (let us take it in the direction from A to M).
Let us call a the vector from O to E normalized, and beta the angle EOA. Then, since (OE) and (AE) are perpendicular, sin(beta) = (radius C) / OA. We also have the scalar product a.u = cos(beta) and since the norm of a is 1, a = u * cos(beta) + v * sin(beta)
Then it comes easily that with b the vector from O to F normalized, b = u * cos(beta) - v * sin(beta)
Since beta is an angle less than 90° (otherwise the growth of the circle would be so much faster than it going forward, that the second circle contains the first completely), we know that cos(beta) > 0.
Pseudo-code-ish solution
For the first and last circles you can do something closer to them -- fort the sake of simplicity, I'm just going to use the intersection between the lines I'm building and the tangent to the circle that's orthogonal to the first (or last) path, as illustrated in the first figure of this post.
Along the path, you can make your polygon arbitrarily close to the real swept area by making the segments smaller.
Also, I assume you have a function find_intersection that, given two parametric equations of two lines, returns the point of intersection between them. First of all, it makes it trivial to see if they are parallel (which they should never be), and it allows to easily represent vertical lines.
w = 1; // width of the first circle
C = {x : 0, y : 0}; // first circle center
while( (new_C, new_w) = next_step )
{
// the vector (seg_x, seg_y) is directing the segment
seg = new_C - C;
norm_seg = sqrt( seg.x * seg.x + seg.y * seg.y );
// the vector (ortho_x, ortho_y) is orthogonal to the segment, with same norm
ortho = { x = -seg.y, y = seg.x };
// apply the formulas we devised : get ratio-1
fact = new_w / w - 1;
O = new_C - seg / fact;
sin_beta = w * fact / norm_seg;
cos_beta = sqrt(1 - sin_beta * sin_beta);
// here you know the two lines, parametric equations are O+t*a and O+t*b
a = cos_beta * seg + sin_beta * ortho;
b = cos_beta * seg - sin_beta * ortho;
if( first iteration )
{
// initialize both "old lines" to a line perpendicular to the first segment
// that passes through the opposite side of the circle
old_a = ortho;
old_b = -ortho;
old_O = C - seg * (w / norm_seg);
}
P = find_intersection(old_O, old_a, O, a);
// add P to polygon construction clockwise
Q = find_intersection(old_O, old_b, O, b);
// add Q to polygon construction clockwise
old_a = a;
old_b = b;
old_O = O;
w = new_w;
C = new_C;
}
// Similarly, finish with line orthogonal to last direction, that is tangent to last circle
O = C + seg * (w / norm_seg);
a = ortho;
b = -ortho;
P = find_intersection(old_O, old_a, O, a);
// add P to polygon construction clockwise
Q = find_intersection(old_O, old_b, O, b);
// add Q to polygon construction clockwise

Let's suppose the centers are along the positive x-axis, and the lines in the envelope are y=mx and y=-mx for some m>0. The distance from (x,0) to y=mx is mx/sqrt(1+m^2). So, if the radius is increasing at a rate of m/sqrt(1+m^2) times the distance moved along the x-axis, the enveloping lines are y=mx and y=-mx.
Inverting this, if you put a circle of radius cx at the center of (x,0), then c=m/sqrt(1+m^2) so
m = c/sqrt(1-c^2).
If c=1 then you get a vertical line, and if c>1 then every point in the plane is included in some circle.
This is how you can tell how much faster than sound a supersonic object is moving from the Mach angle of the envelope of the disturbed medium.
You can rotate this to nonhorizontal lines. It may help to use the angle formulation mu = arcsin(c), where mu is the angle between the envelope and the path, and the Mach number is 1/c.

Related

Calculate if a bullet hits the balloon

I have this problem I can't figure out and need help.
The problem is about calculating how many balloons are hit by a pellet gun. Balloons positions are described by 3D coordinates (X,Y,Z) and radius R. The gunshot is defined by 3D location of the end of the barrel "p" (Px,Py,Pz) and vector "v" (Vx, Vy, Vz) describing the direction barrel is pointing to.
I've tried to implement the solution suggested here: https://math.stackexchange.com/questions/1939423/calculate-if-vector-intersects-sphere
// C = center of sphere
// r = radius of sphere
// P = point on line
// U = unit vector in direction of line
Q = P - C;
a = U*U; // should be = 1
b = 2*U*Q
c = Q*Q - r*r;
d = b*b - 4*a*c; // discriminant of quadratic
if d < 0 then solutions are complex, so no intersections
if d >= 0 then solutions are real, so there are intersections
But the problem with this is that I get intersection with balloons that are positioned behind the gun. How can I modify this algorithm in order to produce the correct result? Or is my approach maybe wrong?
You need to actually solve the quadratic equation defined by your variables a, b and c.
Often, there are math libraries to do this, something like:
(t1,t2) = QuadraticSolve(a, b, c);
You can also do it manually for each parameter:
t1 = (-b + sqrt(b*b - 4*a*c)) / (2*a)
t2 = (-b - sqrt(b*b - 4*a*c)) / (2*a)
If t1 or t2 is positive then that intersection is in front of your gun.

Calculate points on an arc of a circle using center, radius and 3 points on the circle

Given the center, radius and and 3 points on a circle, I want to draw an arc that starts at the first point, passing through the second and ends at the third by specifying the angle to start drawing and the amount of angle to rotate. To do this, I need to calculate the points on the arc. I want the number of points calculated to be variable so I can adjust the accuracy of the calculated arc, so this means I probably need a loop that calculates each point by rotating a little after it has calculated a point. I've read the answer to this question Draw arc with 2 points and center of the circle but it only solves the problem of calculating the angles because I don't know how 'canvas.drawArc' is implemented.
This question has two parts:
How to find the arc between two points that passes a third point?
How to generate a set of points on the found arc?
Let's start with first part. Given three points A, B and C on the (O, r) circle we want to find the arc between A and C that passes through B. To find the internal angle of the arc we need to calculate the oriented angles of AB and AC arcs. If angle of AB was greater than AC, we are in wrong direction:
Va.x = A.x - O.x;
Va.y = A.y - O.y;
Vb.x = B.x - O.x;
Vb.y = B.y - O.y;
Vc.x = C.x - O.x;
Vc.y = C.y - O.y;
tb = orientedAngle(Va.x, Va.y, Vb.x, Vb.y);
tc = orientedAngle(Va.x, Va.y, Vc.x, Vc.y);
if tc<tb
tc = tc - 2 * pi;
end
function t = orientedAngle(x1, y1, x2, y2)
t = atan2(x1*y2 - y1*x2, x1*x2 + y1*y2);
if t<0
t = t + 2 * pi;
end
end
Now the second part. You said:
I probably need a loop that calculates each point by rotating a little
after it has calculated a point.
But the question is, how little? Since the perimeter of the circle increases as its radius increase, you cannot reach a fixed accuracy with a fixed angle. In other words, to draw two arcs with the same angle and different radii, we need a different number of points. What we can assume to be [almost] constant is the distance between these points, or the length of the segments we draw to simulate the arc:
segLen = someConstantLength;
arcLen = abs(tc)*r;
segNum = ceil(arcLen/segLen);
segAngle = tc / segNum;
t = atan2(Va.y, Va.x);
for i from 0 to segNum
P[i].x = O.x + r * cos(t);
P[i].y = O.y + r * sin(t);
t = t + segAngle;
end
Note that although in this method A and C will certainly be created, but point B will not necessarily be one of the points created. However, the distance of this point from the nearest segment will be very small.

Find tangent points in a circle from a point

Circle center : Cx,Cy
Circle radius : a
Point from which we need to draw a tangent line : Px,Py
I need the formula to find the two tangents (t1x, t1y) and (t2x,t2y) given all the above.
Edit: Is there any simpler solution using vector algebra or something, rather than finding the equation of two lines and then solving equation of two straight lines to find the two tangents separately? Also this question is not off-topic because I need to write a code to find this optimally
Here is one way using trigonometry. If you understand trig, this method is easy to understand, though it may not give the exact correct answer when one is possible, due to the lack of exactness in trig functions.
The points C = (Cx, Cy) and P = (Px, Py) are given, as well as the radius a. The radius is shown twice in my diagram, as a1 and a2. You can easily calculate the distance b between points P and C, and you can see that segment b forms the hypotenuse of two right triangles with side a. The angle theta (also shown twice in my diagram) is between the hypotenuse and adjacent side a so it can be calculated with an arccosine. The direction angle of the vector from point C to point P is also easily found by an arctangent. The direction angles of the tangency points are the sum and difference of the original direction angle and the calculated triangle angle. Finally, we can use those direction angles and the distance a to find the coordinates of those tangency points.
Here is code in Python 3.
# Example values
(Px, Py) = (5, 2)
(Cx, Cy) = (1, 1)
a = 2
from math import sqrt, acos, atan2, sin, cos
b = sqrt((Px - Cx)**2 + (Py - Cy)**2) # hypot() also works here
th = acos(a / b) # angle theta
d = atan2(Py - Cy, Px - Cx) # direction angle of point P from C
d1 = d + th # direction angle of point T1 from C
d2 = d - th # direction angle of point T2 from C
T1x = Cx + a * cos(d1)
T1y = Cy + a * sin(d1)
T2x = Cx + a * cos(d2)
T2y = Cy + a * sin(d2)
There are obvious ways to combine those calculations and make them a little more optimized, but I'll leave that to you. It is also possible to use the angle addition and subtraction formulas of trigonometry with a few other identities to completely remove the trig functions from the calculations. However, the result is more complicated and difficult to understand. Without testing I do not know which approach is more "optimized" but that depends on your purposes anyway. Let me know if you need this other approach, but the other answers here give you other approaches anyway.
Note that if a > b then acos(a / b) will throw an exception, but this means that point P is inside the circle and there is no tangency point. If a == b then point P is on the circle and there is only one tangency point, namely point P itself. My code is for the case a < b. I'll leave it to you to code the other cases and to decide the needed precision to decide if a and b are equal.
Here's another way using complex numbers.
If a is the direction (a complex number of length 1) of the tangent point on the circle from the centre c, and d is the (real) length along the tangent to get to p, then (because the direction of the tangent is I*a)
p = c + r*a + d*I*a
rearranging
(r+I*d)*a = p-c
But a has length 1 so taking the length we get
|r+I*d| = |p-c|
We know everything but d, so we can solve for d:
d = +- sqrt( |p-c|*|p-c| - r*r)
and then find the a's and the points on the circle, one of each for each value of d above:
a = (p-c)/(r+I*d)
q = c + r*a
Hmm not really an algorithm question (people tend to mistake algorithm and equation) If you want to write a code then do (you did not specify language nor what prevents you from doing this which is the reason of close votes)... Without this info your OP is just asking for math equation which is indeed off-topic here and by answering this I risk (right-full) down-votes too (but this is/was asked a lot here with much less info and 4 reopen votes against 1 close put my decision weight on reopen and answering this anyway).
You can exploit the fact that you are in 2D as in 2D perpendicular vectors to vector a(x,y) are computed like this:
c = (-y, x)
d = ( y,-x)
c = -d
so you swap x,y and negate one (which one determines if the perpendicular vector is CW or CCW). It is really a rotation formula but as we rotate by 90deg the cos,sin are just +1 and -1.
Now normal n to any circumference point on circle lies in the line going through that point and circles center. So putting all this together your tangents are:
// normal
nx = Px-Cx
ny = Py-Cy
// tangent 1
tx = -ny
ty = +nx
// tangent 2
tx = +ny
ty = -nx
If you want unit vectors than just divide by radius a (not sure why you do not call it r like the rest of the math world) so:
// normal
nx = (Px-Cx)/a
ny = (Py-Cy)/a
// tangent 1
tx = -ny
ty = +nx
// tangent 2
tx = +ny
ty = -nx
Let's go through derivation process:
As you can see, if the interior of the square is < 0 it's because the point is interior to the circumferemce. When the point is outside of the circumference there are two solutions, depending on the sign of the square.
The rest is easy. Take atan(solution) and be carefull here with the signs, you may better do some checks.
Use (2) and then undo (1) transformations and that's all.
c# implementation of dmuir's answer:
static void FindTangents(Vector2 point, Vector2 circle, float r, out Line l1, out Line l2)
{
var p = new Complex(point.x, point.y);
var c = new Complex(circle.x, circle.y);
var cp = p - c;
var d = Math.Sqrt(cp.Real * cp.Real + cp.Imaginary * cp.Imaginary - r * r);
var q = GetQ(r, cp, d, c);
var q2 = GetQ(r, cp, -d, c);
l1 = new Line(point, new Vector2((float) q.Real, (float) q.Imaginary));
l2 = new Line(point, new Vector2((float) q2.Real, (float) q2.Imaginary));
}
static Complex GetQ(float r, Complex cp, double d, Complex c)
{
return c + r * (cp / (r + Complex.ImaginaryOne * d));
}
Move the circle to the origin, rotate to bring the point on X and downscale by R to obtain a unit circle.
Now tangency is achieved when the origin (0, 0), the (reduced) given point (d, 0) and an arbitrary point on the unit circle (cos t, sin t) form a right triangle.
cos t (cos t - d) + sin t sin t = 1 - d cos t = 0
From this, you draw
cos t = 1 / d
and
sin t = ±√(1-1/d²).
To get the tangency points in the initial geometry, upscale, unrotate and untranslate. (These are simple linear algebra operations.) Notice that there is no need to perform the direct transform explicitly. All you need is d, ratio of the distance center-point over the radius.

Find indices of polygon vertices nearest to a point

Heading
I need to find the indices of the polygon nearest to a point
So in this case the ouput would be 4 and 0. Such that if the red point is added I know to where to place the vertex in the array. Does anyone know where to start?
(Sorry if the title is misleading, I wasnt sure how to phrase it properly)
In this case the ouput would be 0 and 1, rather than the closest 4.
Point P lies on the segment AB, if two simple conditions are met together:
AP x PB = 0 //cross product, vectors are collinear or anticollinear, P lies on AB line
AP . PB > 0 //scalar product, exclude anticollinear case to ensure that P is inside the segment
So you can check all sequential vertice pairs (pseudocode):
if (P.X-V[i].X)*(V[i+1].Y-P.Y)-(P.Y-V[i].Y)*(V[i+1].X-P.X)=0 then
//with some tolerance if point coordinates are float
if (P.X-V[i].X)*(V[i+1].X-P.X)+(P.Y-V[i].Y)*(V[i+1].Y-P.Y)>0
then P belongs to (i,i+1) segment
This is fast direct (brute-force) method.
Special data structures exist in computer geometry to quickly select candidate segments - for example, r-tree. But these complicated methods will gain for long (many-point) polylines and for case where the same polygon is used many times (so pre-treatment is negligible)
I'll assume that the new point is to be added to an edge. So you are given the coordinates of a point a = (x, y) and you want to find the indices of the edge on which it lies. Let's call the vertices of that edge b, c. Observe that the area of the triangle abc is zero.
So iterate over all edges and choose the one that minimizes area of triangle abc where a is your point and bc is current edge.
a = input point
min_area = +infinity
closest_edge = none
n = number of vertices in polygon
for(int i = 1; i <= n; i++)
{ b = poly[ i - 1 ];
c = poly[ i % n ];
if(area(a, b, c) < min_area)
{ min_area = area(a, b, c);
closest_edge = bc
}
}
You can calculate area using:
/* Computes area x 2 */
int area(a, b, c)
{ int ans = 0;
ans = (a.x*b.y + b.x*x.y + c.x*a.y) - (a.y*b.x + b.y*c.x + c.y*a.x);
return ABS(ans);
}
I think you would be better off trying to compare the distance from the actual point to a comparable point on the line. The closest comparable point would be the one that forms a perpendicular line like this. a is your point in question and b is the comparable point on the line line between the two vertices that you will check distance to.
However there's another method which I think might be more optimal for this case (as it seems most of your test points lie pretty close to the desired line already). Instead of find the perpendicular line point we can simply check the point on the line that has the same X value like this. b in this case is a lot easier to calculate:
X = a.X - 0.X;
Slope = (1.Y - 0.Y) / (1.X - 0.X);
b.X = 0.X + X;
b.Y = 0.Y + (X * Slope);
And the distance is simply the difference in Y values between a and b:
distance = abs(a.Y - b.Y);
One thing to keep in mind is that this method will become more inaccurate as the slope increases as well as become infinite when the slope is undefined. I would suggest flipping it when the slope > 1 and checking for a b that lies at the same y rather than x. That would look like this:
Y = a.Y - 0.Y;
Inverse_Slope = (1.X - 0.X) / (1.Y - 0.Y);
b.Y = 0.Y + Y;
b.X = 0.Y + (Y * Inverse_Slope);
distance = abs(a.X - b.X);
Note: You should also check whether b.X is between 0.X and 1.X and b.Y is between 0.Y and 1.Y in the second case. That way we are not checking against points that dont lie on the line segment.
I admit I don't know the perfect terminology when it comes to this kind of thing so it might be a little confusing, but hope this helps!
Rather than checking if the point is close to an edge with a prescribed tolerance, as MBo suggested, you can fin the edge with the shortest distance to the point. The distance must be computed with respect to the line segment, not the whole line.
How do you compute this distance ? Let P be the point and Q, R two edge endpoints.
Let t be in range [0,1], you need to minimize
D²(P, QR) = D²(P, Q + t QR) = (PQ + t QR)² = PQ² + 2 t PQ.QR + t² QR².
The minimum is achieved when the derivative cancels, i.e. t = - PQ.QR / QR². If this quantity exceeds the range [0,1], just clamp it to 0 or 1.
To summarize,
if t <= 0, D² = PQ²
if t >= 1, D² = PR²
otherwise, D² = PQ² - t² QR²
Loop through all the vertices, calculate the distance of that vertex to the point, find the minimum.
double min_dist = Double.MAX_VALUE;
int min_index=-1;
for(int i=0;i<num_vertices;++i) {
double d = dist(vertices[i],point);
if(d<min_dist) {
min_dist = d;
min_index = i;
}
}

How to find out if a ray intersects a rectangle?

We have a ray that starts at point A(X, Y) and goes on forever through given point B(X, Y) != A. We have a rectangle defined by points K,L,M,N each with its (X, Y).
I wonder how to detect if our ray intersects with any point of our rectangle (get a bool, not precice coordinates)? What is algorithm for calculating such value?
Let me get this straight. You have a vector v headed off in direction (b_x - a_x, b_y - a_y) and starting at (a_x, a_y).
Consider the vector w = (b_y - a_y, a_x - b_x). It is at right angles to the first. (Verify with a dot product.) Therefore for any point (p_x, p_y) you can easily tell which side of the vector it is on by taking a dot product of (p_x - a_x, p_y - a_y) with w and looking at the sign.
So take that dot product with all 4 corners of your rectangle. If any give a 0 dot product, they are on the vector, if the signs change there is an intersection, if the sign is always the same there is no intersection.
You can use the sweep line algorithm to do so.
http://en.wikipedia.org/wiki/Sweep_line_algorithm
A less clever, but conceptually simpler approach: the ray intersects the rectangle if and only if it intersects at least one of the sides. So for each side of the rectangle, find the intersection (if any) of the line passing through the endpoints with the ray AB; then it's simply a range check to determine if that intersection lies is part of the line segment on the boundary of the rectangle, or if it is outside.
You probably want to compute the segment (if any) of the ray AB that intersects the rectangle. If your rectangle is axis-aligned, this will be easier to compute in a numerical sense, but the logic should be similar.
You can represent a directed line L as [a, b, c] such that, if point P is (X, Y):
let L(P) = a*X + b*Y + c
then, if L(P) == 0, point P is on L
if L(P) > 0, point P is to the left of L
if L(P) < 0, point P is to the right of L
Note that this is redundant in the sense that, given any k > 0, [k*a, k*b, k*c] represents the same line (this property makes it a homogeneous coordinate system). We can also represent points with homogeneous coordinates by augmenting them with a third coordinate:
2D point P = (X, Y)
-> homogeneous coordinates [x, y, w] for P are [X, Y, 1]
L(P) = L.a*P.x + L.b*P.y + L.c*P.w == a*X + b*Y + c*1
In any case, given two corners of your rectangle (say, P and Q), you can compute the homogeneous coordinates of the line through P and Q using a 3-D cross-product of their homogeneous coordinates:
homogeneous coordinates for line PQ are: [P.X, P.Y, 1] cross [Q.X, Q.Y, 1]
-> PQ.a = P.Y - Q.Y
PQ.b = Q.X - P.X
PQ.c = P.X*Q.Y - Q.X*P.Y
You can verify mathematically that points P and Q are both on the above-described line PQ.
To represent the segment of line AB that intersects the rectangle, first compute vector V = B - A, as in #btilly's answer. For homogeneous coordinates, this works as follows:
A = [A.X, A.Y, 1]
B = [B.X, B.Y, 1]
-> V = B - A = [B.X-A.X, B.Y-A.Y, 0]
for any point C on AB: homogeneous coordinates for C = u*A + v*V
(where u and v are not both zero)
Point C will be on the ray part of the line only if u and v are both non-negative. (This representation may seem obscure, compared to the usual formulation of C = A + lambda * V, but doing it this way avoids unnecessary divide-by-zero cases...)
Now, we can compute the ray intersection: we represent a segment of the line AB by the parametric [u,v] coordinates of each endpoint: { start = [start.u, start.v]; end = [end.u, end.v] }.
We compute the edges of the rectangle in the counterclockwise direction, so that points inside the rectangle are on the left/positive side (L(P)>0) of every edge.
Starting segment is entire ray:
start.u = 1; start.v = 0
end.u = 0; end.v = 1
for each counterclockwise-directed edge L of the rectangle:
compute:
L(A) = L.a*A.X + L.b*A.Y + L.c
L(V) = L.a*V.X + L.b*V.Y
L(start) = start.u * L(A) + start.v * L(V)
L(end) = end.u * L(A) + end.v * L(V)
if L(start) and L(end) are both less than zero:
exit early: return "no intersection found"
if L(start) and L(end) are both greater or equal to zero:
do not update the segment; continue with the next line
else, if L(start) < 0:
update start coordinates:
start.u := L(V)
start.v := -L(A)
else, if L(end) < 0:
update end coordinates:
end.u := -L(V)
end.v := L(A)
on normal loop exit, the ray does intersect the rectangle;
the part of the ray inside the rectangle is the segment between points:
homog_start = start.u * A + start.v * V
homog_end = end.u * A + end.v * V
return "intersection found":
intersection_start.X = homog_start.x/homog_start.w
intersection_start.Y = homog_start.y/homog_start.w
intersection_end.X = homog_end.x/homog_end.w
intersection_end.Y = homog_end.y/homog_end.w
Note that this will work for arbitrary convex polygons, not just rectangles; the above is actually a general ray/convex polygon intersection algorithm. For a rectangle, you can unroll the for-loop; and, if the rectangle is axis-aligned, you can drastically simplify the arithmetic. However, the 4-case decision in the inner loop should remain the same for each edge.

Resources